(完整版)全等三角形专题一
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
专题01 全等三角形(解析版)
2021-2022学年人教版数学八年级上册压轴题专题精选汇编专题01 全等三角形一.选择题1.(2020秋•东城区期末)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是( )A.20B.30C.50D.100【思路引导】根据角平分线的性质求出OE,最后用三角形的面积公式即可解答.【完整解答】解:过O作OE⊥AB于点E,∵BO平分∠ABC,OD⊥BC于点D,∴OE=OD=5,∴△AOB的面积=,故选:C.2.(2020秋•定西期末)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.4B.3C.2D.1【思路引导】根据垂线段最短得出当DP⊥BC时,DP的长最小,求出∠ABD=∠CBD,根据角平分线的性质得出此时DP=AD,再得出选项即可.【完整解答】解:当DP⊥BC时,DP的长最小,∵BD⊥CD,∴∠BDC=90°,∵∠A=90°,∠ADB=∠C,∠A+∠ADB+∠ABD=180°,∠BDC+∠C+∠CBD=180°,∴∠ABD=∠CBD,∵∠A=90°,∴当DP⊥BC时,DP=AD,∵AD=4,∴DP的最小值是4,故选:A.3.(2020秋•莫旗期末)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为( )A.8B.5C.4D.2【思路引导】过E作EP⊥BC于P,此时PE的值最小,求出AD⊥CD,根据角平分线的性质求出AE=DE=PE,求出AE的长即可.【完整解答】解:过E作EP⊥BC于P,此时PE的值最小,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BE和CE分别平分∠ABC和∠BCD,∴AE=PE,ED=PE,∴AE=ED=PE,∵AD=8,∴PE=4,即PE的最小值是4,故选:C.4.(2020秋•鞍山期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是( )A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE【思路引导】根据全等三角形的判定和性质解答即可.【完整解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.5.(2020秋•新宾县期末)如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是( )A.1B.2C.3D.4【思路引导】证明△ADC≌△ABE(SAS),可得出CD=BE,∠ADC=∠ABE,则得出∠DOB=50°,连接OA,过点A作AM⊥CD于点M,AN⊥BE于点N,证明△ABN≌△ADM(AAS),则可得出点A在∠DOE的平分线上.【完整解答】解:∵∠DAB=∠CAE=50°,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,在△ADC与△ABE中,,∴△ADC≌△ABE(SAS),∴CD=BE;故①,②正确;如图1,若AB与CD相交于点F,∵△ABE≌△ADC,∴∠ADC=∠ABE,∵∠AFD=∠CFB,∴∠DOB=∠DAB=50°.故③正确.如图2,连接OA,过点A作AM⊥CD于点M,AN⊥BE于点N,∴∠AMD=∠ANB=90°,∵△ABE≌△ADC,∴∠ABN=∠ADM,在△ABN和△ADM中,,∴△ABN≌△ADM(AAS),∴AN=AM,∴点A在∠DOE的平分线上.故④正确.故选:D.6.(2020秋•金昌期末)如图,AD是△ABC的角平分线,CE⊥AD,垂足为F.若∠CAB=30°,∠B=55°,则∠BDE的度数为( )A.35°B.40°C.45°D.50°【思路引导】根据三角形的内角和求出∠ACB=95°,利用三角形全等,求出DC=DE,再利用外角求出答案.【完整解答】解:∵∠CAB=30°,∠B=55°,∴∠ACB=180°﹣30°﹣55°=95°,∵CE⊥AD,∴∠AFC=∠AFE=90°,∵AD是△ABC的角平分线,∴∠CAD=∠EAD=×30°=15°,又∵AF=AF,∴△ACF≌△AEF(ASA)∴AC=AE,∵AD=AD,∠CAD=∠EAD,∴△ACD≌△AED(SAS),∴DC=DE,∴∠DCE=∠DEC,∵∠ACE=90°﹣15°=75°,∴∠DCE=∠DEC=∠ACB﹣∠ACE=95°﹣75°=20°,∴∠BDE=∠DCE+∠DEC=20°+20°=40°,故选:B.7.(2020秋•宜兴市期中)如图,在△ABC中,AB=4,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )A.B.C.D.【思路引导】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【完整解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=4,∴BH=2,AH=2,在Rt△AHC中,∠ACB=45°,∴AH=CH=2,∴AC===2,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,得矩形ENCK,∴CK=EN,∴AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为2,综上所述,AE+BF的最大值为2.故选:B.8.(2020秋•江岸区校级月考)如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D.31【思路引导】当点B在下面时,根据平移,对称,可得与△ABC全等的三角形有8个,包括△ABC,当点B在其它3条边上时,有3×8=24(个)三角形与△ABC全等,由此即可判断.【完整解答】解:当点B在下面时,根据平移,对称,可得与△ABC全等的三角形有8个,包括△ABC,当点B在其它3条边上时,有3×8=24(个)三角形与△ABC全等,∴一共有:8+24﹣1=31(个)三角形与△ABC全等,故选:D.