反比例函数的应用公开课教学设计
北师大版九年级数学上册《反比例函数的应用》示范公开课教学设计
第六章 反比例函数3反比例函数的应用一、 教学目标1. 能用反比例函数解决简单实际问题.2. 经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程.3. 经历运用反比例函数解决实际问题的过程,进一步体会数学建模思想,培养学生数学应用意识.4. 渗透数形结合的思想方法,提高学生用函数观点解决问题的能力.二、 教学重难点重点:能用反比例函数解决简单实际问题.难点:经历分析实际问题中两个变量之间的关系、建立反比例函数模型,进而解决问题的过程.三、教学用具 多媒体等. 四、教学过程设计 【复习回顾】 教师活动:先提出问题,学生思考后回答问. 问题:还记得反比例函数的图象吗? 预设:反比例函数()0ky k x=≠ 的图象是双曲线. 提问1:反比例函数的图象的位置与k 有怎样的关系?预设:当k >0时,两支曲线分别位于第一、三象限内;当k <0时,两支曲线分别位于第二、四象限内. 提问2:反比例函数()0ky k x=≠图象的性质是怎样的呢?预设:反比例函数()0ky k x=≠ 的图象,当k >0时,在每一个象限内,y 的值随x 值的增大而减少;当k <0时,在每一个象限内,y 的值随x 值的增大而增大.【合作探究】 教师活动:将实际问题转化为数学问题,建立反比例函数模型,再根据反比例函数的相关知识解决问题.问题1:某科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积 S (m 2)的变化,人和木板对地面的压强 p (Pa)将如何变化?如果人和木板对湿地地面的压力合计600N ,那么(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?(4)在平面直角坐标系中,作出相应的函数图象.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.预设:(1)600pS=,满足kyx=且k≠0的条件,所以p是S的反比例函数.(2)当S=0.2时,6006003000(p)0.2p a s===(3)当p≤6000时,6006000.16000Ss≥==所以木板面积至少要0.1m2.(4)函数图象:(5)问题(2)是已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3)是已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线p=6000下方的图象上.【做一做】1.蓄电池的电压为定值,使用此电源时,电流I (A)与电阻R (Ω)之间的函数关系如图所示.(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?(2)如果以此蓄电池为电源的用电器电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?预设:(1)因为IR=U (U 为定值),把图象上的点A 的坐标(9,4)代入,得U =36.则这一函数的表达式为:36I R; (2)当I ≤10A 时,解得R ≥3.6 (Ω).所以可变电阻应不小于3.6Ω.2.如图,正比例函数y =k 1x 的图象与反比例函数 2k y =x的图象相交于A ,B 两点,其中点A 的坐标为(3 ,23).(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求的? 预设:(1)把A 点坐标(3 ,23 )分别 代入y =k 1x 和2k y =x,解得k 1=2,k 2=6. 所以所求的函数表达式为:y =2x 和6y =x.【随堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.某蓄水池的排水管每时排水8m3/h,6h可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t与Q之间的函数关系式;(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m3/h,那么最少多长时间可将满池水全部排空?2.一个用电器的电阻是可调节的,其范围为110~220 Ω.已知电压为220 V.2 ()U PR(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?答案:1.解:(1)蓄水池容积为:8×6=48(m3)(2)由(1)可知Q·t=48 ,Q与t成反比例关系,所以Q增大时,t将减少.以思维导图的形式呈现本节课所讲解的内容.。
