高二文科圆锥曲线专题复习(含答案)
高二圆锥曲线基础练习题及答案
高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
高二数学圆锥曲线综合试题答案及解析
高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。
考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。
高二数学(文科)圆锥曲线题型总结
高二数学(文)圆锥曲线复习1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为( )A .x 2+y 2=lB .x 2-y 2=1C .y 2=4x D .x=02.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b-=>>和抛物线22y px =()0p >的离心率分别是123,,e e e ,则 ( )A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥3. 已知直线)0(112222>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。
(1)若椭圆的离心率为33,焦距为2,求椭圆的标准方程;(2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]22,21[∈e 时,求椭圆的长轴长的最大值。
1.已知动圆过点(1,0),且与直线x=一l 相切,则动圆圆心的轨迹方程为( C )A .x 2+y 2=lB .x 2-y 2=1C .y 2=4x D .x=02.已知椭圆()222210x y a b a b +=>>,双曲线()222210,0x y a b a b-=>>和抛物线22y px =()0p >的离心率分别是123,,e e e ,则 ( C )A .123e e e > B. 123e e e = C. 123e e e < D. 123e e e ≥3. 已知直线)0(112222>>=++-=b a b y a x x y 与椭圆相交于A 、B 两点。
(1)若椭圆的离心率为33,焦距为2,求椭圆的标准方程;(2)若OB OA ⊥(其中O 为坐标原点),当椭圆的离率]22,21[∈e 时,求椭圆的长轴长的最大值。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
高二圆锥曲线常考题型汇总-含答案
面角 P—AD—B 所成平面角为 120 ,那么四棱锥 P—ABCD 的外接球的体积为
.
35.已知抛物线
C:y2
=
2
px
的焦点
F
与双曲线
4 3
x2
−
4 y2
=
1
的右焦点相同,过点
F
分别做两条直线
l1 ,
l2
,
直线 l1 与抛物线 C 交于 A,B 两点,直线 l2 抛物线 C 交于 D,E 两点,若 l1 与 l2 斜率的平方和为 1,则 AB + DE
=(
)
A. 4 a 5
B. 5 a 4
C. 3 a 5
D. 5 a 3
24. 已知 O 为坐标原点,椭圆的方程为 x2 + y2 = 1,若 P 、 Q 为椭圆的两个动点且 OQ ⊥ OP ,则 43
OP 2 + OQ 2 的最小值是( )
A. 2
B. 46
C. 48
D. 7
7
7
25.设双曲线 C 的中心为点 O ,若直线 l1 和 l2 相交于点 O ,直线 l1 交双曲线于 A1 、 B1 ,直线 l2 交双曲线于 A2 、
的最小值为( A、16
) B、20
C、24
D、32
第5/19页
教师答案与解析参考版 一、选择+填空(选择题中每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.椭圆的焦点 F1(−2 2, 0), F2 (2 2, 0) ,长轴为 2a ,在椭圆上存在点 P ,是 F1PF2 = 90 ,对于直线 y = a ,在 圆 x2 + ( y −1)2 = 2 上始终存在两点 M , N 使得直线上有点 Q ,满 MQN = 90 ,则椭圆的离心率范围是( )
(完整)高二文科数学选修圆锥曲线练习题附标准答案
圆锥曲线单元练习(文)派潭中学 廖翠兰 时间:100分钟 满分100分一、选择题:(每题4分,共40分)1.0≠c 是方程 c y ax =+22表示椭圆或双曲线地( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件 2.如果抛物线y 2=ax 地准线是直线x =-1,那么它地焦点坐标为 ( ) A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)3.直线y = x +1被椭圆x 2+2y 2=4所截得地弦地中点坐标是( ) A .(31, -32) B .(-32, 31) C.(21,-31) D .(-31,21 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB .26mC .4.5mD .9m5. 已知椭圆15922=+y x 上地一点P 到左焦点地距离是34,那么点P 到椭圆地右准线地距离是( )A .2B .6C .7D .1436.曲线225x+29y=1与曲线225kx-+29ky-=1(k <9 )地( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等7.已知椭圆25x+2my=1地离心率e=5,则m 地值为( ) A .3 B.253或 3D.38.已知椭圆C 地中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆地右顶点,B 为椭圆短轴地端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆地离心率等于( )A .12 B.2 C .13D.592)0>>n m 地曲线在同一坐标系10.椭圆225x+29y=1上一点M 到左焦点1F地距离为2,N 是M1F地中点,,则2ON等于 ( )A. 3 B . 4 C. 8 D.16二.填空题(每题4分,共16分)11.11422=-+-t y t x 表示双曲线,则实数t 地取值范围是. 12.双曲线42x -2y +64=0上一点P 到它地一个焦点地距离等于1,则点P 到另一个焦点地距离等于 .13.斜率为1地直线经过抛物线2y =4x 地焦点,且与抛物线相交于A,B 两点,则AB 等于 .14. 设x,y ∈R,在直角坐标平面内,a (x,y+2),b = (x,y -2),且a +b =8,则点M (x , y )地轨迹方程是 .jLBHrnAILg三.解答题15.已知双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,求双曲线方程.(10分) 16.椭圆地中心是原点O ,它地短轴长为22,相应于焦点F (c ,0)(0>c )地准 线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 地直线与椭圆相交于P 、Q 两点.(Ⅰ)求椭圆地方程及离心率;(Ⅱ)若0=⋅OQ OP ,求直线PQ 地方程;(12分)17.已知椭圆地中心在原点O ,焦点在坐标轴上,直线y = x +1与该椭圆相交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆地方程.(12分) 18.一炮弹在A 处地东偏北60°地某处爆炸,在A 处测到爆炸信号地时间比在B 处早4秒,已知A 在B 地正东方、相距6千米, P 为爆炸地点,(该信号地传播速度为每秒1千米)求A 、P 两地地距离.(10分)参考答案11.t>4或t<112. 17 13. 814. 212x +216x =1三.解答体15.(10分) [解析]:由椭圆1244922=+y x 5=⇒c .设双曲线方程为12222=-b y a x ,则⎪⎩⎪⎨⎧=+±=253422b a a b ⎪⎩⎪⎨⎧==⇒16922b a 故所求双曲线方程为116922=-y x 16.(12分) [解析]:(1)由已知由题意,可设椭圆地方程为)2(12222>=+a y a x .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a 所以椭圆地方程为12622=+y x ,离心率36=e .(Ⅱ)解:由(1)可得A (3,0).设直线PQ 地方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k 依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ② 由直线PQ 地方程得)3(),3(2211-=-=x k y x k y .于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③∵0=⋅OQ OP ,∴02121=+y y x x . ④. 由①②③④得152=k ,从而)36,36(55-∈±=k .所以直线PQ 地方程为035=--y x 或035=-+y x . 17.(12分)[解析]:设所求椭圆地方程为12222=+by a x, 依题意,点P (11,y x )、Q (22,y x )地坐标满足方程组⎪⎩⎪⎨⎧+==+112222x y b y a x解之并整理得0)1(2)(222222=-+++b a x a x b a或0)1(2)(222222=-+-+a b y b y b aOPQ xy所以222212ba a x x +-=+,222221)1(b a b a x x +-=① 222212b a b y y +=+,222221)1(b a a b y y +-=②由OP ⊥OQ 02121=+⇒y y x x 22222b a b a =+⇒③又由|PQ |=2102212212)()(y y x x PQ -+-=⇒=25 21221212214)(4)(y y y y x x x x -++-+⇒=2521221212214)(4)(y y y y x x x x -++-+⇒=25④由①②③④可得:048324=+-b b 32222==⇒b b 或 23222==⇒a a 或故所求椭圆方程为123222=+y x ,或122322=+y x18.(12分) [解析]:以直线AB 为x 轴,线段AB 地垂直平分线为y 轴,建立直角坐标系,则A (3,0)、B (-3,0) 3,5,2614||||===∴<⨯=-c b a PA PB15422=-∴y x P 是双曲线右支上地一点∵P 在A 地东偏北60°方向,∴360tan == AP k . ∴线段AP 所在地直线方程为)3(3-=x y解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-==-0)3(315422y x x y y x ⎩⎨⎧==358y x 得 , 即P 点地坐标为(8,35)∴A 、P 两地地距离为22)350()83(-+-=AP =10(千米).预测全市平均分:61版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
高二文科数学圆锥曲线基础训练(含答案)
高二文科数学圆锥曲线基础训练1.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .—36<k<36B .k>36或k< —36C .—36≤k ≤36D .k ≥36或k ≤ —36 【答案】B【解析】 试题分析:由⎩⎨⎧=++=632222y x kx y 可得 :(2+3k 2)x 2+12kx+6=0,由△=144k 2-24(2+3k 2)>0得k>36或k< —36,此时直线和椭圆有两个公共点。