二.填空题9.(2020秋•南岗区校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=5,则CH的长为 2 .【思路引导】先由AD⊥BC,CE⊥AB,判断出∠ADB=∠AEH=90°,再判断出∠BAD=∠BCE,进而判断出△HEA≌△BEC,得出AE=EC=5,即可得出结论.【完整解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=5,则CH=EC﹣EH=AE﹣EH=5﹣3=2.故答案为:2.10.(2020•松北区一模)在△ABC中,点D在AC上,AD=5,AB+AC=16,E是BD中点,∠ACB=∠ABC+2∠BCE,则CD= 2 .【思路引导】延长CE于F,使CE=EF,交AB于点G,根据SAS证明△BEF与△DEC全等,进而利用全等三角形的性质解答即可.【完整解答】解:延长CE于F,使CE=EF,交AB于点G,∵E是BD的中点,∴BE=DE,在△BEF与△DEC中,,∴△BEF≌△DEC(SAS),∴∠F=∠DCE,BF=DC,∵∠ACB=∠ABC+2∠BCE,∴∠DCE=∠ACB﹣∠BCE=∠ABC+∠BCE,∵∠AGC=∠ABC+∠BCE,∴∠AGC=∠DCE,∴∠F=∠DCE=∠AGC=∠BGF,AG=AC,∴BF=BG=CD,设BF=BG=CD=x,∵AD=5,AB+AC=16,∴,解得:x=2,∴CD=2,故答案为:2.11.(2020•荷塘区模拟)在△ABC中,若其内部的点P满足∠APB=∠BPC=∠CPA=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,PA=4,则△PAC的面积为 4 .【思路引导】如图,延长BP交AC于D,先说明△ABD是等腰直角三角形,△ADP是30°的直角三角形,可得PD和AD的长,根据费马点的定义可得∠APC=120°,从而可知△PDC也是30°的直角三角形,可得CD的长,根据三角形的面积公式可得结论.【完整解答】解:如图,延长BP交AC于D,∵∠BAC=∠PBA=45°,∴∠ADB=90°,AD=BD,∵P为△ABC的费马点,∴∠APB=∠CPA=120°,∴∠BAP=180°﹣120°﹣45°=15°,∴∠PAC=45°﹣15°=30°,∴∠APD=60°,Rt△PAD中,∵PA=4,∴PD=2,AD=2,∵∠APC=120°,∴∠CPD=120°﹣60°=60°,Rt△PDC中,∠PCD=30°,∴CD=2,∴AC=AD+CD=2+2=4,∴△PAC的面积为==4.故答案为:4.12.(2020秋•海珠区校级期中)如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG,△ADG 和△ADE的面积分别为50和39,则△EDF的面积为 5.5 .【思路引导】在线段AC上取一点M,使DM=DE,过点D作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【完整解答】解:如图,在线段AC上取一点M,使DM=DE,过点D作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG =S△ADG﹣S△ADM=50﹣39=11,∴S△DNM =S△EDF=S△MDG=×11=5.5.故答案是:5.5.13.(2020秋•青羊区校级月考)如图,在△ABC中,∠C=90°,D是AB中点,FD⊥ED于D,BE=,AF=,则EF= 3 .【思路引导】延长DE到H,使DH=DE,连接FH,先证△BED≌△AHD(SAS),得AH=BE,∠B=∠DAH,再求出∠FAH=90°,然后由勾股定理求出FH=3,最后由线段垂直平分线上的性质即可得出答案.【完整解答】解:如图,延长DE到H,使DH=DE,连接FH,∵D是AB中点,∴AD=BD,在△BED和△AHD中,,∴△BED≌△AHD(SAS),∴AH=BE=,∠B=∠DAH,∵∠C=90°,∴∠FAH=∠BAC+∠DAH=∠BAC+∠B=180°﹣90°=90°,由勾股定理得,FH===3,∵FD⊥ED,DE=DH,∴EF=FH=3,故答案为:3.14.(2020秋•温岭市期中)如图,AD是△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,给出下列结论:①DE=DF;②△ADF≌△ADE;③△ABD和△ACD的面积相等.其中正确结论的序号是 ①② .【思路引导】根据角平分线的性质和全等三角形的判定和性质解答即可.【完整解答】解:∵AD是△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DE=DF,故①正确;在Rt△ADF与Rt△ADE中,,∴Rt△ADF≌Rt△ADE(HL),故②正确;∵得不出AB=AC,∴△ABD和△ACD的面积无法判断相等,故③错误;故答案为:①②.15.(2019秋•南岗区校级月考)如图,在△ABC中,∠ACB=90°,点D在边AB上,AD=AC,点E在BC边上,CE=BD,过点E作EF⊥CD交AB于点F,若AF=2,BC=8,则DF的长为 4 .【思路引导】设∠BCD=α,延长AC到点G,使AG=AB,连接BG,延长EF和CA交于点H,根据已知条件证明△CEH≌△CGB,即可解决问题.【完整解答】解:设∠BCD=α,∵∠ACB=90°,∴∠ACD=90°﹣α,∵AD=AC,∴∠ADC=∠ACD=90°﹣α,∴∠CAB=180°﹣2∠ACD=2α,∴∠ABC=90°﹣2α,∵EF⊥CD,∴∠CKF=90°,∴∠DFK=90°﹣(90°﹣α)=α,∴∠CEF=90°﹣α,如图,延长AC到点G,使AG=AB,连接BG,∵AD=AC,∴CD∥GB,BD=CG=CE,∴∠GBC=∠BCD=α,∴∠G=90°﹣α,∴∠G=∠CEF,延长EF和CA交于点H,∴∠H=α=∠GBC,∵∠CAB=2α,∴∠AFH=α,∴∠H=∠AFH,∴AH=AF=2,在△CEH和△CGB中,,∴△CEH≌△CGB(ASA),∴CH=CB=8,∴DF=AD﹣AF=AC﹣AH=CH﹣2AH=8﹣4=4.