高中数学等差数列练习题 百度文库
高中数学选择性必修一(人教版)《等差数列习题》
![高中数学选择性必修一(人教版)《等差数列习题》](https://img.taocdn.com/s3/m/451aab3d9a6648d7c1c708a1284ac850ac020475.png)
5.1等差数列的概念及通项公式1.已知等差数列{a n}的通项公式为a n=3-2n,则它的公差为() A.2 B.3C.-2 D.-32.等差数列{a n}中,a1=13,a2+a5=4,a n=33,则n等于()A.50 B.49 C.48 D.473.已知在等差数列{a n}中,a2+a9+a12-a14+a20-a7=8,则a9-14a3=()A.8 B.6C.4 D.34.下列说法中正确的是()A.若a,b,c成等差数列,则a2,b2,c2成等差数列B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列D.若a,b,c成等差数列,则2a,2b,2c成等差数列5.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则公差是()A.-2 B.-3C.-4 D.-56.已知数列{a n}满足a n-1+a n+1=2a n(n≥2),且a2=5,a5=13,则a8=________.7.已知b是a,c的等差中项,且a>b>c,若lg(a+1),lg(b-1),lg(c-1)成等差数列,a+b+c=15,则a的值为________.1.在等差数列{a n }中,a 1+a 9=10,则a 5=( ) A .5 B.6 C .8D.92.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B.8 C .10D.143.已知数列{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B.-22C.12D.324.在等差数列{a n }中,a 2 016=log 27,a 2 022=log 2 17,则a 2 019=( )A .0 B.7 C .1D.495.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10 B.15 C .20D.406.某人练习写毛笔字,第一天写了4个大字,以后每天比前一天都多写,且多写的字数相同,第三天写了12个大字,则此人每天比前一天多写________个大字.7.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 8.在等差数列{a n }中,a 1=8,a 5=2,若在数列{a n }中每相邻两项之间插入一个数,使之成为新的等差数列,那么新的等差数列的公差是________.9.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16. (1)求数列{a n }的通项公式;(2)若从数列{a n }中依次取出第2项,第4项,第6项,…,第2n 项,按原来的顺序组成一个新数列{b n },试求数列{b n }的通项公式.1.等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则数列{a n }的公差d 等于( ) A .2 B.3 C .6D.72.数列{a n }为等差数列,满足a 2+a 4+a 6+…+a 20=10,则数列{a n }的前21项和等于( )A.212B.21 C .42D.843.已知一个等差数列共n 项,且其前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A .24 B.26 C .25D.284.(2020·云南玉溪第一中学月考)数列{a n }的首项a 1=1,对于任意m ,n ∈N *,有a n +m=a n +3m ,则{a n }的前5项和S 5=( )A .121 B.25 C .31D.355.已知S n 是公差d 不为零的等差数列{a n }的前n 项和,且S 3=S 8,S 7=S k (k ≠7),则k 的值为( )A .3 B.4 C .5D.66.(2020·福州一中高二月考)已知等差数列{a n }的前n 项和为S n ,若S 2=22,S 5=100,则S 10=________.7.设等差数列{a n }的前n 项和为S n .若a 3=5,且S 1,S 5,S 7成等差数列,则数列{a n }的通项公式a n =________.8.已知公差为d 的等差数列{a n }的前n 项和为S n ,且满足S 5S 6+15=0.若S 5=5,则S n =________.9.已知等差数列{}a n 中,a 1=1,a 3=-3. (1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-35,求k 的值.5.4等差数列前n 项和的性质及应用1.一个等差数列共有10项,其奇数项之和是252,偶数项之和是15,则它的首项与公差分别是( )A .12,12B .12,1C .1,12D .12,22.等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18等于( ) A .36 B.18 C .72D.93.已知等差数列{a n }和{b n }的前n 项和分别为S n 和S n ′,如果S nS n ′=7n +14n +27(n ∈N *),则a 11b 11的值是( ) A.74 B.32 C.43D.78714.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,设S 12=λS 8,则λ=( ) A.13 B.12 C .2D.35.在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B.S 16 C .S 15或S 16D.S 176.(2020·深圳中学月考)已知数列{a n }为等差数列,a 3=7,a 1+a 7=10,S n 为其前n 项和,则使S n 取到最大值的n =________.7.已知等差数列{a n }中,a 1+a 2+a 3+a 4=10,a 13+a 14+a 15+a 16=70,则数列{a n }的前16项和等于________.8.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则满足S n <0的n 的最大值为________. 9.已知数列{a n }的前n 项和公式为S n =2n 2-30n . (1)求数列{a n }的通项公式a n ; (2)求S n 的最小值及对应的n 值.。
等差数列练习题附答案
![等差数列练习题附答案](https://img.taocdn.com/s3/m/4a601ab182d049649b6648d7c1c708a1284a0af7.png)
等差数列练习题附答案一、选择题1、已知等差数列{an}中,S10=120,那么a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,那么这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,那么S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.一、选择题1、已知等差数列{an}中,S10=120,则a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,则这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,则S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.1.在等差数列{an}中,已知a4=0.8,a11=2.2,求a51+a52的值。
数列练习题高中
![数列练习题高中](https://img.taocdn.com/s3/m/368069a30342a8956bec0975f46527d3250ca659.png)
数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。
2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。
3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。
4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。
二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。
2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。
3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。
4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。
三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。
2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。
3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。
4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。
四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。
2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。
3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。
五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。
2. 一等比数列的第3项为12,第6项为48,求首项和公比。
3. 一数列的前n项和为2^n 1,求第10项的值。
4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。
六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。
4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。
等差数列题目100道
![等差数列题目100道](https://img.taocdn.com/s3/m/667c2359e97101f69e3143323968011ca300f7c9.png)
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
高考数学等差数列习题及答案 百度文库
![高考数学等差数列习题及答案 百度文库](https://img.taocdn.com/s3/m/af2e66a40b1c59eef8c7b4ce.png)