2.抛物线4x y 2=上一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A. 0B. 1516C. 78D. 1716【答案】A 试题分析:设M ()00,y x ,因为M 到焦点的距离为1,所以110=+x ,所以00=x ,代入抛物线方程4xy 2=得00=y 。
3.过点(0,1)与双曲线221x y -=仅有一个公共点的直线共有 ( )A.1条B.2条C.3条D.4条 【答案】D4.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为( ) A.21B.23C.22D.33【答案】C5.若椭圆)0(122>>=+n m ny m x 和双曲线)0(122>>=-b a b y a x 有相同的焦点1F 、2F ,P 是两曲线的一个公共点,则||||21PF PF ⋅的值是( )A .m-aB .)(21a m - C .22a m - D .a m -【答案】A【解析】设P是第一象限的交点,由定义可知1212PF PF PF PF ⎧+=⎪⎨-=⎪⎩ 12PF PF m a ∴=-6.已知点)0,4(1-F 和)0,4(2F ,曲线上的动点P 到1F 、2F 的距离之差为6,则曲线方程为()A.17922=-y x B .)0(17922>=-y x y C .17922=-y x 或17922=-x y D .)0(17922>=-x y x 【答案】D7.已知k <4,则曲线14922=+y x 和14922=-+-ky k x 有 ( ) A. 相同的准线 B. 相同的焦点C. 相同的离心率D. 相同的长轴【答案】B8.抛物线)0(2<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛0,21a B.⎪⎭⎫ ⎝⎛a 21,0 C.⎪⎭⎫⎝⎛a 41,0 D.⎪⎭⎫ ⎝⎛-a 41,0 【答案】C9.抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于( )A. B. C.2 【答案】A10.已知椭圆)0(12222>>=+b a by a x 的左、右两焦点分别为21,F F ,点A 在椭圆上,0211=⋅F F ,4521=∠AF F ,则椭圆的离心率e 等于 ( )A.33B.12-C.13-D. 215- 【答案】B 由0211=⋅F F AF 得112AF F F ⊥,又4521=∠AF F ,112AF F F ∴=即22b c a=,整理的2220c ac a +-=2210,1e e e ∴+-==11.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的标准方程为___________【答案】1728122=+y x 【解析】试题分析:椭圆长轴的长为18,即2a=18,得a=9,因为两个焦点恰好将长轴三等分,∴2c=31•2a=6,得c=3,因此,b 2=a 2-c 2=81-9=72,再结合椭圆焦点在y 轴上,可得此椭圆方程为1817222=+y x . 12.过椭52x +42y =1的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,求弦AB 的长_______【答案】35513.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 .14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是 .【答案】2k <<3k <<-【解析】2222150x y kx y k ++++-=表示圆需要满足22224(15)0k k +-->,解得33k -<<,又因为过圆外一点可以作两条直线与圆相切,所以点(1,2)在圆外,所以2221222150k k +++⨯+->,所以3k <-或2k >,综上所述,实数k 的取值范围是2k <<3k <<-15.已知抛物线2:2(0)C x py p =>上一点(,4)A m 到其焦点的距离为5,则m = .【答案】4±. 16.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为22。
浙江省2024-2025学年高二上学期期中专题复习 圆锥曲线解答题部分(含解析)
浙江省高二上学期期中专题复习圆锥曲线部分本资料以2023年浙江省各大市区期中考试题目汇编而成,旨在为学生期中复习理清方向!1.(23-24高二上·浙江金华·期中)已知双曲线与双曲线有相同的渐近线,且经过点M,(1)求双曲线C 的标准方程(2)已知直线与曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆上,求实数m 的值.2.(23-24高二上·浙江绍兴·期中)已知椭圆的离心率为,、分别为椭圆的左、右顶点,、分别为椭圆的左、右焦点,.(1)求椭圆的方程;(2)设与轴不垂直的直线交椭圆于、两点(、在轴的两侧),记直线,,,的斜率分别为,,,.(i )求的值;(ii )若,求面积的取值范围.3.(23-24高二上·浙江宁波·期中)已知双曲线的左右顶点分别为点,其中,且双曲线过点.(1)求双曲线的方程;(2)设过点的直线分别交的左、右支于两点,过点作垂直于轴的直线,交线段于点,点满足.证明:直线过定点,并求出该定点.4.(23-24高二上·浙江·期中)已知双曲线C 的渐近线方程是,点在双曲线C上.(1)求双曲线C 的离心率e 的值;(2)若动直线l :与双曲线C 交于A ,B 两点,问直线MA ,MB 的斜率之和是否为定22221(00)y x a b a b -=>>,22142x y -=0x y m -+=2220x y +=2222:1(0)x y C a b a b+=>>121A 2A C 1F 2F C 112A F =C x l C P Q P Q x 1A P 2A P 2A Q 1AQ 1k 2k 3k 4k 12k k ()142353k k k k +=+2F PQ △()2222Γ:10,0x y a b a b -=>>,A B 2AB =()2,3C Γ()1,1P Γ,D E E x l BC F G EF FG =DG y =()2,3M 1y kx =+值?若是,求出该定值;若不是,请说明理由.5.(23-24高二上·浙江·期中)已知椭圆C 的中心在原点,一个焦点为,且长轴长是倍.(1)求椭圆C 的标准方程;(2)设过焦点F 的直线l 与椭圆C 交于A 、B 两点,是椭圆的另一个焦点,若内切圆的半径l 的方程.6.(23-24高二上·浙江·期中)已知椭圆的离心率,且椭圆经过点.(1)求椭圆的标准方程;(2)过点且斜率不为零的直线与椭圆交于两点,关于轴的对称点为,求证:直线与轴交于定点.7.(23-24高二上·浙江·期中)已知椭圆,、为椭圆的左右焦点,、为椭圆的左、右顶点,直线与椭圆交于、两点.(1)若,求;(2)设直线和直线的斜率分别为、,且直线与线段交于点,求的取值范围.8.(23-24高二上·浙江·期中)已知椭圆,且过点,点分别是椭圆的左、右顶点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点(在之间),直线交于点,()10F ,1F 1ABF V r =2222:1(0)x y C a b a b +=>>e =C⎛⎝C ()2,0P C ,BD B x A AD x Q 221:4T x y +=1F 2F C D1:2l y x m =+T A B 12m =-AB AD BC 1k 2k l 12F F M 12k k ()2222:10x y C a b a b +=>>12D ⎫⎪⎭,A B C C ()4,0E l C ,P Q P ,E Q ,AP BQ M记的面积分别为,求的取值范围.9.(23-24高二上·浙江温州·期中)如图,已知椭圆的焦点为,,离心率的上、下顶点分别为,右顶点为,直线过点且垂直于轴,点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点.(1)求椭圆的标准方程;(2)判定(为坐标原点)与的面积之和是否为定值?若是,请求出该定值;若不是,请说明理由.10.(23-24高二上·浙江嘉兴·期中)已知双曲线过点,它的渐近线方程是.(1)求双曲线的标准方程;(2)若直线交于两点,直线的倾斜角互补,求直线的斜率.11.(23-24高二上·浙江嘉兴·期中)已知点,,平面内一动点满足直线与的斜率乘积为.(1)求动点的轨迹的方程;(2)直线交轨迹于两点,若直线的斜率是直线的斜率的倍,求坐标原点到直线的距离的取值范围.12.(23-24高二上·浙江衢州·期中)若双曲线E :y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若C 是双曲线上一点,且,求k ,m 的值.13.(23-24高二上·浙江宁波·期中)已知,分别是椭圆E:x 2a2+y 2b 2=1(a >b >0)的左、右焦点,且焦距为MN 平行于x 轴,且.(1)求椭圆E 的方程;,ABM PQM V V 12,S S 12S S C ()11,0F -()21,0F C ,A B D l D x Q C AQ l N BQ x M C AOM V O ADN △(A 20x y ±=l C ,P Q ,AP AQ l (2,0)A -(2,0)B M AM BM 14-M C l C ,P Q AP BQ 4O l 2221(0)x y a a -=>AB =()OC m OA OB =+1F 2F 114F M F N +=(2)设A ,B 为椭圆E 的左右顶点,P 为直线上的一动点(点P 不在x 轴上),连AP 交椭圆于C 点,连PB 并延长交椭圆于D 点,试问是否存在,使得成立,若存在,求出的值;若不存在,说明理由.14.(23-24高二上·浙江·期中)平面上的动点到定点的距离等于点P 到直线的距离,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线与曲线C 相交于A ,B 两点,线段AB 的中点为M .是否存在这样的直线l ,使得,若存在,求实数m 的值,若不存在,请说明理由.15.(23-24高二上·浙江·期中)已知双曲线,斜率为k 的直线l 过点M .(1)若,且直线l 与双曲线C 只有一个交点,求k 的值;(2)已知点,直线l 与双曲线C 有两个不同的交点A ,B ,直线的斜率分别为,若为定值,求实数m 的值.16.(23-24高二上·浙江·期中)已知椭圆的离心率为,左焦点F与原点O 的距离为1,正方形PQMN 的边PQ ,MN 与x 轴平行,边PN ,QM 与y 轴平行,,过F 的直线与椭圆C 交于A ,B 两点,线段AB 的中垂线为l .已知直线AB 的斜率为k ,且.(1)若直线l 过点P ,求k 的值;(2)若直线l 与正方形PQMN 的交点在边PN ,QM 上,l 在正方形PQMN 内的线段长度为s ,求的取值范围.17.(23-24高二上·浙江·期中)已知是椭圆C :的一个焦点,:4l x =λACD BCD S S λ=V V λ(,)P x y (0,1)F 1y =-:l y x m =+MF AB ⊥()22:1,,24x C y M m -=0m =(2,0)T ,TA TB 12,k k 12k k +(2222:10)x y C a b a b+=>>122112,,,7777P M ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭0k >sABF 2222+1(0)x y a b a b=>>点在椭圆C 上.