故答案为:4.16.(2019秋•江汉区期中)如图,AB⊥CD于点E,且AB=CD=AC,若点I是△ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC=135°;②BD=BI;③S△AIC =S△BID;④IF⊥AC.其中正确的是 ①③④ (填序号).【思路引导】如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.利用全等三角形的判定和性质,平行四边形的判定和性质一一判断即可.【完整解答】解:如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.∵AB ⊥CD ,∴∠AEC =90°,∴∠EAC +∠ECA =90°,∴∠IAC +∠ICA =∠EAC +∠ECA =45°,∴∠AIC =180°﹣45°=135°,故①正确,∵AB =AC ,∠IAB =∠IAC ,AI =AI ,∴△AIB ≌△AIC (SAS ),∴∠AIB =∠AIC =135°,IA =ID ,∴∠BIC =360°﹣135°﹣135°=90°,同法可证:△ICA ≌△ICD (SAS ),∴∠AIC =∠CID =135°,IA =ID ,∴∠AID =360°﹣135°﹣135°=90°,∴∠DIB +∠AIC =180°,∵DF =FB ,IF =FG ,∴四边形IBGD 是平行四边形,∴ID =BG =AI ,ID ∥BG ,∴∠DIB +∠IBG =180°,∴∠AIC =∠IBG ,∵IA =ID ,IC =IB ,∴△AIC ≌△GBI (SAS ),∴∠GIB =∠ACI ,S △AIC =S △BGI =S 平行四边形DGBI =S △BDI ,故③正确,∵∠GIB +∠CIK =90°,∴∠CIK +∠ICK =90°,∴∠IKC =90°,即IF ⊥AC ,故④正确,不妨设BI =BD ,则△BDI 是等腰直角三角形,显然ID =IB ,即AI =IC ,显然题目不满足这个条件,故②错误.故答案为①③④.17.(2018秋•襄城县期末)如图,△ABC 的内角∠ABC 和外角∠ACD 的平分线相交于点E ,BE 交AC 于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有 ①③④ (将所有正确答案的序号填写在横线上).【思路引导】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=ACD,根据外角的性质即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论;④由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.【完整解答】解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,同理CH=HE,∴BG﹣CH=GE﹣EH=GH,故③正确.④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故④正确;故答案为:①③④.18.(2019秋•潍坊月考)如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5 .【思路引导】可通过作辅助线,即延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.【完整解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.三.解答题19.(2021春•铁岭月考)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连接DE.(1)若∠A=50°,∠B=70°,求∠BEC的度数;(2)若∠A=∠1,试说明∠CDE=∠DCE.【思路引导】(1)求出∠A+∠BCD=180°,求出∠BCD,求出∠BCE,根据三角形内角和定理求出即可;(2)根据三角形内角和定理和∠A+∠BCD=180°求出∠CDE=∠BCE,即可得出答案.【完整解答】解:(1)∵∠A+∠B+∠BCD+∠ADC=360°,∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD∴∠BCE=∠BCD=×130°=65°,∵∠B=70°,∴∠BEC=180°﹣65°﹣70°=45°,(2)证明:由(1)知∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.20.(2021•南岗区模拟)已知:点E,F在BC上,AF=DE,BE=CF,∠AFE=∠DEF.(1)如图1,求证:AB=CD;(2)如图2,连接AC,BD,AE,DF,在不添加任何辅助线的情况下,请直接写出图2中的四组平行线.【思路引导】(1)证△ABF≌△DCE(SAS),即可得出结论;(2)由全等三角形的性质得∠B=∠C,得AB∥CD,再证四边形ABDC是平行四边形,得AC∥BD,同理证出AF∥DE,AE∥DF.【完整解答】(1)证明:∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,∵∠AFE=∠DEF,∴∠AFB=∠DEC,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴AB=CD;(2)解:图2中的四组平行线为:AB∥CD,AC∥BD,AF∥DE,AE∥DF,理由如下:由(1)得:△ABF≌△DCE,∴AB=DC,∠B=∠C,∴AB∥CD,∴四边形ABDC是平行四边形,∴AC∥BD,∵∠AFE=∠DEF,∴AF∥DE,∵AF=DE,∴四边形AEDF是平行四边形,∴AE∥DF.21.(2020秋•来宾期末)如图,在五边形ABCDE中,AB=DE,AC=AD.(1)请你添加一个与角有关的条件,使得△ABC≌△DEA,并说明理由;(2)在(1)的条件下,若∠CAD =65°,∠B =110°,求∠BAE 的度数.