九年级数学上册《反比例函数的应用》教案、教学设计
6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。
北师大版数学九年级上册6.3反比例函数的应用教案
-分析反比例函数图像在第一、二、三、四象限的特点。
-强调反比例函数图像与坐标轴无交点,即x=0时,函数无意义。
c.反比例函数在实际问题中的应用
-结合实际例子,如速度与时间、浓度与体积等,让学生学会建立反比例函数模型。
-通过练习题,巩固反比例函数在实际问题中的应用。
2.教学难点
3.成果展示:每个小组将向全ቤተ መጻሕፍቲ ባይዱ展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(其中k为常数,k≠0)的函数。它在描述一些与总量不变有关的问题时非常重要,如速度与时间、浓度与体积等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以固定速度行驶,我们如何根据行驶时间推算行驶距离?通过反比例函数,我们可以轻松解决这个问题。
北师大版数学九年级上册6.3反比例函数的应用教案
一、教学内容
北师大版数学九年级上册6.3反比例函数的应用教案:
1.教材章节:第六章第三节
a.反比例函数的定义与性质
b.反比例函数的图像特点
c.反比例函数在实际问题中的应用
2.教学内容:
a.通过实际问题引入反比例函数,使学生理解反比例函数的意义
b.分析反比例函数的性质,探讨反比例函数图像与坐标轴的关系
《反比例函数的应用》教学教案
《反比例函数的应用》教学教案教学目标:1.了解反比例函数的定义和特点;2.掌握反比例函数的应用;3.能够解决与反比例函数相关的实际问题。
教学重点:1.反比例函数的定义和特点;2.反比例函数的应用。
教学难点:1.如何通过实际问题建立反比例函数的模型;2.如何用反比例函数解决实际问题。
教学准备:1.教师准备:白板、彩色粉笔、教学PPT;2.学生准备:参考教材、铅笔、计算器。
教学过程:一、导入(5分钟)教师通过引入一道有关反比例函数的问题,如“小明去小卖部买了10张明信片,一共花了15元,那么20张明信片一共要花多少元?”来引起学生兴趣,激发学生思考。
二、新知讲解(20分钟)1.反比例函数的定义教师通过讲解反比例函数的定义和示例,引导学生了解反比例函数的性质和图像特点。
反比例函数的一般形式为:y=k/x(k≠0)其中,k为常数,称为反比例函数的比例因子,x≠0。
反比例函数图像的特点是:通过原点,单调递减,左侧和右侧的趋势趋近于x轴和y轴。
2.反比例函数的应用教师通过示例演示反比例函数的应用,并结合实际例子进行讲解,如:a.两个物体的速度和时间的关系(速度与时间成反比);b.人工作时间和效率的关系(工作时间与效率成反比);c.电阻和电流的关系(电阻与电流成反比)。
三、实例分析(25分钟)教师给出一些实际问题,要求学生通过建立反比例函数的模型来解决。
教师通过引导学生寻找问题中的关键变量和因果关系,然后利用反比例函数的特性建立函数模型,并计算出相关的数值。
例1:甲乙两个工人同时做一件活,如果甲一个人能在8小时内完成,那么需要乙多少小时才能完成?假设两人的效率是相同的。
解析:设乙需要x小时才能完成工作,由题意可知,甲乙的工作时间和效率成反比。
根据反比例函数的性质,可以列出方程:8×1=x×1,解得x=8/1=8(小时)。
四、拓展练习(15分钟)教师设计其他实际问题,要求学生自行构建反比例函数模型,解决问题,并进行相应的计算。
九年级《反比例函数的应用》教学设计
【教学设计】一、教学目标1.理解反比例函数的概念和性质。
2.掌握反比例函数的图像特点。
3.能够应用反比例函数解决实际问题。
二、教学重难点1.理解反比例函数与正比例函数的区别。
2.理解如何利用反比例函数解决实际问题。
三、教学过程1.导入新知识(10分钟)教师出示一张正比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生总结出正比例函数的性质。
然后教师再出示一张反比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生从图像中发现反比例函数的性质。
2.反比例函数的性质(25分钟)教师向学生展示反比例函数的定义,并从数学公式角度帮助学生理解反比例函数的性质。