一、等差数列选择题1.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .192.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .53.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列D .S 2,S 4+S 2,S 6+S 4必成等差数列4.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .76.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .1517.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-8.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .459.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .2110.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S11.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60 B .120 C .160 D .240 12.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )A .9B .12C .15D .1813.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21B .15C .10D .614.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1615.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<16.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7217.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1018.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6419.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 20.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )A .12尺布 B .518尺布 C .1631尺布 D .1629尺布二、多选题21.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列22.题目文件丢失!23.题目文件丢失!24.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=025.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T27.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列28.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减 D .数列{}n S 有最大值29.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列30.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 2.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 3.D 【分析】根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】由题意,数列{}n a 为等差数列,n S 为前n 项和,根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误. 故选:D. 4.B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 6.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 7.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 8.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 9.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 10.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 11.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B 12.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A 13.C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C. 14.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 15.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 16.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 17.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.18.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 19.C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案.【详解】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C 20.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.二、多选题21.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234nn n n n a a ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.22.无 23.无24.ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确;故选:ABD.【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 25.BD【分析】根据选项求出数列的前4项,逐一判断即可.【详解】解:因为数列{}n a 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin 2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.26.AD【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项.【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意.③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD.【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a qn N -=∈. 27.ACD【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解【详解】 因为1112a =+,1(1)2nn a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD28.ABD【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确.故选:ABD.29.ABD【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-=所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.30.ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大.∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。
高中数学《等差数列》专项练习题
![高中数学《等差数列》专项练习题](https://img.taocdn.com/s3/m/b00f5f490029bd64793e2ccd.png)
等差数列练习题一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、-101C、101D、-892、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为A、4B、5C、6D、不存在4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于()A、720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么a:b等于()A、14B、13C、13或1 D、126、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3B、C n= 8n - 1C、C n= 4n - 5D、C n= 8n - 97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有()A、6项B、8项C、10项D、12项8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为()A、0B、100C、10000D、505000二、填空题9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。
10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。
11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是______ 。
12、已知等差数列110,116,122,……,则大于450而不大于602的各项之和为______ 。
等差数列典型例题
![等差数列典型例题](https://img.taocdn.com/s3/m/2df1aa7ab207e87101f69e3143323968001cf45e.png)
等差数列典型例题一、选择题。
1.等差数列a的前n项和为Sn,若a₂=1. a₃=3.1则Sₐ=( )A. 12B.10C.8D.52. 已知(a) 为等差数列。