【思路引导】(1)添加∠BAC =∠EDA ,根据SAS 即可判定两个三角形全等;(2)根据全等三角形对应角相等,运用三角形内角和定理,即可得到∠BAE 的度数.【完整解答】解:(1)添加一个角方面的条件为:∠BAC =∠EDA ,使得△ABC ≌△DEA ,理由如下:在△ABC 和△DEA 中,,∴△ABC ≌△DEA (SAS ),(2)在(1)的条件下,∵△ABC ≌△DEA ,∴∠ACB =∠DAE ,∵∠CAD =65°,∠B =110°,∴∠ACB +∠BAC =180°﹣∠B =70°,∴∠DAE +∠BAC =∠ACB +∠BAC =70°,∴∠BAE =∠DAE +∠BAC +∠CAD =70°+65°=135°.22.(2020秋•云南期末)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是152cm 2,AB =20cm ,AC =18cm ,求DE 的长.【思路引导】根据S △ABC =S △ABD +S △ACD ,再利用角平分线的性质即可解决问题.【完整解答】解:∵AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,∵S △ABC =S △ABD +S △ACD ,∴S △ABC =,∵△ABC 面积是152cm 2,AB =20cm ,AC =18cm ,∴152=,∴10DE +9DF =152,∵DE =DF ,∴19DE =152,∴DE =8.23.(2021春•萧山区月考)如图,在△ABC 中,OE ⊥AB 与点E ,OF ⊥AC 与点F ,且OE =OF .(1)如图①,当O 为BC 中点时,试说明AB =AC ;(2)如图②,当点O 在△ABC 内部,且OB =OC ,试判断AB 与AC 的关系.【思路引导】(1)证Rt △OBE ≌Rt △OCF (HL ),得∠B =∠C ,即可得出AB =AC ;(2)由等腰三角形的性质得∠OBC =∠OCB ,再证Rt △OBE ≌Rt △OCF (HL ),得∠ABO =∠ACO ,则∠ABC =∠ACB ,即可得出结论.【完整解答】(1)说明如下:∵O 为BC 中点,∴BO =CO ,∵OE ⊥AB ,OF ⊥AC ,∴∠OEB =∠OFC =90°,在Rt △OBE 和Rt △OCF 中,,∴Rt △OBE ≌Rt △OCF (HL ),∴∠B =∠C ,∴AB =AC ;(2)解:AB=AC,理由如下:∵OB=OC,∴∠OBC=∠OCB,∵OE⊥AB,OF⊥AC,∴∠OEB=∠OFC=90°,在Rt△OBE和Rt△OCF中,,∴Rt△OBE≌Rt△OCF(HL),∴∠ABO=∠ACO,∴∠ABC=∠ACB,∴AB=AC.24.(2021春•南山区校级期中)如图,在△ABC中,AB=AC=3,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC= 30° ,∠AED= 70° .(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【思路引导】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数;(2)当DC=3时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE,AE=AD三种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA 的度数.【完整解答】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=180°﹣110°﹣40°=30°,∵AB=AC,∴∠B=∠C=40°,∴∠AED=∠EDC+∠C=30°+40°=70°,故答案为:30°,70°;(2)当DC=3时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=3,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时,∵AD=DE,∠ADE=40°,∴∠DEA=∠DAE=70°,∵∠DEA=∠C+∠EDC,∴∠EDC=30°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°,若AE=DE时,∵AE=DE,∠ADE=40°,∴∠ADE=∠DAE=40°,∴∠AED=100°,∵∠DEA=∠C+∠EDC,∴∠EDC=60°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°,若AE=AD时,∠AED=∠ADE=40°,∠DAE=180°﹣40°﹣40°=100°,此时D与B重合,不合题意,舍去.综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形.25.(2021春•沂源县期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.【思路引导】(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt△DEB,根据全等三角形的性质定理得到答案;(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.【完整解答】证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB,∴CF=EB;(2)AF+BE=AE.∵Rt△DCF≌Rt△DEB,∴AC=AE,∴AF+FC=AE,即AF+BE=AE.26.(2020秋•腾冲市期末)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.【思路引导】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°﹣α,且∠DBA+∠BAD=180°﹣α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG 的中点.