三相桥式PWM逆变电路设计.doc

合集下载

简单的三极菅逆变电路

简单的三极菅逆变电路

以下是一个简单的三极管逆变电路的示例:
1. 整流部分:三相桥式整流器。

这个部分接收3相交流电源,然后通过整流桥将其转换为直流电源。

整流器应安装在通风良好的地方,保持一定的工作温度,以确保稳定的工作。

2. 逆变部分:这个部分采用绝缘栅双极晶体管(IGBT)。

这种晶体管结合了晶体管和MOSFET的优点,具有高输入阻抗和低导通压降的特性。

3. 控制部分:采用脉宽调制(PWM)技术对IGBT进行控制,调节输出电压和频率。

控制部分还需要进行过流、过压、欠压等保护,以确保逆变器的安全运行。

4. 滤波部分:这个部分通常包括一个电容器和一个电感器。

电容器的目的是减少交流输出电压中的纹波,电感器的目的是减小交流输出电流的波动。

5. 检测部分:包括电压、电流等检测装置。

这些检测装置可以监测输出电压和电流,并将这些信息反馈给控制部分,以实现闭环控制。

以上是一个简单的三极管逆变电路的基本构成。

请注意,具体的设计和应用可能因不同的需求和条件而有所不同。

在设计和应用逆变电路时,还需要考虑效率、可靠性、成本等多种因素。

PWM控制原理(精编文档).doc

PWM控制原理(精编文档).doc

【最新整理,下载后即可编辑】PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。

重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。

难点:PWM波形的生成方法,PWM逆变电路的谐波分析。

基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

第3、4章已涉及这方面内容:第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。

本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。

其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。

从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各i(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应i(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

pwm逆变电路的控制方法

pwm逆变电路的控制方法

pwm逆变电路的控制方法
PWM(脉宽调制)逆变电路是将直流电转换为交流电的一种常用电路,其控制方法主要分为以下几种:
1. 三相全桥PWM逆变控制方法:该方法采用三相全桥电路进行控制,通过改变脉冲的宽度和频率来控制输出电压的大小和波形,从而实现对直流电的转换。

2. 三相半桥PWM逆变控制方法:该方法利用三相半桥电路进行控制,具有体积小、效率高等优点,但需要较高的开关功率器件,应用范围较窄。

3. 单相PWM逆变控制方法:该方法适用于小功率电源转换,其控制方法与三相全桥PWM逆变控制方法类似,但只需使用单相电路即可。

控制方法一般采用微处理器等芯片进行控制,通过控制芯片输出PWM信号的占空比和频率来控制输出电压。

在具体控制过程中,需要注意电路参数的选择和设置,以及保护措施的实施,确保电路稳定、安全地工作。

总之,PWM逆变电路的控制方法多种多样,具体选择何种方法取决于具体的应用场景和要求,需要根据实际情况进行选择和优化。

三相PWM逆变器

三相PWM逆变器

1.0 (ULLm)h/Ud
0.8
0.6 0.4
2mf+1
0.2
0.0 1
mf
Ud t
Ud t
基波ULL1
Ud
t
ma=0.8,mf=15
2mf+1
3mf+2
2mf
3mf
三相逆变器的线电
压波形中可以消除单 桥臂逆变器中主要的 谐波成分。
逆变电路
u
utri uctr.A
uctr.B
uctr.C
0
t
uAN 0 uBN 0 uAB=uAN-uBN 0
uctr.B
uctr.C
U
Uctr
Utri 1/fs
0
t
0
t
uAN
UA0
t=0 UA0_1
0 uBN
Ud t
0
Ud /2t -Ud /2
0 uAB=uAN-uBN
Uctr<Utri TA -: 通,TA+: 断 Uctr>Utri TA+: 通,TA-: 断
0
基波ULL1
Ud t
Ud
t
桥臂输出中基波分量的电压峰值为:
0 uAB=uAN-uBN 0
1.0 (ULLm)h/Ud
0.8
0.6 0.4
2mf+1
0.2
0.0 1
mf
逆变电路
uctr.B
uctr.C
t
Ud t
Ud t
基波ULL1
Ud
t
ma=0.8,mf=15
2mf+1
3mf+2
2mf
3mf
假设mf为奇数,则

三相PWM逆变电路

三相PWM逆变电路
id
S1 D1 S3 D3 S5 D5
Ud/2 io uo
负载 W
U
V S6 D6 S2
W D2
Ud/2
S4
D4
负载 U
负载 V
O
分析假定如前,另外假定负载为星形连接,三相 输出点分别为U 、V、W,负载连接中点为O,三 相对称,以直流电位中点为电压参考点 选取星型负载接法的理由
id
S1 D1 S3 D3 S5 D5
t t t t t t t t t
负载 U
负载 V
iU i D1
S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6
iV
O
id
uU uV
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
id
S1 D1 S3 D3 S5 D5
uUV
Ud
Ud/2 io uo
工作模式分析:
任一时刻都有且只有三个主开关导通,分别是两 个上管一个下管,或者一个上管两个下管 各工作状态的出现与电路控制方式和负载特性有 关,第四状态见于其它逆变模式
Ud/2 Ud/2 Ud/2 Ud/2
Ud/2
O
Ud/2
O
Ud/2
O
Ud/2
O
三个主 开关 载流 ,电流 从直 流母线 流向 逆变 器
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
uUV
Ud
uUO uUO1 iW
uUV1
1/3Ud 1/3Ud
2/3Ud
uO i S1