a₂+a=12则 a₃等于( )A.4B.5C.6D.73.设S是等差数列a的前 n项和,若 S₁=35. 则a=( )A.8B.7C.6D.54.记等差数列a的前n项和为S,若,S₂=4, S₄=20,则该数列的公差d=( )A.7B.6C.3D.25.等差数列{a}中, 已知a1=13,a2+a5=4,a n=33,则n为( )A.48B.49C.50D.516.等差数列{aₙ}中, a₁=1,a₃+a₃=14,其前n项和S,=100,则n=( )A.9B.10C.11D.127.设S₀是等差数列aₙ的前m项和,若a5a3=59则S9S2=()A.1B.-1C.2D.128.已知等差数列{a,}满足a1+a2+a5+⋯+a111=0则有( )A.a₁+aₙₐₓ>0B.α2+α1DC<0C.a₇+a₉₉=0D.a₅₁=519.如果a1,a2,⋯,a n为各项都大于零的等差数列,公差d≠0,则( )A.a₁a₃>a₄a₃B.aₙa₁<a₄a₅C.a1⃗⃗⃗⃗ +a6⃗⃗⃗⃗ >a4⃗⃗⃗⃗ +a5D.a₁₂₄“a₄₃10.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项二、填空题。
11.设数列a的首项a₁ =-7. 且满足aₙ₊₁=aₙ+2(n∈N).则a1+a2+⋯+a p=.12.已知[a₃]为等差数列。
a₃+a₃=22, a₄=7. 则:11= .13.已知数列的通项a=−5n+2则其前n项和为S₁= .三、解答题。
14. 等差数列{aₙ}的前m项和记为 SB.已知aₙ₀=30,a₂₀=50(1)求通项a。
(2)若S=242,求n。
等差数列练习题(有答案)百度文库
![等差数列练习题(有答案)百度文库](https://img.taocdn.com/s3/m/0a132bca03d8ce2f01662367.png)
一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 3.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=24.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2206.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .247.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .1039.题目文件丢失!10.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .711.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( )A .60B .120C .160D .24012.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸13.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4514.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2415.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10016.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4217.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.题目文件丢失!24.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =25.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1226.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <28.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列29.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2230.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 3.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 4.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 5.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 6.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =.故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.9.无10.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 11.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B 12.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 13.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 14.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 15.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 16.C【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.17.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 18.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误;对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 19.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 20.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-,∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确;对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.23.无24.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC 25.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-,对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 26.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 27.AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 28.AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列,因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题 29.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确;对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.。
等差数列练习题(有答案)百度文库
![等差数列练习题(有答案)百度文库](https://img.taocdn.com/s3/m/8104d91701f69e314332946c.png)
【分析】
把已知的两式相加得到 ,再求 得解.
【详解】
由题得 ,
所以 .
所以 .
故选:B
7.C
【分析】
首先根据 得到 ,设 ,再利用裂项求和即可得到答案.
【详解】
当 时, ,
当 时, .
检验 ,所以 .
设 ,前 项和为 ,
则 .
故选:C
8.A
【分析】
根据等差中项的性质,求出 ,再求 ;
【详解】
因为 为等差数列,所以 ,
【详解】
对于A:因为正数,公差不为0,且 ,所以公差 ,
所以 ,即 ,
根据等差数列的性质可得 ,又 ,
所以 , ,故A正确;
对于B:因为 ,则 ,
所以 ,又 ,
所以 ,
所以 , ,
所以使 的最大的n为15,故B正确;
对于C:因为 ,则 ,
,则 ,即 ,
所以则 中 最大,故C错误;
对于D:因为 ,则 ,又 ,
A.若 ,则 既是等差数列又是等比数列
B.若 ( , 为常数, ),则 是等差数列
C.若 ,则 是等比数列
D.若 是等差数列,则 , , 也成等差数列23.题目文件丢失!
24.题目文件丢失!
25.题目文件丢失!
26.首项为正数,公差不为0的等差数列 ,其前 项和为 ,则下列4个命题中正确的有()
A.若 ,则 , ;
A.3斤B.6斤C.9斤D.12斤
3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为()
A. 两B. 两C. 两D. 两
高一数学等差数列试题
![高一数学等差数列试题](https://img.taocdn.com/s3/m/01eea21119e8b8f67d1cb967.png)
高一数学等差数列试题1.数列满足(1)证明:数列是等差数列;(2)求数列的通项公式;(3)设,求数列的前项和.【答案】(1)证明见解析;(2)【解析】(1)根据等差数列的首项和公差求通项公式;根据等比数列的首项和公比求通项公式;注意题中限制条件;(2)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(3)一般地,如果数列是等差数列,是等比数列,求数列的前项的和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后做差求解.试题解析:解: (1)取倒数得: ,两边同乘以得: 所以数列是以为首项,以1为公差的等差数列. 4分(2)即 7分(3)由题意知: 则前n项和为:由错位相减得: ,13分【考点】(1)证明数列是等差数列;(2)求通项公式;(3)错位相减求和.2.已知正项数列的前n项和为,且(1)求、;(2)求证:数列是等差数列;(3)令,问数列的前多少项的和最小?最小值是多少?【答案】(1);(2)证明略;(3)当时,前项和最小,最小值-90.【解析】(1)根据等差数列的首项和公差求通项公式,求首项和公差是常用方法,注意题中限制条件;(2)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(3)求前项和的最大值或最小值的常用方法,看这个数列是递增数列还是递减数列,看从第几项开始出现变号,所有的正项加起来值最大,所有的负项加起来最小,注意看是否某一项为0.试题解析:解:(1)由已知条件得:又有,解得(2)由得即,,。
所以数列是公差为2的等差数列.(3)由(2)知..易知数列是公差为2,首项为的等差数列。