然后,教师引导学生观察反比例函数图像的特点,如自变量和因变量的比例关系、反比例函数图像在坐标平面中的位置等。
学生根据观察到的特点总结反比例函数的性质。
3.反比例函数的图像特点(30分钟)教师以一个具体的例子来展示如何根据反比例函数的性质来画出反比例函数的图像。
教师在黑板上画出一组数字序列,并带领学生计算出对应的自变量和因变量。
然后,教师带领学生将这组数字绘制在坐标平面上,并连线得到反比例函数的图像。
学生在教师的指导下,练习绘制不同的反比例函数的图像。
4.反比例函数的应用(30分钟)教师将反比例函数的应用引入到现实生活中。
教师提供一组与实际生活相关的数据,如商品价格与销量的关系等,然后带领学生分析出这组数据满足反比例函数的条件。
学生根据所学的知识,利用反比例函数解决实际问题。
5.拓展应用练习(20分钟)教师提供一批拓展应用题,让学生自主完成。
每道题目都提供实际生活的背景,学生需要根据实际情况采用适当的方法解决问题,并将解决过程和答案书写清楚。
教师在学生完成后,分组让学生交流分享自己的解题思路和方法,从中发现不同的解题思路。
四、教学反思本堂课以图像、实例和应用为导入点,让学生从不同的角度理解反比例函数的概念、性质和应用。
2023-2024学年北师大版九年级数学上册教学设计:6.3 反比例函数的应用
2023-2024学年北师大版九年级数学上册教学设计:6.3 反比例函数的应用一. 教材分析反比例函数是九年级数学上册的教学内容,对于学生来说,这部分内容较为抽象,需要通过具体实例来帮助学生理解和掌握。
本节课通过生活中的实例,让学生感受反比例函数的应用,培养学生的实际问题解决能力。
二. 学情分析学生在学习本节课之前,已经掌握了比例函数的知识,对函数的概念和性质有一定的了解。
但反比例函数的概念和性质与比例函数有很大的不同,学生需要通过实例来理解和掌握。
同时,学生需要具备一定的观察和分析问题的能力,能够将实际问题转化为数学问题。
三. 教学目标1.了解反比例函数的概念和性质。
2.能够将实际问题转化为反比例函数问题,并求解。
3.培养学生的观察和分析问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.将实际问题转化为反比例函数问题。
五. 教学方法采用问题驱动法,通过实例来引导学生观察、分析和解决问题,培养学生的实际问题解决能力。
同时,采用小组合作学习的方式,让学生在讨论中加深对反比例函数的理解。
六. 教学准备1.准备相关的实例,如购物问题、速度问题等。
2.准备反比例函数的PPT,展示反比例函数的图像和性质。
七. 教学过程1.导入(5分钟)通过一个购物实例,让学生观察商品单价和购买数量的关系,引导学生思考如何用数学模型来表示这种关系。
2.呈现(10分钟)呈现反比例函数的定义和性质,通过PPT展示反比例函数的图像,让学生观察和分析图像的特点。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,将其转化为反比例函数问题,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成几个反比例函数的应用题,巩固所学知识。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)引导学生思考反比例函数在实际生活中的应用,如广告宣传、经济分析等。
让学生举例说明,并进行讨论。
6.小结(5分钟)总结本节课所学内容,反比例函数的概念和性质,以及如何将实际问题转化为反比例函数问题。
《反比例函数的应用》教学设计1
《反比例函数的应用》教学设计1《反比例函数的应用》教学设计1教学设计:反比例函数的应用教学目标:1.理解反比例函数的定义和性质;2.掌握反比例函数的图像特征;3.掌握反比例函数在实际问题中的应用。
教学重难点:1.反比例函数的应用;2.实际问题的解决过程。
教学准备:1.教学工具:计算器、投影仪、黑板、白板、PPT等;2.教学材料:包括数学教材中的相关知识点和例题,以及一些实际应用问题的案例。
教学步骤:第一步:引入知识(10分钟)1.老师先通过投影仪或PPT展示一些简单的实际应用问题,如电费、水费、速度与时间的关系等,引起学生的兴趣;2.引导学生思考这些实际问题是否存在一种特定的数学关系。
第二步:知识讲解(30分钟)1.老师讲解反比例函数的定义和性质,包括函数的表示形式y=k/x,其中k为比例常数,x和y分别为自变量和因变量;2.通过几个例题,讲解反比例函数的图像特征,如图像的开口方向、渐近线等。