(1)求椭圆C 的方程;(2)若直线与椭圆C 分别相交于A ,B 两点,且(O 为坐标原点),求直线l的斜率的取值范围参考答案:12M l 12OA OB k k +=-1.(1)(2)【详解】(1)设双曲线的方程为,代入,得,解得,所以双曲线的方程为.(2)由,得,设,,,,则中点坐标为,,由韦达定理可得,所以,所以中点坐标为,因为点在圆上,所以,解得.2.(1)(2)(i );(ii )【详解】(1)由于椭圆的离心率为,故,又,所以,,,2212x y -=2m =±C 22142x y -=M 2242λ-=12λ=-2212x y -=2212y x m x y =+⎧⎪⎨-=⎪⎩222204x mx m +-+=1(A x 1)y 2(B x 2)y AB 12(2x x +122y y +124x x m +=-1212()22y y x x m m +=++=-AB (2,)m m --(2,)m m --2220x y +=()()22220m m -+-=2m =±2211612x y +=34-⎛ ⎝2222:1(0)x y C a b a b+=>>1212c a =112A F a c =-=4a =2c =22212b a c =-=所以椭圆的方程为.(2)(i )设与轴交点为,由于直线交椭圆C于、两点(、在轴的两侧),故直线的的斜率不为,直线的方程为,联立,则,则,设,,则,,又,,故,同理 .(ii )因为,则,.又直线交与轴不垂直可得,所以,即.所以,,于是,,整理得,解得或,因为、在轴的两侧,所以,,又时,直线与椭圆有两个不同交点,因此,直线恒过点,C 2211612x y +=l x D l P Q P Q x l 0l x my t =+2211612x my tx y =+⎧⎪⎨+=⎪⎩222(34)63480t y mty m +++-=2248(1216)0t m ∆=-+>11(,)P x y 22(,)Q x y 122634mt y y t -+=+212234834m y y t -=+1(4,0)A -2(4,0)A 122211111222111134444163PA PA y y y y k k k k x x x y ==⋅===-+---123434QA QA k k k k ==-()142353k k k k +=+2323335()443k k k k --=+23232335()43k k k k k k +-⋅=+l x 230k k +≠23920k k =-22920PA QA k k =-121294420y y x x ⋅=---1212209(4)(4)0y y ty m ty m ++-+-=221212(920)9(4))(9(4)0t y y t m y y m +++-+-=222226(920)9(4)9(4)03483434m t t m mtt t m -+⋅+-+--+⋅=+2340m m --=1m =-4m =P Q x 2122348034m y y t -=<+44m -<<1m =-l C 1m =-l (1,0)D -此时,,,,由直线交与轴不垂直可得,故,因为在上为减函数,所以面积的取值范围为.3.(1)(2)证明见解析,【详解】(1)由,则,又,则,所以,故双曲线的方程为:.(2)如图,由,则方程为,显然直线DE 的斜率存在,设直线方程为:,则,则,由,则,122634ty y t +=+1224534y y t -=+221212F PQS F D y y =⋅-=V λ=l x λ>2272721313F PQλλλλ===++△S 7213y λλ=+)+∞2F PQ △2213y x -=(1,0)B ||22AB a ==1a =22491a b -=229413b a =-=23b =Γ2213y x -=),,(10)(23,B C BC 33y x =-DE ()()()1122,1,1,,y k x D x y E x y =-+233F y x =-()2233,F x x -EF FG =()222,66G x x y --则,,联立,则,则所以,故,故过定点.4.(1)2(2)是,3【详解】(1)由双曲线C 的渐近线方程是,故设C :,因为在双曲线C 上,所以,所以:,所以,,所以;(2)设,,联立得,则得且,,,又,,所以()11111111111BD k x y k k x x x -+===+---()()()222222261611116111BG x y x k x k k x x x ------===-----()()()()222221132113033y k x k x k k x k x y ⎧=-+⇒------=⎨-=⎩()()2121222211,333k k k x x x x kk----+=⋅=--()()()()2122121212222122113621111321133k k x x k k x x x x x x k k k k k --+--+===----++-----+--(6)620BD BG k k k k k -=--+-=BD BG k k =DG (1,0)B y =223x y λ-=()2,3M 1293λ=-=C 2213y x -=1a =b =2c ==2ce a==()11,A x y ()22,B x y 22331x y y kx ⎧-=⎨=+⎩()223240k x kx ---=248120k ∆=->24k <23k ≠12223kx x k +=-12243x x k -=-111113132222222MA y kx k k k k k x x x -+--+-===+---222223132222222MB y kx k k k k k x x x -+--+-===+---()121122222MA MB k k k k x x ⎛⎫+=+-+ ⎪--⎝⎭.即直线MA ,MB 的斜率之和是3.5.(1)(2)【详解】(1)由题可得,焦点在x 轴上,,,解得,,所以椭圆:.(2)设,,设直线的方程为,的根为,,,,且,又∵,,,所以直线的方程为:.()()()212121222244322122142424233kx x k k k k k k x x x x k k -+--=+-=+--+-++---()()()()()()()22222232124262212121341244221k k k k k k k k k k k k k k k k k k +--++-=+-=--=--=-+--+-+-2212x y +=1x y =±+1c =22ab=a =)221b ∴=+21b =22a =C 2212x y +=()11,,A x y ()22,B x y l 1x ty =+()22222222101x y t y ty x ty ⎧+=⇒++-=⎨=+⎩1y 2y 12222ty y t +=-+12212y y t -=+2880t ∆=+>12121122ABFS c y y y y =⋅⋅-=-==△11144223ABF S a r =⋅⋅=⨯=△413t =⇒=±l 1x y =±+6.(1)(2)证明见解析【详解】(1)由离心率可得将点代入椭圆方程可得,又;解得,所以椭圆C 的方程为(2)设点,,则,直线的方程为,直线与椭圆联立,消去,得, 则可得,,易知,得由题意,直线的方程为,令,所以点的横坐标,所以直线与轴交于定点7.(2)【详解】(1)解:设、,当时,直线的方程为,联立直线与椭圆方程,可得,2212x y +=c e a ==⎛ ⎝221121ab+=222a b c =+2221a b ⎧=⎨=⎩2212x y +=()11,B x y ()22,D x y ()11,A x y -PB 2x my =+PB 22:12x C y +=x 222420m y my +++=()12242my y m -+=+12222y y m =+28160m ∆=->22m >AD 212221()y y y x x y x x +=-+-0y =Q 1221121212221Q x y x y my y x y y y y +==+=++AD x ()1,0Q 7⎡-+⎣()11,A x y ()22,B x y 12m =-l 1122y x =-l 22112244y x x y ⎧=-⎪⎨⎪+=⎩22230x x --=,由韦达定理可得,,(2)解:联立直线与椭圆方程,消去,得,则,解得,设、,由韦达定理可得,,因为,易知,直线交线段于点,则,所以,.8.(1)(2)【详解】(1)由题意可知离心率为将点代入椭圆方程可得,又,解得;4423280∆=+⨯⨯=>121x x=+2132x x=-==l221214y x mxy⎧=+⎪⎪⎨⎪+=⎪⎩y222220x mx m++-= ()222481840m m m∆=--=->m<<()11,A x y()22,B x y122x x m+=-21222x x m=-()()()()11212211211222112122121122222211222222yx m x x x mx x my xk xyk y x x x mx x mx m xx⎛⎫+++++⎪+-⎝⎭====-⎛⎫+--+-⎪+⎝⎭()()22222222111111122111221111m m xm mx m x m m xmm mx x m m m m x m m x-+--+--+++-===⋅-+++--+++-+111211111m m xm mm m x m+----=⋅=-+-++l12F F()2,0M m-2≤-≤m m 12112217111k m mk m m m-+-⎡=-=-=-+∈-+⎣+++2214xy+=()0,1cea==12D⎫⎪⎭223114a b+=222a b c=+2224,1,3a b c===所以椭圆方程为(2)易知,设直线的方程为,,且,联立直线和椭圆方程,整理可得,,可得,且可得直线的方程为,直线的方程为,解得点到直线的距离为所以的面积为的面积为;所以,又可得,即可得的取值范围是.2214x y +=()()2,0,2,0A B -l 4x my =+()()1122,,,P x y Q x y 12x x <22144x y x my ⎧+=⎪⎨⎪=+⎩()2248120m y my +++=()()22841240m m ∆=-⨯+>212m >121222812,44m y y y y m m +=-=++PA ()()11112226y yy x x x my =+=+++QB ()2222y y x my =-+12121221212262,33my y y y y y M y y y y ⎛⎫++ ⎪--⎝⎭PQ ===M PQ d PQM V 1122S PQ d =⋅=ABM V 121221212231432S y y y y B y A y y y =⋅-=-212221216144S m m m S -===-++212m >()21610,14m -∈+12S S ()0,19.(1)(2)【详解】(1)设椭圆方程为,焦距为,则,所以,所以椭圆的标准方程为.(2)由题意得,,直线:设点,,则x202+y 20=1①,直线:,令,,直线:,令,则,所以,由①得,所以10.