所以数列的前n项的和当时有最小值.即数列的前9项的和以及前10项的和最小值是-90.另解:注意到数列是公差为2的递增等差数列,且,故数列的前9项的和以及前10项的和最小值是-90.【考点】(1)求项的值;(2)判定某个数列是否为等差数列;(3)前项和的最小值.3.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是()A.5B.4C.3D.2【答案】C【解析】写出数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.由此得:,故选C.【考点】等差数列.4.已知等差数列的前n项和为,,,则数列的前100项和为()A.B.C.D.【答案】A【解析】由.所以,则前100项的和为:,故选A.【考点】(1)等差数列性质;(2)列项求和.5.已知等差数列满足:=2,且成等比数列.(1)求数列的通项公式.(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.【答案】(1)或;(2)当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.【解析】(1)本小题利用基本量法,设公差为,则成等比可转化为关于的方程,解出即可写其通项公式;(2)在上小题已得的等差数列的前提下,求出其前n项和,利用转化为不等解集问题的分析即可,同时要注意n为正整数.试题解析:(1)设数列的公差为,依题意,,,成等比数列,故有,化简得,解得或.当时,;当时,,从而得数列的通项公式为或.(2)当时,.显然,此时不存在正整数n,使得成立.当时,.令,即,解得或(舍去),此时存在正整数n,使得成立,n的最小值为41.综上,当时,不存在满足题意的n;当时,存在满足题意的n,其最小值为41.【考点】等差与等比数列的定义,通项公式,等差数列的前n项和公式,解一元二次不等式,分类讨论与化归思想.6.已知等差数列的首项,公差,则的第一个正数项是()A.B.C.D.【答案】D.【解析】∵等差数列,,,∴,令,即,满足不等式的第一个整数为,即数列的第一个正数项为.【考点】等差数列的通项公式.7.已知等差数列满足:,的前项和为.(1)求及;(2)令(其中为常数,且),求证数列为等比数列.【答案】(1);(2)详见解析.【解析】(1)设出等差数列的公差为,则由等差数列的通项公式易将已知条件转化为和d的二元一次方程组,解此方程组可得到和d的值,从而就可写出及;(2)要证数列为等比数列,只需证是常数对一切都成立即可,将已知与(1)的结论代入易知为常数,从而问题得证.试题解析:(1)设等差数列的公差为,因为,所以有,解得所以(2)由(1)知,所以.(C是常数,也是常数,且)所以数列是以为首项,为公比的等比数列.【考点】1.等差数列;2.等比数列.8.已知数列中,,,则的值为A.50B.51C.52D.53【答案】C【解析】是等差数列,公差为,.【考点】等差数列9.数列是等差数列,,前四项和。
高考数学一轮复习《等差数列》练习题(含答案)
![高考数学一轮复习《等差数列》练习题(含答案)](https://img.taocdn.com/s3/m/417d2c3c6ad97f192279168884868762caaebbcd.png)
高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。
等差数列练习题
![等差数列练习题](https://img.taocdn.com/s3/m/c419efef3186bceb18e8bb13.png)
等差数列练习题等差数列练习题(一):一、选择题1.在等差数列{an}中,a2=5,a6=17,则a14=()A.45 B.41C.39 D.372.在等差数列{an}中,a1=21,a7=18,则公差d=()A。
12 B。
13C.-12 D.-13解析:选C。
∵a7=a1+(7-1)d=21+6d=18,∴d=-12。
解析:选B。
a6=a2+(6-2)d=5+4d=17,解得d=3。
所以a14=a2+(14-2)d=5+12×3=41。
3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y =2x+1上,则{an}为()A.公差为2的等差数列 B.公差为1的等差数列C.公差为-2的等差数列 D.非等差数列解析:选A。
an=2n+1,∴an+1-an=2,应选A。
4.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4 B.5C.6 D.7解析:选B。
an=2+(n-1)×3=3n-1,bn=-2+(n-1)×4=4n-6,令an=bn得3n-1=4n-6,∴n=5。
5.下方数列中,是等差数列的有()①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④110,210,310,410,…A.1个 B.2个C.3个 D.4个解析:选C。
利用等差数列的定义验证可知①、③、④是等差数列.6.已知m和2n的等差中项是4,2m和n的等差中项是5,则m 和n的等差中项是()A.2 B.3C.6 D.9解析:选B。
由题意得m+2n=82m+n=10,∴m+n=6, ∴m、n的等差中项为3。
经典等差数列练习题(含答案)
![经典等差数列练习题(含答案)](https://img.taocdn.com/s3/m/6d22e69a960590c69ec37633.png)
等差数列一、选择题:1.2005是数列7,13,19,25,31,,中的第( )项.A. 332B. 333C. 334D. 3352.已知等差数列首项为2,末项为62,公差为4,则这个数列共有 ( )A .13项B .14项C .15项D .16项3.已知等差数列的通项公式为为常数,a a n a n ,3+-=则公差d=( )4.首项为24-的等差数列从第10项起开始为正数,则公差d 的取值范围是( ) A.83d > B.3d < C.833d ≤< D.833d <≤( )A .第22项 B .第21项 C .第20项 D .第19项6. 已知数列a ,-15,b ,c ,45是等差数列,则a+b+c 的值是( )A .-5B .0C .5D .10( )A .45B .48C .52D .558. 已知等差数列的首项1a 和公差d 是方程x 2-2x-3=0的两根,且知d >1a ,则这个数列的第30项是( )A .86B .85C .84D .83( )A .3B .2C .1D .-110、若x ≠y ,且两个数列:x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么=--31b y x a ( ) (A)43 (B)34 (C)32 (D)值不确定二 填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.等差数列{}n a 中,3524a a +=,23a =,则6a = 21 .4.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -=.5.在首项为31,公差为-4的等差数列中,与零最接近的项是6.如果等差数列{}n a 的第5项为5,第10项为5-,则此数列的第1个负数项 是第项.7.已知}{n a 是等差数列,且,13,77,57146541074==++++=++k a a a a a a a a 若 则k =8.在△ABC 中,A ,B ,C 成等差数列,则=++2tan 2tan 32tan 2tan C A C A . 三、解答题:1.根据数列的前几项写出数列的一个通项公式。
高三数学等差数列试题
![高三数学等差数列试题](https://img.taocdn.com/s3/m/8cc43b580029bd64793e2c15.png)
高三数学等差数列试题1.设Sn 为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-S k=24,则k等于( )A.8B.7C.6D.5【答案】D【解析】∵Sk+2-S k=a k+1+a k+2=a1+kd+a1+(k+1)d=2a1+(2k+1)d=2×1+(2k+1)×2=4k+4=24,∴k=5.2.已知数列是等差数列,,,则首项 .【答案】.【解析】设等差数列的公差为,则有,,解得,.【考点】等差数列3.已知等差数列中,,前项和,则等于()A.B.C.D.【答案】A【解析】,,,故选A.【考点】1.等差数列求和;2.等差数列的性质4.设是等差数列的前项和,且,则【答案】25【解析】由可得,所以。
5.已知数列的各项都为正数,。
(1)若数列是首项为1,公差为的等差数列,求;(2)若,求证:数列是等差数列.【答案】(1)6, (2)详见解析.【解析】(1)数列求和,关键分析通项特征.本题通项因此求和可用裂项相消法. 因为所以从而(2)证明数列为等差数列,一般方法为定义法.由条件可得两式相减得:化简得:,这是数列的递推关系,因此再令两式相减得:即,由得所以即,因此数列是等差数列.(1)由题意得:因为所以从而(2) 由题意得:,所以两式相减得:,化简得:,因此两式相减得:即,由得所以即,因此数列是等差数列.【考点】列项相消法求和,等差数列证明6.已知等差数列的前项和为,公差,且.(1)求数列的通项公式;(2)设数列是首项为1,公比为的等比数列,求数列的前n项和.【答案】(1)(2)时,;时,【解析】(1)将已知条件中的均用表示,即可解得的值。
再根据等差的通项公式求其通项公式即可。
(2)根据等比数列的通项公式可得,即可得(注意对公比是否为1进行讨论)。
当时,,根据等差数列前项和公式求;当时,的通项公式等于等差乘等比的形式,故应用错位相减法求其前n项和。
解:(1)因为公差,且,所以. 2分所以. 4分所以等差数列的通项公式为. 5分(2)因为数列是首项为1,公比为的等比数列,所以. 6分所以. 7分(1)当时,. 8分所以. 9分(2)当时,因为① 9分② 10分①-②得11分12分13分【考点】1等差数列的通项公式、前项和公式;2错位相减法求数列前项和。
等差数列练习题及答案精选全文
![等差数列练习题及答案精选全文](https://img.taocdn.com/s3/m/68e44942640e52ea551810a6f524ccbff021ca50.png)
可编辑修改精选全文完整版等差数列练习题一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( )A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( )A. 13B. 12C. 11D. 109、记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .810.已知S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .B .5C .7D .9二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = .7.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.三.解答题1、 在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围; ②1212,,,S S S 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求: (1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +n a 2=错误!未找到引用源。
高三数学等差数列试题
![高三数学等差数列试题](https://img.taocdn.com/s3/m/2d92c02c3186bceb18e8bb54.png)