第三步:解决实际问题(40分钟)1.老师通过投影仪或黑板展示一些典型的实际问题,如材料的使用效率、投资回报率、物体的增长速度等;2.带领学生分析问题,建立数学模型,并利用反比例函数解决问题;3.学生进行小组讨论,解决给定的实际问题;4.学生报告解决过程和结果,并与其他小组进行讨论和比较。
第四步:归纳总结(10分钟)1.老师带领学生总结反比例函数在实际问题中的应用;2.学生提出自己的感想和思考。
第五步:作业布置(5分钟)1.布置一些相关的作业,如教材中的练习题,或者让学生自己寻找一些实际问题,尝试建立数学模型并解决。
教学拓展:1.给学生提供更多的实际应用问题,让他们继续运用反比例函数解决问题;2.引导学生思考反比例函数的局限性以及在实际问题中的合理应用范围。
教学反思:本节课以引入实际问题为切入点,通过讲解和解决问题的方式,让学生在实践中理解和应用反比例函数。
但在实际操作过程中,我发现学生在建立数学模型的能力还比较薄弱,需要通过更多的训练和练习来提高。
反比例函数教学设计(通用)五篇
反比例函数教学设计(通用)五篇第一篇:反比例函数教学设计(通用)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x 不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为y=.(1)当x=-1时,y=2;∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=-;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-.Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
《反比例函数的应用》教学设计
《反比例函数的应用》教学设计教学目标:1.能分析实际问题中两个变量的关系,建立反比例函数模型,进而解决实际问题.2.能利用函数的图象解决问题,体会数形结合的思想,发展几何直观.教学重难点:利用函数的图象解决问题.教学过程:一、知识回顾1.视察函数图象,写出你能从图中获得哪些数学信息?学生活动:先视察图象独立思考,小组交流。
老师活动:分别从解析式和图象的性质两个方面整理学生发现的问题,引导学生数形结合的思想来分析问题。
活动意图:引发学生思考,激发学生学习的主动性。
回顾反比例函数图象的性质,为本节课的学习奠定基础。
二、学习新知例1.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.你能解释他们这样做的道理吗? 当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化? 如果人和木板对湿地地面的压力合计600 N,那么(1)用含S的代数式表示p,p是S的反比例函数吗?(2)填写下表,并在直角坐标系中画出相应的函数图象.m )S(2p(Pa)(3)如果要求压强不超过6000 Pa,木板面积至少要多大?(4)视察函数图象,你还能得出哪些结论?学生活动:采用师生问答,小组交流的情势对本题的问题展开学习,进一步练习反比例函数图象的画法。
独立思考解决问题的办法,能够通过组内和班内交流,选择最优解题方案。
至少掌握一种解题方法。
老师活动:关注学生回答问题是否规范准确,引导学生实际问题自变量的取值,引导学生与之前的反比例函数图象进行对照,总结解题方法,培养学生建模意识,引导学生用数形结合的思想解决问题。
活动意图:以实际背景为依托,培养学生建立反比例函数模型,进而用函数图象解决简单问题。
【巩固提升】1.为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与药物在空气中的持续时间x(分)如图所示.请根据函数图象解答下列问题:(1)分别写出药物燃烧时及燃烧后y 关于x 的函数表达式.(2)当每立方米空气中的含药量大于或等于1.6mg 时,对人体有毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?学生活动:独立思考,小组交流,体会函数图象在解决问题中的直观性。
反比例函数应用教案
反比例函数应用教案教案标题:反比例函数应用教案教学目标:1. 了解反比例函数的定义和性质;2. 掌握反比例函数在实际问题中的应用方法;3. 能够解决与反比例函数相关的实际问题。
教学准备:1. 教师准备:黑板、白板、投影仪、计算器等;2. 学生准备:教科书、练习册、笔、纸等。
教学过程:一、导入(5分钟)1. 引入反比例函数的概念,与学生一起回顾比例函数的定义和性质;2. 提问:你能举出反比例函数的例子吗?请简要说明。