(1)(2)【详解】(1)若双曲线焦点在轴上,设方程为,2212x y +=C 22221x y a b +=2c 1c =c a =a =2221b a c =-=C 2212x y +=()0,1A ()0,1B -l x =()00,Q x y 00x <<001y <<AQ 0011y y x x --=x =1y =1BQ 0011y y x x ++=0y =001x x y =+001x OM y =+001111212AOM ADNx S S y ⎤+=⋅⋅+⋅⎥+⎥⎦V V ()2200002221x y x y +-=+2200220x y +-=AOM ADN S S +=V V 2214x y -=x 22221x y a b-=则有,解得,所以双曲线方程为;若双曲线焦点在轴上,设方程为,则有,无解;综上双曲线方程为.(2)易知,直线的斜率一定存在,设方程为,联立,消去可得,,,可得,由韦达定理可得,,,,因为直线的倾斜角互补,所以,,即,整理得,,解得,时,直线为过定点,不满足题意,所以2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩2241a b ⎧=⎨=⎩2214x y -=y 22221y x ab-=2218112a b a b ⎧-=⎪⎪⎨⎪=⎪⎩2214x y -=l 1122,(,),(,)y kx m P x y Q x y =+2244x y y kx m⎧-=⎨=+⎩y 222(14)8440k x kmx m ----=22222140Δ6416(14)(1)0k k m k m ⎧-≠⎨=+-+>⎩221,142k m k ≠±+>2121222844,1414km m x x x x k k ++==---121222()214my y k x x m k +=++=-()()122112211212282()14kx y x y x kx m x kx m kx x m x x k -+=+++=++=-,AP AQ 0AP AQ k k +=0==()(()(122111y x y x --+--12211212())x y x y x x y y =+-+-++0==1)0m ++-=k =1m =-1m =-y kx m =+1y kx -=-(A k =11.(1)(2)【详解】(1)设,则且化简得.(2)如图,设,若,则关于轴对称,有,不合题意故,同理可知,故由化简整理可得所以,且由可知,故即于是解得,满足坐标原点到直线的距离.12.(1).(2)【详解】(1)由得 故双曲线E 的方程为x2-y 2=1.2214x y +=(0)y ≠6(0,)5(),Mx y 1224AM BMy y k k x x =⨯=-+-2x ≠±()22:1,04x C y y +=≠()()1122,,,P x y Q x y :l x ty n=+0PQ k =,P Q y AP BQ k k =-0PQ k ≠0t ≠20t >2244x y x ty n⎧+=⎨=+⎩()2224240t y tny n +++-=()()()22222244441640t n t n n t ∆=-+-=-+>12221222444tn y y t n y y t ⎧+=-⎪⎪+⎨-⎪=⎪+⎩P C ∈14AP BP k k =-144APBQ BP k k k =-=116BP BQ k k =-()()()()()()()()()(212121222222121212124222222422BP BQy y y y y y n k k x x ty n ty n t y y n t y y n t n t n n n -====--+-+-+-++----+-65n =-0∆>l 60,5d ⎛⎫==⎪⎝⎭(14k m ==±221ca a c ⎧=⎪⎨⎪=-⎩2212a c ⎧=⎨=⎩设A (x 1,y 1),B (x 2,y 2),由得 (1-k 2)x 2+2kx -2=0.①因为直线与双曲线右支交于A ,B 两点,所以.即,即,即k 的取值范围是.(2)由①得,.整理得,所以或,又,所以,所以x 1+x 2=y 1+y 2=k (x 1+x 2)-2=8.设C(x 3,y 3),由得(x 3,y 3)=m(x 1+x 2,y 1+y 2)=,因为点C 是双曲线上一点,所以80m 2-64m2=1,得,故.13.(1)(2)存在,3【详解】(1)因为焦距为,所以,由椭圆的对称性得.又因为,所以.则,.所以椭圆E 的方程为.(2)设,又A (−2,0),则,故直线AP 的方程为:,代入方程并整理得:.2211y kx x y =-⎧⎨-=⎩1212000x x x x +>⎧⎪⋅>⎨⎪∆>⎩()()22144120k k k >⎧⎪⎨∆=--⋅->⎪⎩1k <<(12122222,11k x x x x k k +==--==422855250k k -+=257k =254k =1k <<k =()OC m OA OB =+(),8m 14m =±14k m ==±2214x y +=12F M F N =114F M F N +=214F N F N +=24a =2a =2214x y +=()()004,0P y y ≠06AP y k =()026y y x =+2214x y +=()222200944360y xy x y +++-=由韦达定理:即,∴同理可解得:,,∴故直线CD 的方程为,即,化简可得:,直线CD 恒过定点.∴,因为,,所以14.(1);(2)不存在,理由见解析.【详解】(1)由题意,动点P 的轨迹是以为焦点,为准线的抛物线,故,所以曲线C 的方程为.(2)设,联立,得,且,则,故,所以,所以,又,即,不满足,所以不存在满足要求的直线l .2020429A C Cy x x x y +=-+=-+20201829C y x y -=+02069C y y y =+2020221D y x y -=+02021Dy y y -=+02023C D CD C D y y y k x x y -==--()CD C C y k x x y =-+200022200021826399y y y y x y y y ⎛⎫-=-+ ⎪-++⎝⎭()()2003210y y y x -+-+=()1,0E 11sin sin 2211sin sin 22ACD AEC AEDBCD BCE BEDAE CE AEC AE DE AEDS S S S S S EB CE BEC BE DE BED ⋅∠+⋅∠+==+⋅∠+⋅∠V V V V V V sin sin AEC AED ∠=∠sin sin BEC BED ∠=∠ACDBCD S S =V V sin 33sin 1CD AE AEC AE CD EB BEC EB λ⋅⋅∠====⋅⋅∠24x y =(0,1)F 1y =-2p =24x y =112200(,),(,),(,)A x y B x y M x y 24x y y x m⎧=⎨=+⎩2440x x m --=16160m ∆=+>1m >-12124,4x x x x m +==-1242y y m +=+(2,2)M m +MF AB ⊥11132m m +⨯=-⇒=-1m >-15.(1)或(2).【详解】(1)由题设,设直线,联立双曲线,得,所以,当,即时,直线与双曲线只有一个交点,当,交点为;当,交点为;当,此时,则当,切点为;当;综上,或(2)由题设直线,联立双曲线方程,得,则,故,所以①,设,则,,由12k =±k =2m =()02,M :2l y kx =+224(2)4x kx -+=22(14)16200k x kx ---=2140k -=12k =±12k =53(,24-12k =-53(,)242140k -≠2225680(14)0k k ∆=+-=k =k =1()2-k =1)2-12k =±k =:()22l y k x m kx mk =-+=+-22424()x kx mk +--=222241)8(2)4(45)0(k x k mk x m k mk -+-+-+=222264(2)164)[(2)]0(11k mk k mk -+⨯--+⨯=>∆22(2)41mk k ->-1122()A x y B x y ,,(,)1228(2)41k mk k x x -+=-212224(45)41x mk x m k k -+-=121221211212121212121212(2)(2)2()222()42()4x k y y y x y x x y x y y y x x x x x x x x x k -+-+-+=+==---++++-+又,,为定值,所以,此时为定值.16.(1)(2)【详解】(1)设椭圆C的半焦距为,由题意可得:,解得,所以椭圆.因为,则直线,,联立方程,消去y得,则,可得,则,,即线段AB的中点为,112y kx mk=+-222y kx mk=+-12k k+121212122(22)()482()4kx x mk k x x mkx x x x+--++-=-++222222222(22)48244(45)8(2)41414(45)8(2)4141m k mk k mmk mk k mkkk km k k k mkk k-+---⋅+--⋅+-=-+----⋅+22(84)8(41616)(3216)16m km m k m k-+=-++-+24161602m m m-+=⇒=1212k k+=1k=17⎛⎝c>222112cceaa b c=⎧⎪⎪==⎨⎪=+⎪⎩12cab⎧=⎪=⎨⎪=⎩22:143x yC+=()1,0F-():1AB y k x=+()()1122,,,A x yB x y()221143y k xx y⎧=+⎪⎨+=⎪⎩()22224384120k x k x k+++-=()()()()22222844341214410∆=-+-=+>k k k k221212228412,4343k kx x x xk k-+=-=++21224243+=-+x x kk()()1212122113122243+++++⎛⎫==+=⎪+⎝⎭k x b k xy y x x kkk22243,4343⎛⎫- ⎪++⎝⎭k kk k所以直线,即,若直线l 过点,则,整理得,对于,则,即无解,由,解得.(2)由(1)可知:直线,令,可得,即直线l 与PN 的交点坐标为,令,可得,即直线l 与QM 的交点坐标为,由题意可得:,解得,,,,可得,令,则,可得,因为在内单调递增,且,可得,则,可得,,可得.222314:4343⎛⎫-=-+ ⎪++⎝⎭k k l y x k k k 22043++=+k x ky k 21,77⎛⎫- ⎪⎝⎭P 22207743-++=+k k k ()()214360-++=k k k 24360++=k k 9446900∆=-⨯⨯=-<24360++=k k ()()214360-++=k k k 1k =22:043++=+k l x ky k 27x =-22743=-+k y k k 222,7743⎛⎫-- ⎪+⎝⎭k k k 17x =21743=--+k y k k 211,7743⎛⎫-- ⎪+⎝⎭k k k 222217743721177437k k k k k k ⎧-≤-≤⎪⎪+⎨⎪-≤--≤⎪+⎩1k ≥()2212143+=+k k =s 128=()()()2222222243891611k k k k k k ++==+++28917t k =+≥298-=t k ()2228964999110188k t t t k k t t +==--⎛⎫++-+ ⎪⎝⎭910=+-y t t [)17,+∞17128|17==t y 91281017+-≥t t ()2228964170,92110k k k t t +⎛⎤=∈ ⎥+⎝⎦+-()222289491616,21k k k +⎛⎤=+∈ ⎥+⎝⎦⎛ ⎝11287⎛= ⎝s AB所以的取值范围.17.(1);(2).【详解】(1)由题意,椭圆的左焦点为,根据椭圆的定义,可得点M,即,所以,又因为,可得,所以椭圆C的方程为.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,,不符合题意.故设直线l 的方程为,联立方程组,可得,则,所以,因为,可得,所以,又由,可得,所以,解得或,综上可得,直线的斜率的取值范围是.s AB 17⎛ ⎝2214x y +=1[,0)(1,)4-+∞ 2222+1(0)x y a b a b=>>(142=24a =2a =c =1b ==2214x y +=0OA OB k k +=1122(0),(,),(,)y kx m k A x y B x y =+≠2214y kx m x y =+⎧⎪⎨+=⎪⎩222(41)84(1)0k x kmx m +++-=212122284(1),4141km m x x x x k k --+==++21212211222121212()()()82224(1)1OA OB y y kx m x kx m x m x x km k k k k k x x x x x x m m ++++--+=+==+=+=--12OA OB k k +=-241m k =+14k ≥-0∆>2216(41)0k m -+>2440k k ->0k <1k >l 1[,0)(1,)4-+∞。