晶体管通用型三相pwm逆变电路工作原理

晶体管通用型三相pwm逆变电路工作原理

晶体管通用型三相PWM逆变电路工作原理一、引言随着可再生能源和智能电网的快速发展,逆变技术在电力系统中的地位日益重要。

其中,三相PWM逆变电路因其高效、可靠的性能,在各种电力电子变换装置中占据着主导地位。

本文旨在深入探讨晶体管通用型三相PWM逆变电路的工作原理,为相关领域的工程实践提供理论支持。

二、三相PWM逆变电路概述三相PWM逆变电路由三个单相PWM逆变电路组成,其输出为三相交流电压。

在三相PWM逆变电路中,通常采用SPWM(Sinusoidal PWM)技术,即正弦脉冲宽度调制技术,以生成与电网电压相位相同、幅值可调的三相交流电压。

三、工作原理1. 脉冲宽度调制(PWM):PWM技术是三相PWM逆变电路的核心,通过调节脉冲的宽度,可以控制输出电压的幅值和频率。

在SPWM技术中,三角波与期望的输出电压进行比较,从而生成一系列的脉冲,这些脉冲的宽度反映了输出电压的幅值和频率。

2. 相位控制:为了生成与电网电压相位相同的三相交流电压,需要对各相的脉冲宽度进行相位控制。

通过适当地延迟各相的脉冲,可以控制输出电压的相位。

3. 晶体管通用型:晶体管通用型三相PWM逆变电路采用晶体管作为开关器件。

当晶体管导通时,能量从直流侧传递到交流侧;当晶体管关断时,交流侧的能量回馈到直流侧。

通过高速地开关晶体管,可以实现能量的双向流动,同时生成所需的三相交流电压。

4. 同步整流:为了提高逆变器的效率,晶体管通用型三相PWM逆变电路还采用了同步整流技术。

通过控制整流器的开关状态,可以减小不必要的能量损失,提高逆变器的整体效率。

四、结论晶体管通用型三相PWM逆变电路凭借其高效、稳定和灵活的特性,已经成为了电力电子领域的关键技术之一。

随着能源转换和智能电网的不断发展,对三相PWM逆变电路的研究和应用将会更加深入和广泛。

同时,对逆变电路的效率和稳定性要求也将不断提升,进一步推动逆变技术的发展。

通过对晶体管通用型三相PWM逆变电路的工作原理进行深入研究,将有助于更好地理解其性能特点,为相关领域的工程实践提供有力支持。

三相桥式pwm逆变电路原理

三相桥式pwm逆变电路原理

三相桥式pwm逆变电路原理小伙伴!今天咱们来唠唠三相桥式PWM逆变电路的原理,这可超级有趣呢!咱们先得知道啥是逆变电路。

你可以把它想象成一个神奇的小魔法师,它的任务呢,就是把直流电变成交流电。

就像把一个安静的小湖泊(直流电)变成一条奔腾的河流(交流电)。

那三相桥式PWM逆变电路呢,就是这个魔法家族里很厉害的一员哦。

三相桥式PWM逆变电路里面有六个开关管,这六个开关管就像是六个小卫士,他们的排列可有讲究啦。

这六个小卫士分成三组,两两一组,就像三个小团队一样。

这些小团队的工作是轮流进行的,就像接力赛一样。

那PWM又是啥呢?PWM就是脉冲宽度调制啦。

这就好比是给小卫士们下命令的特殊信号。

这个信号就像是一个指挥棒,告诉开关管什么时候该打开,什么时候该关上。

而且这个信号特别聪明,它通过改变脉冲的宽度来控制输出的电压。

你可以把脉冲想象成一个个小方块,宽的小方块就像一个大包裹,能传递更多的能量,窄的小方块就像小包裹,传递的能量少一点。

当这些开关管按照PWM信号的指挥开始工作的时候,就会在电路的输出端产生三相交流电。

比如说,在某一时刻,第一组开关管打开,电流就会从直流电源的正极出发,经过这组开关管,再经过负载,然后回到直流电源的负极。

这个时候,就像是给负载送了一股电能量的小浪潮。

但是呢,这个电路可不会一直这么简单地工作。

因为要得到稳定的三相交流电,这六个开关管得不停地切换状态。

就像一群小蜜蜂,忙忙碌碌地飞来飞去,一会儿这个采蜜,一会儿那个采蜜。

而且每个开关管的切换时间都要把握得特别精准,就像跳舞的小伙伴,每个动作都要踩在节奏上。

在这个过程中,PWM信号的频率也很重要哦。

如果频率高呢,就像小鼓敲得快,输出的电压波形就会比较平滑,就像一块打磨得很光滑的石头。

如果频率低呢,那输出的电压波形就会有点坑坑洼洼的,就像一条不太平坦的小路。

而且啊,三相桥式PWM逆变电路还有个很厉害的地方,就是它可以控制输出电压的大小。

通过调整PWM信号的占空比就能做到。

三相桥式pwm逆变电路工作原理

三相桥式pwm逆变电路工作原理

三相桥式pwm逆变电路工作原理三相桥式PWM逆变电路,听起来有点高深对吧?它就像一个乐队,乐器齐全,各种音色交织,奏出美妙的旋律。

想象一下,你在家里放着你最爱的音乐,电流也在努力地给你带来快乐。

咱们先从最基础的说起,逆变器其实就是把直流电转换成交流电的魔法师,直流电就像一条死水,静止不动,而交流电则像活泼的小鱼,在水中欢快地游来游去。

咱们说的三相,就是把这种电流分成三条腿,每条腿负责一部分。

这样一来,整个电路的效率就高了,真是有智慧的安排。

想象一下,三个人一起搬家,比一个人轻松多了,大家分工合作,不累。

这种方式特别适合大型设备,比如电动机,动力十足,噪音小,真是好得不得了。

PWM嘛,就是脉宽调制,听起来很复杂,但其实是把电流的开关打开和关闭来控制电量的多少。

就像调音量,轻轻一转,声音就大了,小了,真是简单明了。

通过改变开关的时间,咱们就能调节输出的电压和频率,真是聪明的办法。

电流的调节,就像我们调节心情,想高兴就高兴,想放松就放松。

再来聊聊桥式,想象一下,一个小桥把三条腿连接在一起,这样一来,电流就能在桥上自由流动。

桥的设计简直妙不可言,三个开关,搭配得天衣无缝,让电流在不同的相位之间跳跃,轻松自如。

就像舞者在舞台上翩翩起舞,各种姿态,各种风格,真是让人看得眼花缭乱。

工作原理是什么呢?其实就是通过不断切换这些开关,形成一个个短小的脉冲,把直流电转变为交流电。