【完整解答】解:(1)如图1,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)DE=BD+CE.如图2,证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中..∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.27.(2020秋•大武口区期末)如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.【思路引导】(1)由∠1=∠2=∠3,可得∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,已知AC=AE,即可证得:△ABC≌△ADE;(2)由题意可得,∠ADB=∠ABD=4x,在△ABD中,可得x+4x+4x=180°,解答处即可;【完整解答】解:(1)∵∠1=∠2=∠3,∴∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∵∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵AE∥BC,∴∠E=∠3,∠DAE=∠ADB,∠2=∠C,又∵∠3=∠2=∠1,令∠E=x,则有:∠DAE=3x+x=4x=∠ADB,又∵由(1)得AD=AB,∠E=∠C,∴∠ABD=4x,∴在△ABD中有:x+4x+4x=180°,∴x=20°,∴∠E=∠C=20°.28.(2020秋•船营区期末)如图,太阳光线AC与A′C′是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由.【思路引导】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【完整解答】解:影子一样长.证明:∵AB⊥BC,A′B′⊥B′C′∴∠ABC=∠A′B′C′=90°∵AC∥A′C′∴∠ACB=∠A′C′B′在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS)∴BC=B′C′即影子一样长.。
完整版-全等三角形总复习教学课件
判定 到角的两边的距离相等的点在角平分线上 2
全等三角形的判定方法
三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
2024/9/30
3
三角形全等判定方法2
∴ △ABC≌△DEF(AAS)
2024/9/30
6
三角形全等判定方法5
有一条斜边和一条直角边对应相等的两个直角 三角形全等(HL)。
在Rt△ABC和Rt△DEF中
A
D
AB=DE (已知 ) AC=DF(已知 )
C ∴ △ABC≌△DEF(HL)
2024/9/30
B
F
E
7
知识点
1.全等三角形的性质: 对应边、对应角、对应线段相等, 周长、面积也相等。
A.1对 B.2对 C.3对 D.4对
2024/9/30
17
例3. 已知: AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
D
C
A
B
2024/9/30
18
▪例4:下面条件中, 不能证出Rt△ABC≌Rt△A' B'C'的是[ C] (A.)AC=A'C' , BC=B'C' (B.)AB=A'B' , AC=A'C' (C.) AB=B'C' , AC=A'C' (D.)∠B=∠B' , AB=A'B'
全等三角形的讲义整理讲义
全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
(完整版)全等三角形练习题及答案(一)
ir全等三角形练习一、填空题:1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是 .(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A´D´分别是锐角△ABC和△A´B´C´中BC与B´C´边上的高,且AB= A´B´,AD=A´D´,若使△ABC≌△A´B´C´,请你补充条件(只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.如图,等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.MNDCBAEDCBAHEDCBAB ′C ′D ′O ′A ′ODC BA(第1410.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A´B´C ´中,条件①AB =A´B´,②BC = B´C´,③AC=A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对D CBAn h18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为,你得到的一对全等三角形是 .∆∆≅(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF ,已知:EG ∥AF , = , = ,求证:证明:(第22题)ECD BAEA BD FC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)E DAC4321FB26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEB CD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)ACF BE ACFB图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 64.CD=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折6. 907. 10 8. 20º 9. 10. 4548-2二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE≌△ADE∠=、∠=、BDBCDABCABDECE=或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED=∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F,∠1=∠2所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF . (2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE . 证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB.图⑤ 即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE. 。