高二数学圆锥曲线测试题以及详细答案(完整资料).doc
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)
一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。
高二圆锥曲线与导数部分(含答案)
1.已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.B. C. D. 132.已知椭圆C : 22221x y a b +=(a>b>0F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。
则k =(A )1 (B C D )23.设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,2PF ⊥1F 2F ,∠12PF F =30,则C 的离心率为( )(A (B )13 (C )12 (D 4.已知双曲线()2222:10,0x y C a b a b-=>>的左顶点为M ,右焦点为F ,过左顶点且斜率为1的直线l与双曲线C 的右支交于点N ,若MNF ∆的面积为232b ,则双曲线C 的离心率为( ) A. 3 B. 2 C.53 D. 435.已知椭圆2213216x y +=内有一点()2,2B , 12,F F 是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( )A. B. C. 4 D. 66.已知12,F F 分别是椭圆22221(0)x y a b a b +=>>的左、右焦点, P 为椭圆上一点,且()110PF OF OP ⋅+=(O 为坐标原点),若122PF PF =,则椭圆的离心率为( )A. 63-B.2C. 5D.652-7.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点和上顶点分别为,A B ,左、右焦点分别是12,F F ,在线段AB 上有且只有一个点P 满足12PF PF ⊥,则椭圆的离心率的平方为( )A.B. C. D.8.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为1,F y 轴上的点P 在椭圆外,且线段1PF 与椭圆E 交于点M ,若1OM MF ==,则E 椭圆的离心率为( )A.12 B. C. 1 D.9.若AB 是过椭圆2211625x y +=中心的弦, 1F 为椭圆的焦点,则1F AB ∆面积的最大值是( ) A. 6 B. 12 C. 24 D. 4810.点P 是双曲线22221(0,0)x y a b a b-=>>上的点, 12,F F 是其焦点,双曲线的离心率是54,且12•0PF PF =,若12F PF ∆的面积是18,则a b +的值等于( )A. 7B. 9C.D. 11.设椭圆C 的两个焦点是1F 、2F ,过1F 的直线与椭圆C 交于P 、Q ,若212P F F F =,且1156PF F Q =,则椭圆的离心率为( )A.B. 713C.D. 91112.已知椭圆 :( )的右焦点为 ,短轴的一个端点为 ,直线 : 交椭圆 于 , 两点,若 ,点 到直线 的距离等于,则椭圆 的焦距长为() A. B. C. D.13.已知双曲线22221x y a b-= (0a > , 0b > )与抛物线28y x = 有相同的焦点F ,过点F 且垂直于x 轴的直线l 与抛物线交于A 、B 两点,与双曲线交于C 、D 两点,当2AB CD = 时,双曲线的离心率为( )A.B. C. D. 214.已知双曲线E : 22221x y a b-= (0,0)a b >>的右顶点为A ,右焦点为F , B 为双曲线在第二象限上的一点, B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( ) A.12 B. 15C. 2D. 3 15.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时, ()()'0f x f x x+>,若1122a f ⎛⎫=⎪⎝⎭, ()22b f =--, 11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则a , b , c 的大小关系正确的是( ) A. a c b << B. b c a << C. a b c << D. c a b <<16.已知函数()f x 是定义在R 上的奇函数,且在区间()0,+∞上有()()3'0f x xf x +>恒成立,若()()3g x x f x =,令21log a g e ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦, ()5log 2b g =, 12c g e -⎛⎫= ⎪⎝⎭,则( )A. a b c <<B. b a c <<C. b c a <<D. c b a <<17.设函数()f x '是奇函数()()f x x R ∈的导函数, ()20f -=,当0x >时, ()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是( ) A. ()(),20,2-∞-⋃ B. ()()2,02,-⋃+∞ C. ()(),22,0-∞-⋃- D. ()()0,22,⋃+∞18.已知定义在R 上的可导函数()f x 的导函数为()'f x ,对任意实数x 均有()()()1'0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0xxf x e ->的解集是( )A. (),e -∞B. (),e +∞C. (),1-∞D. ()1,+∞19.已知函数()f x 是定义在R 上的奇函数,f (2)=0,当0x >时,有()()20xf x f x x->' 成立,则不等式x 2()0f x >的解集是 ( )A. ()()2,02,-⋃+∞B. ()()2,00,2-⋃C. ()2,+∞D. ()(),22,-∞-⋃+∞20.设函数()f x 是定义在()0+∞,上的可导函数,其导函数为()f x ',且有()()22f x xf x x '+>,则不等式()()()220162016420x f x f --->的解集为( ) A. ()2014+∞, B. ()0,2014 C. ()0,2018 D. ()2018+∞,参考答案1.A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.B 【解析】视频 3.D【解析】由题意,设2||PF x =,则1||2PF x =,12||F F =,所以由椭圆的定义知:23a x =,又因为 2c ,故选D. 【考点定位】本小题主要考查椭圆的定义、几何性质、数形结合与化归的数学思想,属中低档题,熟练椭圆的基础知识是解答好本类题目的关键. 4.B【解析】由22221{ x y a b y x a-==+,得32222222,a ab abN b a b a ⎛⎫+ ⎪--⎝⎭,则MNF ∆的面积为()()222222212322a c ab ab ac b b a b a ++⋅==--, ()()222232,a ac c a ∴+=- ()()22132,e e ∴+=- 23280,2e e e ∴--=∴=,故选B.【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据MNF ∆的面积为232b ,建立关于焦半径和焦距的关系.从而找出,ac 之间的关系,求出离心率e .5.A【解析】因为()122+2282MF MB a MF MB a BF =--≥-=故162MF MB +≥以当且仅当2,,M F B 共线时取得最小值62,故选A. 6.A【解析】以1,OF OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由()110PF OF OP ⋅+=知此平行四边形的对角线垂直,即此平行四边形为菱形,∴1OP OF =,∴12FPF ∆是直角三角形,即12PF PF ⊥,设2PF x =,则,∴36321c e a ===-+,故选A . 7.B【解析】作图如下:()()()1000A a B b F c --,,,,,, ()20F c ,∴直线AB 的方程为:椭圆22221x y a b+=整理得: 0bx ay ab -+=设直线AB 上的点()P x y , 则bx ay ab =-ax y a b∴=- 12PF PF ⊥, ()()12222222PF PF a c x y c x y x y c y c b ⎛⎫∴→⋅→=---⋅--=+-=+- ⎪⎝⎭,,令()222a f y y c b ⎛⎫=+- ⎪⎝⎭则()22a af y y a y b b⎛⎫=-⨯+⎪⎝⎭'∴由()0f y '=得22a by a b =+, 222ab x a b∴=-+ 122222222,0PF ab a b c a b a b ⎛⎫⎛⎫∴→=-+-= ⎪ ⎪++⎝⎭⎝⎭整理得: 2222ab c a b =+,又222b ac =-, 222c e a = 42310e e ∴-+=2e ∴=()01e ∈,232e -∴=故选B 8.C【解析】因为1OM MF ==,所以130F PO ∠= 1260MF F ∠=,连接2MF ,则可得三角形12MF F 为直角三角形,在12Rt MF F ∆中,12,MF c MF ==,则2c a =,则离心率1c e a ===,故选C. 【 方法点睛】本题主要考查椭圆的定义及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据特殊直角三角形可以建立关于焦半径和焦距的关系.从而找出,a c 之间的关系,求出离心率e . 9.B【解析】因为1F AB ∆可以看做1OF A ∆与1OF B ∆的面积之和,所以112F AB A B s c x x ∆=⋅-,故当直线AB 垂直y 轴时, max ||28A B x x b -==,所以1138122F AB s ∆≥⨯⨯=,故选B. 10.C【解析】不妨设点P 是双曲线22221(0,0)x y a b a b -=>>右支上的点, 12,PF m PF n ==,则22211822{454mn m n a m n cc a =-=+==,解得a c b ==∴==,则a b +的值等于故选C. 11.D【解析】因为2122c PF F F == 则122PF a c =-,又因为1156PF F Q = 则()153F Q a c =- 21533F Q a c =+ ()()2221222441cos 42222a c c c a c ePF F c a c c e∠-+---===- ()()22221222251523493355cos 203a c c a c e e QF F e e ac c ∠⎛⎫-+-+-+⎪⎝⎭==-- 1212cos cos 0PF F QF F ∠∠+= 即22231552e e e e e e -+-=- 解得911e =故选D点睛:运用椭圆的定义结合题目条件可以求得各线段的表达式,在12ΔPF F 和12ΔQF F 中利用余弦定理,建立a c 、的数量关系,求解关于e 的方程即可,计算量较大。