高三数学等差数列试题1.已知数列的前项和为,,,,其中为常数.(1)证明:;(2)当为何值时,数列为等差数列?并说明理由.【答案】(1)详见解析;(2),理由详见解析.【解析】(1)欲证,由条件,考虑到,因此可以利用,,两式相减,即可消去得到,再由,即可得到;(2)由,,可得,再由(1)可知,故若数列为等差数列,则有,解得,接下来只需证明当时,数列确实为等差数列,结合(1)首先对的奇偶性进行分类讨论:由(1)可得是首项为,公差为的等差数列,,而是首项为,公差为的等差数列,,因此,,故当时,数列是以为首项,为公差的等差数列.试题解析:(1)由题设,,, 2分两式相减,得, 3分∵,∴; 4分(2)由题设,,,可得, 5分由(1)知,,若数列为等差数列,则,解得, 6分故,由此可得是首项为,公差为的等差数列,, 7分是首项为,公差为的等差数列,, 8分∴,, 10分因此当时,数列是以为首项,为公差的等差数列. 12分【考点】1.数列的通项公式;2.等差数列的证明.2. (2014·咸宁模拟)设数列{an }满足:a3=8,(an+1-an-2)·(2an+1-an)=0(n∈N*),则a1的值大于20的概率为________.【答案】【解析】因为(an+1-an-2)(2an+1-an)=0,所以an+1-an-2=0或2an+1-an=0,分别取n=1,2.则a3-a2=2,a2-a1=2或a2=2a3,a1=2a2.当a3=8时,a2=6或a2=16,当a2=6时,a1=4或a1=12,当a2=16时,a1=14或a1=32,所以a1的值大于20的概率为.3.抛物线,直线过抛物线的焦点,交轴于点.(1)求证:;(2)过作抛物线的切线,切点为(异于原点),(ⅰ)是否恒成等差数列,请说明理由;(ⅱ)重心的轨迹是什么图形,请说明理由.【答案】(1)即证(2)能抛物线【解析】(1)由于点F的坐标已知,所以可假设直线AB的方程(依题意可得直线AB的斜率存在).写出点P的坐标,联立直线方程与抛物线方程消去y,即可得到一个关于x的一元二次方程,写出韦达定理,再根据欲证转化为点的坐标关系.(2)(ⅰ)根据提议分别写出,结合韦达定理验证是否成立.(ⅱ)由三角形重心的坐标公式,结合韦达定理,消去参数k即可得到重心的轨迹.(1)因为,所以假设直线AB为,,所以点.联立可得,,所以.因为,.所以.(2)(ⅰ)设,的导数为.所以可得,即可得.即得...所以可得即是否恒成等差数列.(ⅱ)因为重心的坐标为由题意可得.即,消去k可得.【考点】1.抛物线的性质.2.解方程的思想.3.等差数列的证明.4.三角形的重心的公式.5.运算能力.6.分析问题和解决问题的能力、以及等价转化的数学思想.4.数列{an }满足an+1+(﹣1)n an=2n﹣1,则{an}的前60项和为()A.3690B.3660C.1845D.1830【答案】D【解析】由于数列{an }满足an+1+(﹣1)n an=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a 5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a 16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{an}的前60项和为 15×2+(15×8+)=1830,故选D.5.设等差数列{an }的前n项和为Sn,Sm-1=-2,S m=0,S m+1=3,则= ( )A.3 B.4 C.5 D.6【答案】C【解析】∵{a n }是等差数列 ∴S m = =0a 1=-a m =-(S m -S m -1)=-2, 又= -=3,∴公差=-=1, ∴3==-,∴=5,故选C .6. 已知等差数列的公差为,,前项和为,则的数值是 .【答案】 【解析】由题意,,,题.【考点】数列的极限.7. 若{a n }为等差数列,a 15=8,a 60=20,则a 75= . 【答案】24【解析】【思路点拨】直接解出首项和公差,从而求得a 75,或利用a 15,a 30,a 45,a 60,a 75成等差数列直接求得.解:方法一:{a n }为等差数列,设公差为d,首项为a 1,那么即解得:a 1=,d=.所以a 75=a 1+74d=+74×=24.方法二:因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列,设公差为d,则a 60-a 15=3d,所以d=4,a 75=a 60+d=20+4=24.8. 已知数列是等差数列, (1)判断数列是否是等差数列,并说明理由; (2)如果,试写出数列的通项公式; (3)在(2)的条件下,若数列得前n 项和为,问是否存在这样的实数,使当且仅当时取得最大值。
高中数学等差数列(有答案)
![高中数学等差数列(有答案)](https://img.taocdn.com/s3/m/4f8c0b44e45c3b3567ec8bf7.png)
2014年12月27日高中数学等差数列一.选择题(共18小题)3.(2014•陕西模拟)已知一等差数列的前四项的和为124,后四项的和为156,又各项和为210,则此等差数列共*229.设{a n}为等差数列,则下列数列中,成等差数列的个数为()212.(2014•东阳市二模)已知数列{a n}为等差数列,若,且它们的前n项和S n有最大值,则使得S n>013.(2014•宣城三模)已知等比数列{a n}中,各项都是正数,且成等差数列,则等于().C D.15.(2014•黄冈模拟)设S n是等差数列{a n}的前n项和,若,则等于().C D.16.(2014•上海模拟)若数列,则称数列{a n}为“调和数列”.已知正项数列为“调和数列”,且b1+b2+…+b9=90,则b4•b6的最大值是()17.(2014•青浦区一模)等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则中最大的.C D.18.(2014•香洲区模拟)已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()﹣.二.解答题(共12小题)19.(2015•开封模拟)已知数列{a n}满足a1=1,n(a n+1﹣a n)=a n+n2+n,n∈N*,证明:数列是等差数列.20.(2010•泰安二模)已知数列,且(I)求证:数列是等差数列,并求a n;(II)令,求数列{b n}的前n项和T n.21.已知数列{a n}满足a1=1,a n=(n>1),记b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.22.已知数列{a n}中,a1=1,a n+1=,求a n.23.(2013•贵阳二模)已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.24.(2013•海淀区二模)已知等差数列{a n}的前n项和为S n(I)若a1=1,S10=100,求{a n}的通项公式;(II)若S n=n2﹣6n,解关于n的不等式S n+a n>2n.25.(2014•蚌埠二模)已知等差数列{a n}的公差不为零,a1=1,且a1,a2,a5成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.26.(2014•博白县模拟)已知等差数列{a n}的前n项和为S n,点2a5=a10,且S5=120.求a n和S n.27.(2014•宜宾二模)已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+4.(Ⅰ)求公差d的值;(Ⅱ)若对任意的n∈N*,都有S n≥S8成立,求a1的取值范围.28.(2009•温州二模)在等差数列{a n}中,设S n为它的前n项和,若S5=35,且点A(3,a3)与B(5,a5)都在斜率为﹣2的直线l上,(Ⅰ)求a1的值;(Ⅱ)求S n的最大值.29.等差数列{a n}的前n项和为S n,已知a2=﹣7,S6=﹣24.(1)求等差数列{a n}的前n项和S n;(2)当n为何值时,数列{}有最小项,并求出最小项的值.30.已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.参考答案与试题解析一.选择题(共18小题)3.(2014•陕西模拟)已知一等差数列的前四项的和为124,后四项的和为156,又各项和为210,则此等差数列共=*2nn29.设{a n}为等差数列,则下列数列中,成等差数列的个数为()2①==7212.(2014•东阳市二模)已知数列{a n}为等差数列,若,且它们的前n项和S n有最大值,则使得S n>0可得可得13.(2014•宣城三模)已知等比数列{a n}中,各项都是正数,且成等差数列,则等于().C D.解:∵q=1+﹣)=3+2=,代入=2615.(2014•黄冈模拟)设S n是等差数列{a n}的前n项和,若,则等于().C D.又∵∴=16.(2014•上海模拟)若数列,则称数列{a n}为“调和数列”.已知正项数列为“调和数列”,且b1+b2+…+b9=90,则b4•b6的最大值是()由已知数列∴17.(2014•青浦区一模)等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则中最大的.C D.∴中最大的项为18.(2014•香洲区模拟)已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则(n∈N+)的最小值为()﹣.项和,从而可得=n∴,则﹣时,∴二.解答题(共12小题)19.(2015•开封模拟)已知数列{a n}满足a1=1,n(a n+1﹣a n)=a n+n2+n,n∈N*,证明:数列是等差数列.,可得∴数列20.(2010•泰安二模)已知数列,且(I)求证:数列是等差数列,并求a n;(II)令,求数列{b n}的前n项和T n.)对,整理得到=,即,进而可证数列是等差数列,结合等差数列的定义可得到)∵∴==∴数列是公差为的等差数列∴∴∴21.已知数列{a n}满足a1=1,a n=(n>1),记b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.==2+====2+∴=1+∴22.已知数列{a n}中,a1=1,a n+1=,求a n.==1+,即+1{是首项为+1=1+1=2∴=1+∴+1{是首项为+1=1+1=2∴∴故答案为:{是首项为+1=223.(2013•贵阳二模)已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.,则有,则有)=1当且仅当24.(2013•海淀区二模)已知等差数列{a n}的前n项和为S n(I)若a1=1,S10=100,求{a n}的通项公式;(II)若S n=n2﹣6n,解关于n的不等式S n+a n>2n.,)因为时,=2n25.(2014•蚌埠二模)已知等差数列{a n}的公差不为零,a1=1,且a1,a2,a5成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.26.(2014•博白县模拟)已知等差数列{a n}的前n项和为S n,点2a5=a10,且S5=120.求a n和S n.+==4n27.(2014•宜宾二模)已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+4.(Ⅰ)求公差d的值;(Ⅱ)若对任意的n∈N*,都有S n≥S8成立,求a1的取值范围.得到∴在,∴28.(2009•温州二模)在等差数列{a n}中,设S n为它的前n项和,若S5=35,且点A(3,a3)与B(5,a5)都在斜率为﹣2的直线l上,(Ⅰ)求a1的值;(Ⅱ)求S n的最大值.由斜率的两点式得到,则公差29.等差数列{a n}的前n项和为S n,已知a2=﹣7,S6=﹣24.(1)求等差数列{a n}的前n项和S n;(2)当n为何值时,数列{}有最小项,并求出最小项的值.)由,得到,利用均值定理能求出当}∴9n+)∵,∴10+n=,即{30.已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.。