二、概念讲解(15分钟)1. 通过示例和图表,介绍反比例函数的定义和性质;2. 解释反比例函数的图像特征,包括渐近线和反比例关系的特点;3. 引导学生理解反比例函数的变化规律。
三、应用实例(20分钟)1. 提供一些与反比例函数相关的实际问题,如速度与时间、工人数量与完成工作所需时间等;2. 分组讨论,学生通过分析问题、建立反比例函数模型,并解决问题;3. 学生展示解题思路和答案,进行讨论和总结。
四、拓展练习(15分钟)1. 学生个人或小组完成练习册上的相关练习;2. 教师巡回指导,解答学生疑问;3. 鼓励学生尝试更复杂的实际问题,并进行讨论。
五、总结归纳(10分钟)1. 教师总结反比例函数的特点和应用方法;2. 学生回答教师提出的问题,巩固所学知识;3. 教师布置相关作业,以巩固学生的学习成果。
六、课堂反馈(5分钟)1. 学生填写课堂反馈表,反馈本节课的学习情况和问题;2. 教师收集反馈表,了解学生的学习情况,为下节课的教学调整做准备。
教学评价:1. 学生对反比例函数的定义和性质有基本的理解;2. 学生能够应用反比例函数解决与实际问题相关的计算和分析;3. 学生能够在小组合作中有效地讨论和解决问题;4. 学生能够运用反比例函数的知识进行拓展练习。
教学反思:1. 教案的设计是否清晰明了,能否引导学生有效地学习和思考;2. 教学过程中学生的参与度和合作情况如何;3. 学生对反比例函数的理解和应用能力是否得到提高;4. 是否有必要调整教学方法或内容,以更好地促进学生的学习。
反比例函数的应用精品教案
反比例函数的应用精品教案【教学目标】1.了解反比例函数的概念及特点;2.能够应用反比例函数解决实际问题;3.学会用图表和公式表示反比例函数。
【教学内容】1.反比例函数的概念及特点;2.人口增长问题与反比例函数的关系;3.用图表和公式表示反比例函数;4.解决实际的人口增长问题。
【教学过程】1.导入新知识(5分钟)通过引导学生回答以下问题,激发学生的思考并预热课堂气氛:-你知道什么是函数吗?函数有哪些特点?-你听说过反比例函数吗?你认为它有什么特点?2.理解反比例函数(15分钟)讲解反比例函数的定义和特点:-当x趋近于无穷大或无穷小时,y趋近于0;-y随x的增大而减小,y随x的减小而增大;-y与x的乘积为常数k。
3.人口增长问题与反比例函数的关系(15分钟)通过一个简单的例子来引入人口增长问题与反比例函数的关系:假设地区的人口密度是反比例于土地面积的,写出人口密度D与土地面积A之间的关系式,并解释其中的常量k的含义。
4.用图表和公式表示反比例函数(20分钟)让学生练习用图表和公式表示反比例函数:-给出一个简单的反比例函数的表格,让学生根据表格绘制图像,并写出函数的公式;-再给出一个图像,让学生尝试写出函数的公式。
5.解决实际的人口增长问题(25分钟)通过一个实际的人口增长问题,来让学生应用反比例函数解决问题:地区的人口密度随土地面积的增加而减少,当土地面积为10平方公里时,人口总数为2000人。
现在要求你计算当土地面积增加到100平方公里时,该地区的人口总数是多少。
6.拓展与总结(10分钟)让学生回答以下问题,巩固学习内容:-反比例函数有什么特点?它与比例函数有什么不同?-除了人口增长问题,你能想到哪些其他的反比例函数的应用?【教学评估】-学生的课堂参与度和思维活跃度;-学生对反比例函数的理解程度;-学生解决人口增长问题的能力。
【教学拓展】教师可以通过更多的实际问题和案例,让学生进一步巩固和应用反比例函数的知识。
北师大版九年级数学上册教案《反比例函数的应用》
针对学生完成拓展性题目的情 况,给予积极的鼓励和肯定, 同时指出需要改进和提高的地 方。
及时反馈学生的学习情况,让 学生了解自己的进步和不足, 激发学生的学习动力。
XXX
PART 06
课程总结与展望未来
REPORTING
回顾本节课所学内容,总结重点和难点
重点
掌握反比例函数的基本概念、性质和图像,理解反比例函数 在实际问题中的应用。
鼓励学生在日常生活中积极寻找和应用数学知识
购物问题
利用反比例函数比较不同商品的价格和质量,做 出更明智的购物决策。
时间管理
运用反比例函数合理规划时间,提高工作效率和 学习效果。
健康生活
通过反比例函数了解饮食、运动等生活习惯对健 康的影响,制定更科学的生活计划。
XXX
THANKS
感谢观看
REPORTING
课程介绍与教学目标
REPORTING
教材分析与内容概述
教材地位
本节课是北师大版九年级数学上册的重要内容,反比例函数作为一种基本的函 数类型,在实际生活中有广泛的应用。
内容概述