(完整word版)文科圆锥曲线专题练习及答案
文科圆锥曲线角形,则E 的离心率为()1 2 (A)(B)(C)—23【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思 【解析】•••△ F 2PF 1是底角为300的等腰三角形,-PF 2A 600 , IPF 2I IF 1F 2I 2c ,「. | AF 2 |=c ,2. 等轴双曲线C 的中心在原点,焦点在 x 轴上,C 与抛物线y 16x 的准线交于A,B 两点,AB 4^3 ;则C 的 实轴长为()(A) .2 (B) 2 2 (C) (D)【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题 【解析】由题设知抛物线的准线为: x 4,设等轴双曲线方程为: x 2 y 2 a 2,将x 4代入等轴双曲线方程解得 y =16 a 2 , v |AB |=4.3 ,••• 2 16 a 2 =4.3,解得 a =2,••• C 的实轴长为4,故选C.2 23. 已知双曲线C 1 :笃与1(a 0,b 0)的离心率为2.若抛物线C 2:x 2 2py(p 0)的焦点到双曲线G 的渐近线的距a b离为2,则抛物线C 2的方程为考点:圆锥曲线的性质解析:由双曲线离心率为 2且双曲线中a , b , c 的关系可知b , 3a ,此题应注意 C2的焦点在y 轴上,即(0, p/2)到直线y 3x 的距离为2,可知p=8或数形结合,利用直角三角形求解。
4.椭圆的中心在原点,焦距为 4,一条准线为x 4,则该椭圆的方程为(A) 2x2y_ 1 (B )2x 2y_ 1 16 1212 82 22 2(C ) xy 1 (D ) xy 18 412 4【命题意图】 本试题主要考查了椭圆的方程以及性质的运用。
通过准线方程确定焦点位置, 然后借助于焦距和准线求解参数a,b,c ,从而得到椭圆的方程。
2 2 2以b a c 8 4 4。
故选答案C5.已知F 1、F 2为双曲线C:x 2 y 2 2的左、右焦点,点 P 在C 上, | PF 1 | 2 | PF ? |,则cos RPF ?221.设F 1F 2是椭圆E : —22a b1(a b 0)的左、右焦点,3aP 为直线x 上一点,2F 2PF 1是底角为30°的等腰三(D) —(A) x 283 r y2 2(C) x 8y (D) x 16y【解析】因为2c 4 c 2,由一条准线方程为 x24可得该椭圆的焦点在 x 轴上县— 4a 2 4c 8,所c(B) x 2/八 1 33(A ) —( B ) —(C )-4 5 4【命题意图】 本试题主要考查了双曲线的定义的运用和性质的运用, 半径的值,然后结合三角形中的余弦定理求解即可。
高二文科数第一学期期末复习《圆锥曲线》(含答案)
高二文科数学第一学期期末复习《圆锥曲线》一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1椭圆221259x y +=上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .102双曲线1422=-y x 的焦点坐标为( )A .)0,3(±B .)3,0(±C .)0,5(±D .)5,0(±3抛物线24y x =的准线方程是( )A .1y =B .1y =- C.116y = D. 116y =-4若R k ∈,则3>k 是方程22133x y k -=-表示双曲线的( )条件A .充分不必要B .必要不充分C .充要条件D .既不充分也不必要5双曲线22221x y b a-=的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .236抛物线212y x =的准线与双曲线22193x y -=的两条渐近线所围成的三角形面积等于A B C.2 7过抛物线24y x =的焦点的直线l 交抛物线于11(,)P x y 、22(,)Q x y 两点,如果126x x +=,则PQ = ( ) A .9B .8C .7D .68以椭圆2212449x y +=的焦点为顶点、顶点为焦点的的双曲线方程是( )A.2212524x y -=B. 2212425x y -=C. 2212524y x -=D. 2212425y x -=9 过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A.2 B.4 C.6 D.810竖在地面上的两根旗杆的高分别为10米和15米,相距20米,则地面上到两旗杆顶点的仰角相等的点的轨迹是( ) A .二、填空题:本大题共6小题,每小题5分,共30分.11已知双曲线112222=-y ax 的离心率2e = ,则双曲线的焦距为12以双曲线2213y x -=的一个焦点为圆心,离心率为半径的圆的方程是___________13椭圆221259x y +=上一点M 到左焦点1F 的距离是2,N 是1MF 的中点,O 为坐标原点,则ON = .14设斜率为2的直线l 过抛物线2(0)y ax a =>的焦点F ,且和y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为____________三、解答题:本大题共6小题,共80分。
高二圆锥曲线期考复习答案与解析
【椭圆巩固练习答案与解析】 1.【答案】 C【解析】由题意,a =5,c =3,∴b 2=a 2-c 2=25-9=16,∴椭圆的标准方程为225x +216y =1或225y +216x =1.2.【答案】D【解析】 由已知2a=12,13e =,得a=6,c=2,∴b ==原点,焦点在x 轴上,所以椭圆的方程是2213632x y +=.3.【答案】D【解析】 直线y=kx+1过定点(0,1),定点在椭圆的内部或椭圆上时直线y=kx+1与焦点在x 轴上的椭圆2215x y m +=总有公共点,∴220115m +≤,得m≥1,∴m 的取值范围是1≤m <5.4.【答案】C【解析】∵12||||4,PF PF +=而211||2b PF a ==,∴217||422PF =-=.6.【答案】D【解析】设与直线20x y +=平行的直线方程为x+2y+m=0, 由22116420x y x y m ⎧+=⎪⎨⎪++=⎩,得8y 2+4my+m 2-16=0, Δ=0得m =±m =时距离最大d =7.【答案】3或163【解析】方程中4和m 哪个大哪个就是a 2,因此要讨论: (1)若0<m <4则a 2=4,b 2=m ,∴c =,∴12e ==,得m=3. (2)m >4,则b 2=4,a 2=m,∴c ,∴12e ==,得163m =. 综上,m=3或163m =. 8.【答案】[2,3]【解析】根据图象可得圆的半径要比椭圆长轴短,短轴长,因此半径a 的取值范围为[2,3]9.【答案】12【解析】由题意得01cos602c a == 10.【答案】22143x y +=【解析】由题设椭圆C 的标准方程为22221(0)x y a b a b +=>>,由已知得3,1,a c a c +=-=∴2,1a c ==2223b a c =-=,∴椭圆的方程为22143x y +=11.【解析】方程变形为22162x y m+=.因为焦点在y 轴上,所以26m >,解得3m >. 又2c =,所以2262m -=,5m =适合.故5m =.12.【解析】∵椭圆的长轴的一个端点到焦点的距离最短,∴a -c=2又e=ca ,∴a=2.故b=1. ∴椭圆的方程为24y +x 2=1.13.【解析】利用直线与椭圆相交的弦长公式12AB x -.求解.因为6a =,3b =,所以c = 又因为焦点在x 轴上,所以椭圆方程为221369x y +=,左焦点(,0)F -,从而直线方程为9y =+.由直线方程与椭圆方程联立得2133680x ++⨯=.设1x ,2x 为方程两根,所以12x x +=,1236813x x ⨯=,k =从而222121212481(1)[()4]13AB k x x k x x x x =+-=++-=. 14.【答案】72或2. 【解析】|PF 1|+|PF 2|=6,|F 1F 2|25=.若∠PF 2F 1为直角,则|PF 1|2=|PF 2|2+|F 1F 2|2,由此可得12144||,||33PF PF ==; 若∠F 1PF 2为直角,则|PF 1|2+|PF 2|2=|F 1F 2|2,由此可得|PF 1|=4,|PF 2|=2. ∴12||7,||2PF PF =或12||2,||PF PF =15.【解析】如图,设()P x y ,,由椭圆的对称性,不妨设()P x y ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 212F F 2212PF PF =+12PF -·22cos 4PF c α=.① 由椭圆定义知: 122PF PF a += ② 则②2-①得21221cos b PF PF α⋅=+.故12121sin 2F PF S PF PF α∆=⋅【抛物线巩固练习答案与解析】 1.【答案】B2.【答案】抛物线y 2=ax 的焦点坐标为04a ⎛⎫⎪⎝⎭,.当a =8时,焦点坐标为(2,0),故选B .【解析】由题设知,抛物线开口向上,设方程为x 2=2py (p >0),将(-4,5)代入得p =85,所以,抛物线方程为x 2=165y . 3.【答案】C 【解析】由题意+4=52p,所以p =2. 4.【答案】D【解析】|AB |=2p =4, S △AOB =12×1×4=2. 5. 【答案】B【解析】抛物线y 2=4x 中p =2,弦AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则|AB |=x 1+x 2+p =x 1+x 2+2=6,即x 1+x 2=4, 则122x x+=2,即线段AB 的中点横坐标为2.6. 【答案】B【解析】如图,设准线l 与x 轴的交点为H ,由直线AF 的斜率为-3, 得∠AFH =60°,∠F AH =30°,∴∠P AF =60°. 又由抛物线的定义知|P A |=|PF |, ∴△P AF 为等边三角形, 由|HF |=4得|AF |=8, ∴|PF |=8. 7.【答案】 2【解析】设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,则x 1=1,故直线AF 的方程是x =1, 此时弦AB 为抛物线的通径,故|BF |=|AF |=2. 8.