高三等差数列练习题
![高三等差数列练习题](https://img.taocdn.com/s3/m/e897d6c0d1d233d4b14e852458fb770bf78a3b1a.png)
高三等差数列练习题数学练习题:高三等差数列练习题1. 下列数列中,哪个不是等差数列?A. 2, 5, 8, 11, 14B. 1, 4, 16, 25, 36C. 3, 7, 11, 15, 19D. 6, 10, 13, 17, 212. 求下列等差数列的公差:A. 3, 6, 9, 12, 15B. 10, 13, 16, 19, 22C. -2, 1, 4, 7, 10D. 5, 9, 13, 17, 213. 若一个等差数列的首项为4,公差为2,第10项为?4. 若一个等差数列的首项为1,公差为-3,前15项的和为?5. 若一个等差数列的首项为1,公差为2,若第n项为7,求n的值。
解答:1. B. 1, 4, 16, 25, 36该数列不具备公差相等的特点,因此不是等差数列。
2. 答案如下:A. 公差为3B. 公差为3C. 公差为3D. 公差为43. 第10项可以通过等差数列通项公式来求解。
设等差数列的首项为a₁,公差为d,则第n项的表达式为aₙ = a₁ + (n-1)d。
代入已知条件,可得:a₁₀ = 4 + (10-1)2= 4 + 9 × 2= 4 + 18= 22因此,第10项为22。
4. 等差数列的前n项和可通过等差数列和公式来计算。
设前n项和为Sₙ,首项为a₁,公差为d,则有Sₙ = (n/2)(a₁ + aₙ),其中aₙ表示第n项的值。
根据已知条件,可以得到:S₁₅ = (15/2)(1 + a₁₅)= (15/2)(1 + (1 + (15-1)(-3)))= (15/2)(1 + (-41))= (15/2)(-40)= -300因此,前15项的和为-300。
5. 根据等差数列通项公式,可以得到:7 = 1 + (n-1)26 = 2n - 22n = 8n = 4因此,第n项为7时,n的值为4。
以上是关于高三等差数列的练习题,希望能对你的学习有所帮助!。
高中数学专题练习《等差数列的概念》含详细解析
![高中数学专题练习《等差数列的概念》含详细解析](https://img.taocdn.com/s3/m/859b2e00182e453610661ed9ad51f01dc281578f.png)
4.2 等差数列4.2.1 等差数列的概念基础过关练题组一 等差数列的概念及其应用1.下列数列不是等差数列的是( )A.1,1,1,1,1B.4,7,10,13,16C.13,23,1,43,53D.-3,-2,-1,1,22.给出下列命题:①数列6,4,2,0是公差为2的等差数列;②数列a,a-1,a-2,a-3是公差为-1的等差数列;③等差数列的通项公式一定能写成a n =kn+b 的形式(k,b 为常数);④数列{2n+1}(n ∈N *)是等差数列.其中正确命题的序号是( )A.①②B.①③C.②③④ D.③④题组二 等差中项3.若a=13+2,b=13-2,则a,b 的等差中项为( )A.3B.2C.32 D.224.已知在△ABC 中,三个内角A,B,C 成等差数列,则角B 等于( )A.30° B.60° C.90° D.120°5.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( )6.若5,x,y,z,21成等差数列,则x+y+z的值为( )A.26B.29C.39D.52题组三 等差数列的通项公式及其应用7.已知{a n}为等差数列,若a1=1,公差d=2,a n=15,则n的值为( )A.5B.6C.7D.88.(2020山东淄博一中高二上期中)在数列{a n}中,a1=1,a n+1-a n=2,n∈N*,则a25的值为( )A.49B.50C.89D.999.(2020天津耀华中学高二上期中)已知数列{a n}是等差数列,若a1=2,a4=2a3,则公差d=( )A.0B.2C.-1 D.-210.(2020河南郑州高二上期末)设数列{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为 .11.在-3和6之间插入两个数a,b,使这四个数成等差数列,则公差为 .12.已知数列{a n}是等差数列,且a n=an2+n(n∈N*),则实数a= . 题组四 等差数列的性质及其应用13.在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( )A.45B.75C.180D.30014.(2020河南新乡高二上期末)在等差数列{a n}中,a2+a6=3,a3+a7=7,则公差d=( )15.(2019河南商丘九校高二期末联考)在单调递增的等差数列{a n}中,若a3=1,a2a4=34,则a1=( )A.-1B.0C.14D.1216.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m的值为( )A.12B.8C.6D.417.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= .18.首项为a1,公差为d(d∈N*)的等差数列{a n}满足下列两个条件:①a3+a5+a7=93;②满足a n>100的n的最小值是15.试求公差d和首项a1的值.能力提升练题组一 等差数列的通项公式及其应用1.()在数列{an}中,a1=3,且对任意大于1的正整数n,点(a n,a n-1)在直线x-y-3=0上,则( )A.a n=3nB.a n=3nC.a n=n-3D.a n=3n22.()已知等差数列{an }的首项为a,公差为1,b n=a n+1a n,若对任意的正整数n都有b n≥b5,则实数a的取值范围是( )A.(-∞,-4)∪(-3,+∞)B.(-4,-3)C.(-∞,-5)∪(-4,+∞)D.(-5,-4)3.()已知数列{an}中,a1=1,a n-1-a n=a n a n-1(n≥2,n∈N*),则a10= .4.(2020辽宁沈阳东北育才实验学校高二上月考,)已知数列{a n}满足a n+1=6a n-4a n+2,且a1=3(n∈N*).(1)证明:;(2)求数列{a n}的通项公式.题组二 等差数列的性质及其应用}中,a1+a4+a7=39,a2+a5+a8=33,则a6=( )5.()在等差数列{aA.10B.9C.8D.76.(2020山东招远一中高二上月考,)在一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差为( )A.-2B.-3C.-4D.-5}满足a1+a2+a3+…+a101=0,则7.(多选)()已知单调递增的等差数列{a下列各式一定成立的有( )A.a1+a101>0B.a2+a100=0C.a3+a100≤0D.a51=08.(2020河南濮阳高二上期末,)已知各项都为正数的等差数列{a n}中,a5=3,则a3a7的最大值为 .题组三 等差数列的综合应用9.(2020山东日照高二上期末,)我国古代著名的著作《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸;夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节分;且“冬至”时日影长度最大,为1350气之间的日影长度差为9916分;“夏至”时日影长度最小,为160分.则“立春”时日影长度为( )A.9531分3B.10521分2C.11512分3D.12505分610.(多选)()已知数列{a}的前n项和为S n(S n≠0),且满足a n+4S n-1S n=0(n≥2,n∈N*),a1=1,则下列说法中正确的是( )4A.数列{a n}的前n项和为S n=14nB.数列{a n}的通项公式为a n=14n(n+1)C.数列{a n}为递增数列D.11.(2020天津一中高二上期中,)已知数列{a n}满足a1=15,且3a n+1=3a n-2(n∈N*),若a k a k+1<0,则正整数k= .12.(2020山东青岛高三上期末,)在下面的数表中,已知每行、每列中的数都成等差数列.第1列第2列第3列…第1行123…第2行246…第3行369………………那么位于表中的第n行第(n+1)列的数是 .13.()数列{a}满足a1=1,a n+1=(n2+n-λ)a n(n∈N*),λ是常数.(1)当a2=-1时,求λ及a3的值;(2)判断是否存在实数λ使得数列{a n}为等差数列,并说明理由.14.(2019四川成都七中高二期中,)已知正项数列{a n}满足a2n=(2n-1)a n+2n(n∈N*).(1)求证:数列{a n}是等差数列;(2)若数列{b n}满足b n=a n-40,且数列{b n}的最大项为b p,最小项为b q,n-11求p+q的值.15.()在数列{a}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2,n∈N*).(1)证明:;(2)求数列{a n}的通项公式;(3)若λa n+1≥λ对任意的n≥2,n∈N*恒成立,求实数λ的取值范围.a n16.()已知无穷等差数列{a},首项a1=3,公差d=-5,依次取出项数能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}中的第几项?答案全解全析基础过关练1.D 根据等差数列的定义可知,选项D中的数列不是等差数列.故选D.2.C 根据等差数列的定义可知,数列6,4,2,0的公差为-2,①错误;易知②③④均正确.3.A 设a,b的等差中项为x,则2x=a+b=13+2+13-2=23,所以x=3.4.B 因为A,B,C成等差数列,所以B是A,C的等差中项,则有A+C=2B,又因为A+B+C=180°,所以3B=180°,即B=60°.5.B 由已知得m+2n=8,2m+n=10,解得m=4, n=2,所以m和n的等差中项为m+n2=3.6.C ∵5,x,y,z,21成等差数列,∴y既是5和21的等差中项也是x和z的等差中项.∴5+21=2y,x+z=2y,∴y=13,x+z=26,∴x+y+z=39.7.D ∵a1=1,d=2,∴a n=a1+(n-1)d=1+2n-2=15,解得n=8.故选D.8.A 由a n+1-a n =2得数列{a n }是公差为d=2的等差数列,又a 1=1,所以a 25=a 1+24d=1+24×2=49.故选A.9.D 依题意得a 1+3d=2(a 1+2d),将a 1=2代入,得2+3d=2(2+2d),解得d=-2.故选D.10.答案 a n =6n-3(n ∈N *)解析 设等差数列{a n }的公差为d,由a 1=3,a 2+a 5=36,得a 1=3,a 1+d +a 1+4d =36,解得d=6,∴a n =a 1+(n-1)d=3+(n-1)×6=6n-3(n ∈N *).即{a n }的通项公式为a n =6n-3(n ∈N *).11.