本节课将通过具体实例,引导学生探索反比例函数的概念、性质及其图像,理 解反比例函数与实际问题的联系,并能够运用反比例函数解决一些实际问题。
针对不同层次学生设计拓展性题目,提升能力
拓展题1
已知反比例函数$y = frac{k}{x}$($k neq 0$)的图像与一次函数$y = ax + b$($a neq 0$)的图像交于点$A(1,5)$和$B(-3,-1)$,求这两个函数的解析式。
拓展题2
已知反比例函数$y = frac{m}{x}$的图像与一次函数$y = kx + b$的图像交于点$A(2,4)$ 和$B(-1,-5)$,求这两个函数的解析式,并判断点$P(3,7)$是否在反比例函数的图像上计具体的应用方案,包括 问题背景、数学模型、数据分析
反比例函数实际应用教学设计(精选7篇)
反比例函数实际应用教学设计(精选7篇)反比例函数实际应用教学设计1一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
反比例函数教案(优秀8篇)
反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。
2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。
教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。
二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
反比例函数教案(优秀3篇)
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数的应用教案
反比例函数的应用教案一、教学目标:1.知识目标:了解反比例函数的定义及其特点;掌握反比例函数的图像和性质;学会运用反比例函数解决实际问题。
2.技能目标:能够正确识别反比例函数,并用反比例函数解决实际问题。
3.情感目标:激发学生对数学的兴趣,培养学生解决实际问题的能力。
二、教学重点与难点:1.教学重点:反比例函数的定义、图像和性质。
2.教学难点:运用反比例函数解决实际问题。
三、教学过程与教学设计:1.导入新知:复习比例函数的概念和性质,引出反比例函数的定义和特点。
2.学习反比例函数的定义和性质:(1)定义:如果两个变量x和y满足x和y的乘积等于一个常数k,即xy=k,那么y与x呈反比例关系,此时y与x的函数关系可以表示为y=k/x。
(2)性质:反比例函数y=k/x的图像为一条经过原点的双曲线。
3.讨论反比例函数的图像和性质:(1)通过给定不同的常数k,观察反比例函数y=k/x的图像变化。
(2)总结反比例函数y=k/x的图像特点:图像关于x轴和y轴对称,过原点,没有x轴和y轴的截距,随着x的增大,y的值逐渐减小,反之亦然。
4.运用反比例函数解决实际问题:(1)列举几个实际问题,如水果店的销售问题、旅行的时间和速度问题等。
(2)引导学生利用反比例函数k/x表示问题,通过代入数值解决实际问题。
(3)练习解决实际问题。
5.总结与拓展:(1)总结反比例函数的定义和性质。
(2)提出更多实际问题,引导学生运用反比例函数解决问题。
(3)拓展应用:介绍反比例函数在其他学科中的应用,如物理学中的万有引力定律等。
四、教学辅助工具与资源:1.教具:黑板、彩色粉笔、投影仪、电脑。
2.资源:教材、课件、实际问题提供的资料。
五、教学评价方法:1.自我评价:上课时通过观察学生的表现和回答问题情况进行评价。
2.同伴评价:学生之间互相评价,分享自己的思考和解决问题过程。
3.教师评价:收集学生的解答和作业,查看学生对反比例函数的理解和应用。
反比例函数的应用教学设计
反比例函数的应用教学设计引言:目标:通过这节课的学习,学生将能够:1.理解反比例函数的定义和性质;2.掌握如何绘制反比例函数的图像;3.理解反比例函数在实际生活中的应用。
一、导入(10分钟):1.通过提问激发学生对反比例函数的兴趣,例如:你们在生活中遇到过反比例的现象吗?比如什么样的变化是呈现反比例关系的?2.引导学生回顾比例函数的概念和性质,以便与反比例函数进行对比。
二、理解反比例函数的定义和性质(20分钟):1.讲解反比例函数的定义:如果两个量x和y满足y与x的乘积为常数k,即y=k/x,我们称y是x的反比例函数。
2.通过示例和图表来说明反比例函数的性质,如随着x的增大,y会减小;随着x的减小,y会增大;当x等于0时,y无定义等。
三、绘制反比例函数的图像(30分钟):1.指导学生使用反比例函数的性质来绘制函数图像。