咱们的逆变器就像个精明的厨师,火候掌握得恰到好处,煮出美味的菜肴。

每个开关的开和关,就像是调料的放入,恰到好处,才不会腥,也不会太咸。

太厉害了,简直是逆变界的顶流!你可能会问,这种电路有什么优点呢?嘿,优点可多了,它高效,能量损耗少,真是一举多得。

控制简单,调节方便,像开车一样,轻松自如。

还有就是它的可靠性强,稳定性高,咱们用电的时候可不希望来个“突然失联”。

这种逆变器还可以应用在很多地方,像电动汽车、风能发电,甚至是家里的太阳能板,真是各显神通。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相桥式PWM逆变电路设计
..电力电子技术课程设计报告题目:三相桥式PWM逆变电路设计学院:
姓名:
学号:
专业班级:
指导老师:
时间:
目录课题背景********************************************2三相桥式SPWM逆变器的设计内容及要求*****************3SPWM逆变器的工作原理******************************3MATlAB仿真设计************************************12硬件实验************************************************19实验总结********************************************23附录一Matab 简介********************************24附录二Protel简介***************************************25参考文献*******************************************26三相桥式PWM 逆变电路设计
一、课题背景正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS
(Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。

目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。

它的并联不成问题,由于本身的关断延迟很短,其串联也容易。

尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用
在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。

对逆变器输出波形质量的要求主要包括两个方面:
一是稳态精度高;
二是动态性能好。

因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

在现有的-三相桥式PWM逆变电路设计学院:
姓名:
学号:
专业班级:
指导老师:
时间:
目录课题背景********************************************2三相桥式SPWM逆变器的设计内容及要求*****************3SPWM逆变器的工作原理******************************3MATlAB仿真设计************************************12硬件实验************************************************19实验总结********************************************23附录一Matab 简介********************************24附录二Protel简介***************************************25参考文献*******************************************26三相桥式PWM
逆变电路设计
一、课题背景正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制.电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。

目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。

IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。

它的并联不成问题,由于本身的关断延迟很短,其串
联也容易。

尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。

对逆变器输出波形质量的要求主要包括两个方面:
一是稳态精度高;
二是动态性能好。

因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。

在现有的:
【1】
《电力电子技术》王兆安黄俊西安机械工业出版社
【2】
《Protel2004》神龙工作室北京人民邮电出版社
【3】
《Protel DXP电路设计制版入门与提高》雪茗斋电脑教育研究室人民邮电出版社
【4】
《Altium Designer6电路图设计百例》姜艳波化学工业出版社
【5】
《电路设计与制板Protel DXP典型实例》老虎工作室倪泽峰江中华人民邮电出版社
【6】
田健,郭会军,王华民,等大功率IGBT瞬态保护研究力电子技术
【7】
《电力电子技术手册》(精)/国外电气工程名著译丛机械工业出版社(2004-01出版)word教育资料达到当天最大量API KEY 超过次数限制。

相关文档
最新文档