答案 3解析 设该等差数列为{a n },其首项为a 1,公差为d,由题知,a 1=-3,a 4=6,即a 1=―3,a 1+3d =6,解得d=3.12.答案 0解析 ∵{a n }是等差数列,且a n =an 2+n,∴a n 是关于n 的一次函数,∴a=0.13.C 由题意得,a 3+a 7=a 4+a 6=2a 5,∴a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.14.B 解法一:∵(a 3+a 7)-(a 2+a 6)=2d,且a 3+a 7=7,a 2+a 6=3,∴d=7―32=2.故选B.解法二:∵a 3+a 7=2a 5=7,a 2+a 6=2a 4=3,∴a 5=72,a 4=32,∴d=a 5-a 4=2.故选B.15.B 设等差数列{a n }的公差为d.由已知得a 3=1,a 2a 4=(a 3-d)(a 3+d)=34,解得d=±12.∵{a n }为单调递增的等差数列,∴d=12,又∵a 3=a 1+2d=1,∴a 1=0.故选B.16.B 由等差数列的性质,得a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8,∴a m =a 8,又d ≠0,∴m=8.17.答案 35解析 由{a n },{b n }都是等差数列可知{a n +b n }也是等差数列,设{a n +b n }的公差为d,则a 3+b 3=(a 1+b 1)+2d,则2d=21-7,即d=7.所以a 5+b 5=(a 1+b 1)+4d=35.18.解析 ∵a 3+a 5+a 7=93,∴3a 5=93,∴a 5=31,由②知a n >100,即a n =a 5+(n-5)d>100,∴n>69d +5.∵满足a n >100的n 的最小值是15,∴14≤69d +5<15,∴6910<d ≤233,又d ∈N *,∴d=7,∴a 1=a 5-4d=3.能力提升练1.D ∵点(a n ,a n -1)在直线x-y-3=0上,∴a n -a n -1=3,∴数列{a n }是首项为3,公差为3的等差数列.∴数列{a n }的通项公式为a n =3+(n-1)3=3n,∴a n =3n 2.故选D.2.D 解法一:依题意得,a n =a+(n-1)×1=n+a-1,∴b n =n +an +a -1=1+1n +a -1.设函数y=1x +a -1+1,画出图象,如图.结合题意知,1-a ∈(5,6),∴5<1-a<6,解得-5<a<-4,故选D.解法二:∵等差数列{a n }的首项为a,公差为1,∴a n =a+n-1,∴b n =a n +1a n =1+1a n =1+1a +n -1,若对任意的正整数n 都有b n ≥b 5,则有(b n )min =b 5=1+1a +4,结合数列{b n }的单调性可知,b 5<b 4,b 5<b 6,即1+1a +4<1+1a +3,1+1a +4<1+1a +5,解得-5<a<-4.故选D.3.答案 110解析 易知a n ≠0,∵数列{a n }满足a n-1-a n =a n a n-1(n ≥2,n ∈N *),∴1an-1a n -1=1(n ≥2,n ∈N *),1,公差为1的等差数列,∴1a 10=1+(10-1)×1=10,∴a 10=110.4.解析 (1)证明:由已知得,1a 1-2=13―2=1,1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2)=a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14,因此1a n +1-2-1a n -2=14,n ∈N *,1,公差为14的等差数列.(2)由(1)知1a n -2=1a 1-2+(n-1)×14=n +34,所以a n =2n +10n +3,n ∈N *.5.B 设等差数列{a n }的公差为d,∵在等差数列{a n }中,a 1+a 4+a 7=3a 4=39,a 2+a 5+a 8=3a 5=33,∴a 4=13,a 5=11,∴d=a 5-a 4=-2,∴a 6=a 5+d=11-2=9,故选B.6.C 设该等差数列为{a n },公差为d(d ∈Z),则a 1=23,a n =23+(n-1)d,由题意可知a 6>0,a 7<0,即23+(6―1)d >0,23+(7―1)d <0,解得-235<d<-236.因为d 是整数,所以d=-4.7.BD 设等差数列{a n }的公差为d,易知d>0,∵等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,且a 1+a 101=a 2+a 100=…=a 50+a 52=2a 51,∴a 1+a 2+a 3+…+a 101=(a 1+a 101)+(a 2+a 100)+…+(a 50+a 52)+a 51=101a 51=0,∴a 51=0,a 1+a 101=a 2+a 100=2a 51=0,故B,D 正确,A 错误.又∵a 51=a 1+50d=0,∴a 1=-50d,∴a 3+a 100=(a 1+2d)+(a 1+99d)=2a 1+101d=2×(-50d)+101d=d>0,故C 错误.故选BD.8.答案 9解析 因为等差数列{a n }的各项都为正数,所以a 3>0,a 7>0,所以a 3a 7=(a 5)2=9,当且仅当a 3=a 7=3时等号成立.所以a 3a 7的最大值为9.9.B 由题意可知,从“冬至”到“夏至”,每个节气的日影长度依次构成等差数列,设该等差数列为{a n },公差为d,又知“冬至”时日影长度最大,设为a 1=1 350;“夏至”时日影长度最小,设为a 13=160.则a 13=1 350+12d=160,解得d=-1 19012=-9916,∴“立春”时日影长度为a4=1 350+-9905212(分).故选B.10.AD 由a n =S n -S n-1,a n +4S n-1S n =0,n ≥2,n ∈N *,得S n -S n-1=-4S n-1S n,n ≥2,n ∈N *,又S n ≠0,∴1S n -1S n -1=4(n ≥2,n ∈N *).∵a 1=14,∴1S1=4,4为首项,4为公差的等差数列,∴1S n =4+4(n-1)=4n,n ∈N *,,S n =14n ,n ∈N *,∴当n ≥2时,a n =S n -S n-1=14n -14(n -1)=-14n (n -1),经检验,当n=1时,不符合上式,∴a n ,n =1,14n(n -1),n≥2,n ∈N *,综上可知AD 正确.故选AD.11.答案 23解析 解法一:∵3a n+1=3a n -2,∴a n+1-a n =-23,∴数列{a n }是以15为首项,-23为公差的等差数列.设公差为d,则a n =a 1+(n-1)d=15-23(n-1)=-23n+473.∴a k a k+1=-23k +-23(k +1)+=-23k +-23k +即(2k-47)(2k-45)<0,解得452<k<472,又∵k ∈N *,∴k=23.解法二:同解法一可得a n =-23n+473,∵d=-23<0,∴数列{a n }为单调递减数列,∴由a k a k+1<0可得a k >0,a k +1<0,即-23k +473>0,-23(k +1)+473<0,解得452<k<472,又∵k ∈N *,∴k=23.12.答案 n 2+n解析 由题意可得,第n 行的第一个数是n,第n 行的数构成以n 为首项,n 为公差的等差数列,其中第(n+1)项为n+n ·n=n 2+n.所以题表中的第n 行第(n+1)列的数是n 2+n.13.解析 (1)因为a n+1=(n 2+n-λ)a n (n ∈N *),且a 1=1,所以当a 2=-1时,得-1=2-λ,解得λ=3.从而a 3=(22+2-3)×(-1)=-3.(2)不存在实数λ使得{a n }为等差数列.理由如下:由a 1=1,a n+1=(n 2+n-λ)a n ,得a 2=2-λ,a 3=(6-λ)(2-λ),a 4=(12-λ)(6-λ)(2-λ).若存在实数λ,使得{a n }为等差数列,则a 3-a 2=a 2-a 1,即(5-λ)(2-λ)=1-λ,解得λ=3.于是a 2-a 1=1-λ=-2,a 4-a 3=(11-λ)(6-λ)(2-λ)=-24,a 2-a 1≠a 4-a 3,这与{a n }为等差数列矛盾.所以不存在实数λ使得{a n }为等差数列.14.解析 (1)证明:∵a 2n =(2n-1)a n +2n,∴a 21=a 1+2,解得a 1=2或a 1=-1.又∵a n >0,∴a 1=2.由a 2n =(2n-1)a n +2n,得a 2n-(2n-1)a n -2n=(a n -2n)(a n +1)=0,∵a n >0,n ∈N *,∴a n =2n,∴a n+1-a n =2(n+1)-2n=2,∴数列{a n }是以2为首项,2为公差的等差数列.(2)结合(1)可得b n =a n -40n -11=2n -40n -11=2×n -10n -11=21+∴当n ≤3,n ∈N *时,{b n }单调递减,且b n <2;当n ≥4,n ∈N *时,{b n }单调递减,且b n >2.∴当n=4时,b n 最大;当n=3时,b n 最小.故p=4,q=3,∴p+q=7.15.解析 (1)证明:由3a n a n-1+a n -a n-1=0(n ≥2,n ∈N *),得1a n -1a n -1=3(n ≥2,n ∈N *),又1a 1=1,1为首项,3为公差的等差数列.(2)由(1)可得1a n =1+3(n-1)=3n-2,所以a n =13n -2(n ∈N *).(3)因为λa n +1a n ≥λ对任意的n ≥2,n ∈N *恒成立,即λ3n -2+3n-2≥λ对任意的n ≥2,n ∈N *恒成立,所以只需λ≤(3n -2)23n -3对任意的n ≥2,n ∈N *恒成立即可.令f(n)=(3n -2)23n -3(n ≥2,n ∈N *),则只需满足λ≤f(n)min 即可.因为f(n+1)-f(n)=(3n +1)23n -(3n -2)23n -3=9n 2-9n -13n (n -1)=3-13n (n -1),所以当n ≥2时, f(n+1)-f(n)>0,即f(2)<f(3)<f(4)<…,所以f(n)min =f(2).又f(2)=163,所以λ≤163.所以实数λ的取值范围为-∞,16.解析 (1)∵a 1=3,d=-5,∴a n =8-5n.数列{a n}中项数被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}中的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5×(4n-1)=13-20n,即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10047,设它是{a n}的第s项,则-10047=8-5s,解得s=2011,即{b n}中的第503项是{a n}中的第2011项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为数列 递减,所以 ,则 , ,故A正确;
所以 最大,故B正确;
所以 Hale Waihona Puke 故C错误;所以 ,故D正确.
故选:ABD.
27.AD
【分析】
利用 求出数列的通项公式,可对A,B,D进行判断,对 进行配方可对C进行判断
【详解】
解:当 时, ,
当 时, ,
当 时, 满足上式,
所以 ,
由于 ,所以数列 为首项为 ,公差为2的等差数列,
【详解】
因为 ,
所以 ,
即 ,
所以 .