2.通过提供几个具体的反比例函数函数式来练习绘制函数图像,例如y=1/x,y=2/x等。
3.引导学生思考,当x的范围取不同的值时,对图像有什么影响。
四、反比例函数的应用(30分钟):1.引导学生思考反比例函数在实际生活中的应用,如速度和时间的关系、工作人数和工作时间的关系等。
2.通过具体的实例来说明反比例函数的应用,如汽车以一定的速度行驶时,其到达目的地所需的时间与速度成反比例关系。
3.让学生通过小组合作讨论,找出更多的反比例函数应用实例,并向全班展示他们的发现。
五、综合练习(20分钟):1.提供一些综合练习题,让学生应用所学知识解决实际问题。
2.给予学生足够的时间来解决问题,并与他们一起讨论解决方法和答案。
3.鼓励学生积极参与,提出问题和分享解决思路。
六、总结与反思(10分钟):1.让学生总结本节课所学的内容和重点。
2.鼓励学生提出对本节课的反馈和建议,以便教师改进教学方法。
结束语:通过这节针对反比例函数的教学设计,学生将能够通过理论学习和实践练习,掌握反比例函数的定义、性质和应用。
反比例函数教案6篇
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的应用 一、复习 1、一次函数表达式)0,(≠+=k b k b kx y 为常数,。
【当0=b 时,y 是x 的正比例函数】
反比例函数的表达式1-==kx x
k y )0(≠k k 为常数, 2、一次函数的图像,是一条直线,当 K>0时,y 随x 的增大而增大,当 K<0时,y 随x 的增大而减少,常数b 决定这条直线与y 轴的交点。
反比例函数的图像是双曲线,当K>0时,两支曲线分别位于第一、三象限内,在每一象限内,y 随x 的增大而减少;当K<0时,两支曲线分别位于第二、四象限内,在每一象限内,y 随x 的增大而增大.
二、练习
1、在下列函数表达式中,表示y 是x 的反比例函数的有 。
①31-
=xy ②x y 5= ③2
x y = ④x y -=5 ⑤x y 52-= 2、反比例函数2
3-=x y 的自变量x 的取值范围是 3、已知反比例函数x k y =的图象经过点(3,2-),则函数解析式为_________,该反比例函数的图像经过第______象限,y 随x 的增大而________
4、A(7,1y )、B(5,2y ),C (-1,3y )在双曲线x
y 2=上,则1y 2y 和3y 的大小关系为_____ 5、甲乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是( )
三、新课导入与讲授
6、三、做一做
1.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间
的函数关系如图所示。
(书上P114)
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制
电流不得超过10A ,那么用电器的可变电阻应控制在什么范围内?
四、想一想
1.某蓄水池的排水管每时排水8m 3 ,6h 可将满池水全部排空。
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(3m ),那么将满池水排空 所需的时间t(h)将如何变化?
(3)写出t 与Q 之间的关系;
(4)如果准备在5h 内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时123m ,那么最少多长时间可将满 池水全部排
在电路中,电压保持不变,电流I(安)与电阻R(欧)成反比例,当电阻R=5欧姆时,电流I=3安培。
(1)求I 与R 之间的函数关系式. (2)当电流I=0.5安培时,求电阻R 的值. (3)如果以此蓄电池为电源的用电器限制,电流不得超过5A ,那么用电器的可变电阻应控制在什么范围内?
7、如图,一次函数 y = kx + b 的图象与反比例函数 y =
m x 的图象交于A 、B 两点. (1)求反比例函数的解析式;
(2)求B 点的坐标;
(3)求一次函数的解析式。
8.面积一定的梯形,其上底长是下底长的2
1,设下底长cm x 10=时,高cm y 6=; (1)求y 与x 的函数关系式; (2)求当y =5 cm 时,下底长多少?
9、
四、小结
今天这节课学习了什么?你掌握了什么?
今天学习了反比例函数的应用,讲了四个类型:
1.压力与压强、受力面积的关系
2.电压、电流与电阻的关系
3.已知点的坐标求相关的函数表达式
4.求由函数图象与坐标轴围成的面积。