【答案】x =0或y =1或y =12x +1 【解析】(1)若直线的斜率不存在,则过点P (0,1)的直线方程为x =0,联立y 2=2x ,得x =0,y =0. 所以直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,则由题意设直线的方程为y =kx +1,联立y 2=2x ,消去y ,得k 2x 2+2(k -1)x +1=0. ①当k =0时,有x =12,y =1,即直线y =1与抛物线只有一个公共点. ②当k ≠0时,有Δ=4(k -1)2-4k 2=0,解得k =12, 所以方程为y =12x +1的直线与抛物线只有一个公共点. 综上所述,所求直线的方程为x =0或y =1或y =12x +1.9.【答案】y 2=-20x【解析】设P (x 0,y 0)为抛物线y 2=2x 上任意一点,则222002=3PA x y ⎛⎫+ ⎪⎝⎭ =220002112=+333x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ ,∵x 0∈[0,+∞),∴当x 0=0时,2min =PA 2114=0+=339⎛⎫+ ⎪⎝⎭,即|P A |M in =23.∴距点A 最近点P 的坐标为(0,0),此时|P A |=23.10. 【答案】2π 【解析】由抛物线定义可知,|AA 1|=|AF |, ∠AA 1F =∠AF A 1, ∠AA 1F =∠A 1FK , 得∠AF A 1=∠A 1FK ,同理∠B F B 1=∠B 1FK , ∴∠A 1F B 1=∠A 1FK +∠B 1FK =21(∠A 1FK +∠A 1F A +∠KF B 1+∠B 1F B )=2π. 11.【解析】将直线l 和抛物线C 联立,消去y 得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程(*)只有一个解x =14,y =1, 当k ≠0时,方程(*)是一元二次方程,Δ=(2k -4)2-4k 2.(1)当Δ>0时,即(2k -4)2-4k 2>0,解得k <1且k ≠0,l 与C 有两个公共点,此时l与C 相交;(2)当Δ=0时,即(2k -4)2-4k 2=0,解得k =1,l 与C 有一个公共点,此时l 与C相切;(3)当Δ<0时,即(2k -4)2-4k 2<0,解得k >1,l 与C 没有公共点,此时l 与C 相离.综上所述,当k =1或k =0时,l 与C 有一个公共点; 当k <1时k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点.12.【解析】由已知抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点为A (x 1,y 1),B (x 2,y 2).∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称,∴点A 与B 关于x 轴对称,∴|y 1|=|y 2|且|y 1|+|y 2|=∴|y 1|=|y 2|代入圆方程x 2+y 2=4,得x 2+3=4,解得,x =±1,∴A (±1或A (±1,代入抛物线方程,得=±a ,∴a =±3. ∴所求抛物线方程是y 2=3x 或y 2=-3x .13. 【解析】抛物线的焦点为F (2p ,0),所以过焦点且斜率为1的直线方程为y =x -2p ,即x =y +2p, 将其代入y 2=2px ,整理得y 2-2py -p 2=0,由已知条件可知该方程有两个不相等的实数根,则y 1+y 2=2p ,所以p =122y y +=2, 所以抛物线的方程为y 2=4x ,准线方程为x =-1.14.【解析】方法一:直线AB 的方程是y =(x -2p),与y 2=2px 联立, 从而有4x 2-5px +p 2=0,则x 1+x 2=54p.① 由抛物线定义得|AB |=x 1+x 2+p =9,② 由①②解得p =4,从而抛物线的方程是y 2=8x .方法二:设直线的倾斜角为θ,由题意可知,tan θ,所以sin θ 焦半径公式22sin pAB θ=可得:22=9p ⎝⎭,解得p =4, 所以抛物线的方程是y 2=8x . 15. 【解析】(1)由题意可得PA PB ⋅u u u r u u u r=(-x ,-2-y )·(-x,4-y )=y 2-8化简得x 2=2y(2)将y =x +2代入x 2=2y 中,得x 2=2(x +2) 整理得x 2-2x -4=0 可知Δ=20>0设C (x 1,y 1),D (x 2,y 2) x 1+x 2=2,x 1·x 2=-4 ∵y 1=x 1+2,y 2=x 2+2∴y 1y 2=(x 1+2)(x 2+2)=x 1x 2+2(x 1+x 2)+4=4 ∵OC OD ⋅u u u r u u u r=x 1x 2+y 1y 2=0 ∴OC ⊥OD【双曲线巩固练习答案与解析】1.【答案】 C【解析】∵椭圆221925x y +=的焦点为(0,±4),离心率e =45, ∴双曲线的焦点为(0,±4),离心率为144102555-==,∴双曲线方程为:221412y x +=. 2.【答案】 D【解析】 设双曲线方程为22(0)y x λλ-=≠∵焦点(0,±∴0,λ>又22λ=,24λ= 3. 【答案】B【解析】因为|PF 2|=|F 2F 1|, P 点满足2222b y a c -=1,∴y =,∴2c =2ac=b 2=c 2-a 2, ∴12e e=-,故e=1+2.4.【答案】B【解析】如图,分别过双曲线的右顶点A,右焦点F作它的渐近线的垂线,B、C分别为垂足,则△OBA∽△OCF,∴13 OA ABOF FC==,∴13ac=,∴ba=故渐近线方程为:y=±.5.【答案】C【解析】设所求方程为22916x yk-=,代入(-3,23)得14k=,52c=,∵双曲线221916x y-=的渐近线为43y x=±,∴焦点5(,0)2到渐近线43y x=±的距离d=2.6.【答案】A.【解析】由题意知圆心为(5,0).圆心到双曲线渐近线的距离为圆的半径r,∴4r==,∴所求圆的方程为(x-5)2+y2=16,即x2-10x+y2+9=0.7.【答案】-12<b<0【解析】∵b<0,∴离心率e=(1,2),∴-12<b<0.8.【答案】2【解析】;由题意得4-a2=a2+1,∴2a2=3,a9.【答案】221253944y x -= 【解析】 椭圆221925x y +=中,a =5,b =3,c 2=16, 焦点为(0,±4),离心率45c e a ==,∴双曲线的离心率e 1=2e =85,∴111485c a a ==,∴a 1=52, ∴b 21=c 21-a 21=16-254=394, ∴双曲线的方程为221253944y x -=. 10. 【答案】【解析】 本题考查双曲线的几何性质、直线与圆的位置关系以及点到直线的距离公式.双曲线22163x y -=的渐近线方程为2y x x ==±,20y ±=,由题意,得r == 11. 【解析】由条件知焦点在y轴上,c =,c a=可求2,2a b ===;所以双曲线的方程为221,44y x -=渐近线方程为y x =± 12.【解析】由C 与l 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0.242210.0 1.48(1)0.a a a a a a ⎧-≠⎪<<≠⎨+->⎪⎩所以解得双曲线的离心率2211 1.021,626(,2)(2,).a e a a a e e e +==+<<≠∴>≠+∞Q U 且且即离心率的取值范围为12. 【解析】过F 2作F 2A ⊥PF 1于A ,由题意知 F 2A =2a , F 1F 2=2c ,则 AF 1=2b ,∴ PF 1=4b ,而 PF 1- PF 2=2a ,∴4b -2c =2a , c =2b -a , c 2=(2b -a )2,a 2+b 2=4b 2-4ab +a 2,解得43b a =, ∴双曲线的渐近线方程为43y x =±.13.【解析】 双曲线22221x y a b-=的两渐近线的方程为bx ±ay =0.点A 到两渐近线的距离分别为122|145|b a d a b+=+,222|145b a d a b-=+已知d 1d 2=43,故2222|145|43b a a b -=+ (ⅰ) 又A 在双曲线上,则 14b 2-5a 2=a 2b 2(ⅱ)(ⅱ)代入(ⅰ),得3a 2b 2=4a 2+4b 2(ⅲ) 联立(ⅱ)、(ⅲ)解得b 2=2,a 2=4.故所求双曲线方程为22142x y -=. 14. 【解析】解法一: 由双曲线的方程知a=2, b=1, ∴5c =.因此12||225F F c ==.由于双曲线是对称图形,如图所示,设P 点坐标为(x ,142-x ),由已知F 1P ⊥F 2P ,∴111F P F Pk k ⋅=-,1=-, 得2245x =,∴121211||122F PF S F F ∆=⋅=⨯=解法二:∵(|PF 1|-|PF 2|)2=4a 2=16, 又由勾股定理得|PF 1|2+|PF 1|2=(2c)2=20, ∴|PF 1||PF 2|=21[|PF 1|2+|PF 2|2-(|PF 1|-|PF 2|)2]=21(20-16)=2, ∴121F PF S ∆=.15.【解析】假设存在同时满足题中的两条件的双曲线. (1)若双曲线的焦点在x 轴上,因为渐近线方程为12y x =±,所以由条件(1),设双曲线方程为222214x y b b -=,设动点P 的坐标为(x ,y ),则||AP ==由条件(2),若2b ≤4,即b ≤2,则当x =4时,||AP ==最小b 2=-1,这不可能,无解;若2b >4,则当x =2b时,|||25|AP b =-=最小解得52b +=522-<,应舍去),221=. (2)若双曲线的焦点在y 轴上,则可设双曲线方程为222214y x a a-=(x ∈R ),所以||AP = 因为x ∈R ,所以当x =4时,||AP ==最小所以a 2=1,此时存在双曲线方程为2214xy -=. 【直线与圆锥曲线巩固练习答案与解析】 1.【答案】C【解析】 ∵ 直线y =kx -k 过点(1,0),点(1,0)在抛物线22y px =的内部,∴ 当k =0时,直线与抛物线有一个公共点;当k ≠0时,直线与抛物线有两个公共点,故选C .2.【答案】A【解析】1y kx k =-+,∴ 1(1)y k x -=-,过定点(1,1),定点在椭圆22194x y +=内部,故选A .3.【答案】C【解析】由28y x =得Q (-2,0),设直线l 的方程为(2)y k x =+,直线l 与抛物线有公共点,方程组2(2)8y k x y x =+⎧⎨=⎩有解,即2222(48)40k x k x k +-+=有解,224(48)160k k =--≥△,得21k ≤,∴ 11k -≤≤.4.【答案】 B【解析】 由抛物线的定义得,|PF |=|P A |,又由直线AF的斜率为P AF =60°.△P AF 是等边三角形,∴|PF |=|AF |=4cos60=8. 5.【答案】C【解析】设直线方程为2y kx =-,A (x 1,y 1)、B (x 2,y 2). 由228y kx y x=-⎧⎨=⎩ 得224(2)40k x k x -++=. ∵ 直线与抛物线交于A 、B 两点,∴ △=16(k +2)2-16k 2>0,即k >-1.又∵ 1222(2)22x x k k++==, ∴ k =2或k =-1(舍去), ∴ |AB |=12|x x -===故选C .6.