故选:A
二、多选题
21.无
22.无
23.BD
【分析】
根据选项求出数列的前 项,逐一判断即可.
【详解】
解:因为数列 的前4项为2,0,2,0,
选项A:不符合题设;
选项B:
,符合题设;
选项C:,
不符合题设;
选项D:
,符合题设.
故选:BD.
【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
故选:A
14.B
【分析】
根据递推关系式求出数列的通项公式即可求解.
【详解】
由 ,则 ,
即 ,
所以数列 是以 为首项, 为公差的等差数列,
所以 ,
所以 .
故选:B
15.A
【分析】
设等差数列 的公差为 ,根据等差数列的通项公式列方程组,求出 和 的值,
,即可求解.
【详解】
设等差数列 的公差为 ,
则 ,即 解得: ,
4.等差数列 的前 项和分别为 ,若 ,则 的值为()
A. B. C. D.
5.数列 为等差数列, , ,则通项公式是()
A. B. C. D.
6.已知数列 的前n项和 ,则 ()
A.350B.351C.674D.675
7.已知等差数列 的前 项和为 ,且 , ,下列四个命题:①公差 的最大值为 ;② ;③记 的最大值为 ,则 的最大值为30;④ .其真命题的个数是()
【详解】
由于等差数列 是递增数列,则 ,A选项错误;
,则 ,可得 ,B选项正确;
,
当 或 时, 最小,C选项错误;
令 ,可得 ,解得 或 .
,所以,满足 时 的最小值为 ,D选项正确.
故选:BD.
26.ABD
【分析】
转化条件为 ,进而可得 , ,再结合等差数列的性质及前n项和公式逐项判断即可得解.
【详解】
因为公差大于零,所以 为单调递增数列,所以A,D正确,B错误,
由于 ,而 ,所以当 或 时, 取最小值,且最小值为 ,所以C错误,
故选:AD
【点睛】
此题考查 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n项和的最值问题,属于基础题
28.BC
【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.
B.数列 是递增数列
C.数列 是递增数列
D.数列 是递增数列
30.设公差不为0的等差数列 的前n项和为 ,若 ,则下列各式的值为0的是()
A. B. C. D.
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题
1.B
【分析】
设出数列 的公差,利用等差数列的通项公式及已知条件,得到 ,然后代入求和公式即可求解
则 ,故
故选:C
18.B
【分析】
利用等差数列的性质,由 ,得到 ,然后由 求解.
【详解】
因为 ,
所以由等差数列的性质得 ,
解得 ,
所以 .
故选:B
19.B
【分析】
由题意可得 ,运用等差数列的通项公式可得 ,求得 ,然后利用裂项相消求和法可求得结果
【详解】
解:由 , ,得 ,
所以数列 是以4为公差,以1为首项的等差数列,
据此有:
故选:D
4.C
【分析】
利用等差数列的求和公式,化简求解即可
【详解】
= = = = = .
故选C
5.C
【分析】
根据题中条件,求出等差数列的公差,进而可得其通项公式.
【详解】
因为数列 为等差数列, , ,
则公差为 ,
因此通项公式为 .
故选:C.
6.A
【分析】
先利用公式 求出数列 的通项公式,再利用通项公式求出 的值.
【详解】
由题知各节气日影长依次成等差数列,设为 , 是其前 项和,
则 (尺),所以 (尺),由题知 (尺),
所以 (尺),所以公差 ,
则 (尺).
故选:D.
11.D
【分析】
根据等差数列的性质计算求解.
【详解】
由题意 ,
,∴ .
故选:D.
12.B
【分析】
利用等差数列的下标性质,结合等差数列的求和公式即可得结果.
17.已知数列{xn}满足x1=1,x2= ,且 (n≥2),则xn等于()
A.( )n-1B.( )nC. D.
18.设等差数列 的前 项和为 ,若 ,则 ()
A.60B.120C.160D.240
19.已知正项数列 满足 , ,数列 满足 ,记 的前n项和为 ,则 的值为()
A.1B.2C.3D.4
A.4个B.3个C.2个D.1个
8.设等差数列 的前 项和为 , 且 ,则当 取最小值时, 的值为()
A. B. C. D. 或
9.数列 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大 ,则该数列的项数是()
A.8B.4C.12D.16
10.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为()(注:一丈=十尺,一尺=十寸)
A.一丈七尺五寸B.一丈八尺五寸
C.二丈一尺五寸D.二丈二尺五寸
11.已知等差数列 ,且 ,则数列 的前13项之和为()
A.24B.39C.104D.52
12.在等差数列 中, ,则此数列前13项的和是()
A.13B.26C.52D.56
13.已知递减的等差数列 满足 ,则数列 的前n项和取最大值时n=()
【详解】
当 时, ;
当 时, .
不适合上式,
.
因此, ;
故选:A.
【点睛】
易错点睛:利用前 项和 求通项 ,一般利用公式 ,但需要验证 是否满足 .
7.B
【分析】
设公差为 ,利用等差数列的前 项和公式, ,得 ,由前 项和公式,得 ,同时可得 的最大值, , 或 时取得,结合递减数列判断D.
【详解】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足 的项,即可得解.
3.D
【分析】
由题意结合新定义的概念求得数列的前n项和,然后利用前n项和求解通项公式,最后裂项求和即可求得最终结果.
【详解】
设数列 的前n项和为 ,由题意可得: ,则: ,
当 时, ,
当 时, ,
且 ,据此可得 ,
故 , ,
所以 ,
所以 的值是 ,
故选:A
16.C
【分析】
根据首末两项求等差数列的公差,再求这5个数字.
【详解】
在1与25之间插入五个数,使其组成等差数列,
则 ,则 ,
则这5个数依次是5,9,13,17,21.
故选:C
17.C
【分析】
由已知可得数列 是等差数列,求出数列 的通项公式,进而得出答案.
【详解】
由已知可得数列 是等差数列,且 ,故公差
设公差为 ,由已知 , ,得 ,所以 ,A正确;
所以 ,B错误;
,解得 , ,解得 ,
所以 ,当 时, ,
当 时,有最大值,此时 ,
当 时,有最大值,此时 ,C正确.
又该数列为递减数列,所以 ,D正确.
故选:B.
【点睛】
关键点点睛:本题考查等差数列的前 项和,掌握等差数列的前 和公式与性质是解题关键.等差数列前 项和 的最大值除可利用二次函数性质求解外还可由 求得.
一、等差数列选择题
1.设等差数列 的前 项和为 ,且 ,则 ()
A.15B.20C.25D.30
2.已知数列 的前 项和为 , ,且满足 ,若 , , ,则 的最小值为()
A. B. C. D.0
3.定义 为 个正数 的“均倒数”,若已知数列 的前 项的“均倒数”为 ,又 ,则 ()
A. B. C. D.
【详解】
由等差数列的性质,可得 , ,
因为 ,
可得 ,即 ,
故数列的前13项之和 .
故选:B.
13.A
【分析】
由 ,可得 ,从而得 ,然后利用二次函数的性质求其最值即可
【详解】
解:设递减的等差数列 的公差为 ( ),
因为 ,所以 ,化简得 ,
所以 ,
对称轴为 ,
因为 , ,
所以当 或 时, 取最大值,
【详解】
A选项,若 ,则 ,
那么 .故A不正确;
B选项,若 ,则 ,
又因为 ,所以前8项为正,从第9项开始为负,
因为 ,
所以使 的最大的 为15.故B正确;
C选项,若 , ,
则 , ,则 中 最大.故C正确;
D选项,若 ,则 ,而 ,不能判断 正负情况.故D不正确.
故选:BC.
【点睛】
本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.
A. B.