【答案】D【解析】 设A (x 1,y 1)、B (x 2,y 2),代入双曲线方程, 得221122221313y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,, 两式相减得12121212()()()()3y y y y x x x x -+-+=.又∵ 121242x x y y +=⎧⎨+=⎩,,∴ 12122()4()3y y x x --=, ∴ 12126y y x x -=-,即直线AB 的斜率为6,故选D . 7.【答案】53【解析】将椭圆与直线方程联立22452002(1)x y y x ⎧+-=⎨=-⎩,,得交点A (0,-2),B 5433⎛⎫⎪⎝⎭,; 故121145||122233OAB S OF y y =-=⨯⨯+=g g △. 8.【答案】34- 【解析】设直线方程为12x my =+(抛物线焦点为102⎛⎫ ⎪⎝⎭,),代入抛物线方程得2210y my --=.设A (1x ,1y )、B (2x ,2y ),则1y 、2y 为方程的两根,又∵ 1212OA OB x x y y =+u u u r u u u r g ,∴ 34OA OB =-u u u r u u u r g . 9.【答案】x +4y =0【解析】设P (x 1,y 1)、Q (x 2,y 2),PQ 的中点为M (x 0,y 0), 则221114x y +=,222214x y +=, ∴ 12121212()()()()4x x x x y y y y -+=--+. 又∵12121y y x x -=-,1202x x x +=,1202y y y +=, ∴ 00224x y =-,即0040x y +=,故所求PQ 中点的轨迹方程为x +4y =0. 10.【答案】163【解析】由已知得双曲线的上顶点为A (0,3),上焦点为F (0,5),设圆心为P (x 0,y 0),则y 0=352+=4.代入双曲线方程得2016194x -=,所以207169x ⨯=,故|PO |==163. 11. 【解析】∵在Rt △F 1F 2P 中,∠PF 1F 2=30°,∴|PF 1|=2|PF 2|.由双曲线的定义知|PF 1|-|PF 2|=2a ,∴|PF 2|=2a .∴|F 1F 2||PF 2|,即2c =,∴c 2=3a 2.又∵c 2=a 2+b 2,∴2a 2=b 2.∴b a故所求双曲线的渐近线方程为y =x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线文科专题复习
知识回顾:
一、圆锥曲线的两个定义:
1、椭圆:
第一定义:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,
(当常数等于时,轨迹是线段FF;当常数小于时,无轨迹)
第二定义:与定点和直线的距离之比为定值e的点的轨迹.
(0<e<1)
2、双曲线:
第一定义:双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F-F|,
(定义中的“绝对值”与<|F-F|不可忽视。
若=|FF|,
则轨迹是以F,F为端点的两条射线;若﹥|FF|,则轨
迹不存在;若去掉定义中的绝对值则轨迹仅表示双曲
线的一支。
)
第二定义:与定点和直线的距离之比为定值e的点的轨迹.
(e>1)
3、抛物线:与定点和直线的距离相等的点的轨迹.
二、圆锥曲线的标准方程
(1)椭圆:焦点在轴上时()(为参数),
焦点在轴上时=1()
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。
(3)抛物线:开口向右时, 开口向左时,
开口向上时, 开口向下时。
三:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴
上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
【特别提醒】在椭圆中,最大,,在双曲线中,最大,。
四、圆锥曲线的几何性质:
(1)椭圆(以()为例):
①范围:;
②焦点:两个焦点;
③对称性:两条对称轴,一个对称中心(0,0),四个顶点,
其中长轴长为2,短轴长为2;
④准线:两条准线;
⑤离心率:,椭圆,(越小,椭圆越圆;越大,椭圆越扁。
)
(2)双曲线(以()为例):
①范围:或;
②焦点:两个焦点;
对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,
特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;
④准线:两条准线;
⑤两条渐近线:
⑥离心率:,双曲线,(越小,开口越小,越大,开口越大;)
(3)抛物线(以为例)-----的几何意义是:焦点到准线的距离:
①范围:;
②焦点:一个焦点,
③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);
④准线:一条准线;
⑤离心率:,抛物线。
例1、已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是( C )
A. B.
C. D.;
例2、已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_2____
例3、双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______;
例4、已知椭圆
的左焦点为
,右顶点为
,点
在椭圆上,且
轴,直线
交
轴于点
.若
,则椭圆的离心率是( D )
A.
B.
C.
D.
例5、设斜率为2的直线
过抛物线
的焦点F,且和
轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为 ( B A.
B.
C.
D.
例6、已知曲线C的参数方程是(为参数),则曲线C上的点P到定点M(-2,0)的最大距离是( A )
A.9
B. 8
C. 7
D. 6
例7、设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )
A. B. C. D.
例8、椭圆=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y 轴上,那么点M的纵坐标是( B )
A.± B.± C.± D.±
一、填空题
1.设椭圆的焦点在轴上且长轴长为26,且离心率为;曲线上的点到椭圆的两个焦点的距离的差的绝对值等于8,则曲线的标准方程为( A )A. B. C. D.
2.双曲线的虚轴长是实轴长的2倍,则( C )
A. B. C. D.
3..抛物线的准线方程是(B )
A. B. C. D.
4.若点P在抛物线上,则该点到点的距离与到抛物线焦点距离之和取得最小值时的坐标为( A )
A. B. C. D.
5.已知双曲线的两个焦点为、,是此双曲线上的一点,且满足,,则该双曲线的方程是 ( C )
A. B. C. D.
6.已知抛物线的焦点为,准线与轴的交点为,点在上且,则点坐标为(
B )
A.或 B.或C.或D.或
7.已知椭圆,长轴在轴上. 若焦距为,则等于( C )
A..
B..
C..
D..
8.已知A、B为坐标平面上的两个定点,且|AB|=2,动点P到A、B两点距离之和为常数2,则点P的轨迹是( D )
A.椭圆
B.双曲线
C.抛物线
D. 线段
9.若抛物线的焦点与椭圆的上焦点重合,则m的值为( D )A.-8 B. 8 C. D. 10.若动点M(x,y)到点F(4,0)的距离等于它到直线x+4=0距离,则M点的轨迹是( D )
A.x+4=0
B.x-4=0
C.
D.
11.直线l过点且与双曲线仅有一个公共点,这样的直线有( C )
A.1 条
B.2条
C.3条
D.4条
12. 已知定点A、B,且|AB|=4, 动点P满足|PA|-|PB|=3,则|PA|的最小值是( C )
A. B. C. D.5
13.椭圆上的一点M到左焦点的距离为2,N是M的中点,则|ON|等于( A )
A. 4
B. 2
C.
D. 8
二、填空题
1.已知为椭圆
的两个焦点,过的直线交椭圆于两点若,则 .
2.在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 .
3.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
4.在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为 .
5.点P为双曲线上一动点,O为坐标原点,M为线段OP中点,则点M的轨迹方程是 .
1.双曲线
的渐近线与圆
相切,则r=
(A)
(B)2 (C)3 (D)6
2.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p 的值为 ( )
A.
B.1
C.2
D.4 3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()
A.
B.
C.
D.
4. 设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于
点P,若△F1PF2
为等腰直角三角形,则椭圆的离心率是( D )
(A)(B)(C)(D)
5. 已知双曲线的焦点为、,点在双曲线上且轴,则到直线的距离为( C )
(A) (B) (C) (D)
6.方程的两个根可分别作为( A )
A.一椭圆和一双曲线的离心率B.两抛物线的离心率
C.一椭圆和一抛物线的离心率D.两椭圆的离心率
7.曲线与曲线的( A )
(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同8.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大
致是( D )
9.过抛物线y=ax2(a>0)的焦点F用一直线交抛物线于P、Q两点,若
线段PF与FQ的
长分别是p、q,则等于( C )
A.2a B. C.4a D.
10.若椭圆的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦
点分成5:3两段,则此椭圆的离心率为( D )
A. B. C. D.
11、已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线
交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为
( D )
A.30º B.45º C.60º D.90
1.设双曲线的一个焦点为
,虚轴的一个端点为
,如果直线
与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( D ) A.
B.
C.
D.
4.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( C )
(A)2 (B)6 (C)4 (D)12
5.已知双曲线,则双曲线右支上的点到右焦点的距离与点到右准线的距离之比等于( C )
A. B. C. 2 D. 4
6.若抛物线的焦点与椭圆的右焦点重合,则的值为( D )A. B. C. D.
7.已知椭圆和双曲线=1有公共的焦点,那么双曲线的渐近线方
程( C )
A.x=± B.y=± C.x=± D.y=±
8.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
三、计算题
1.中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7。
求这两条曲线的方程。