全等三角形判定专题一( 证明题 )
全等三角形判定专题一(证明题)1、如图,AC=AD,BC=BD,求证:AB平分∠CAD.2如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.3、如图,已知AB=AC,AD=AE.求证:BD=CE.4如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB 于E,请说明AE=BE.5、一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.6、已知:如图,AB=DC,AB∥DC,求证:AD=BC.7、如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.8、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.9、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.10、已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.11已知:如图,CB⊥AD,AE⊥DC,垂足分别B、E,AE、BC相交于点F,且AB=BC.求证:△ABF≌△CBD.12、如图,已知,△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.、13、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?14、已知:如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AE=CF;(2)AE∥CF.15、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.16:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。
完整版-全等三角形总复习
完整版-全等三角形总复习完整版全等三角形总复习全等三角形是初中数学中的重要内容,它不仅是几何证明的基础,也是解决许多实际问题的工具。
在这篇文章中,我们将对全等三角形进行一次全面的复习。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等三角形的形状和大小完全相同,对应边相等,对应角相等。
二、全等三角形的性质1、全等三角形的对应边相等。
比如,若△ABC ≌△DEF,则 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等。
例如,△ABC ≌△DEF 时,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等、面积相等。
三、全等三角形的判定1、“边边边”(SSS)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
2、“边角边”(SAS)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
3、“角边角”(ASA)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
4、“角角边”(AAS)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
5、“斜边、直角边”(HL)如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
四、全等三角形的常见模型1、平移型两个三角形沿着某一条直线平移,对应边平行且相等,对应角相等。
2、对称型两个三角形沿着某一条直线对称,对应边相等,对应角相等。
3、旋转型两个三角形绕着某一点旋转一定的角度,对应边相等,对应角相等。
五、证明全等三角形的步骤1、分析题目仔细阅读题目,找出已知条件和需要证明的结论。
2、确定方法根据已知条件和图形特点,选择合适的全等三角形判定方法。
3、书写证明按照逻辑顺序,清晰地书写证明过程,每一步都要有依据。
六、全等三角形的应用1、测量可以利用全等三角形测量无法直接测量的距离或长度。
2、证明线段和角的相等关系通过证明两个三角形全等,得出对应线段和角相等。
(完整版)全等三角形证明经典50题(含答案)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
专题01 全等三角形性质与判定
专题01全等三角形性质与判定考点一全等图形识别考点二利用全等图形求正方形网格中角度之和考点三全等三角形的概念考点四全等三角形的性质考点五用SSS证明三角形全等考点六用SAS证明三角形全等考点七用ASA证明三角形全等考点八用AAS证明三角形全等考点九用HL证明三角形全等考点一全等图形识别例题:(2022·湖北省直辖县级单位·八年级期末)下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形【变式训练】1.(2021·山东·东营市东营区实验中学七年级阶段练习)下列图形是全等图形的是()A.B.C.D.2.(2022·河北沧州·八年级期末)以下四组图形中,与如下图形全等的是()A.B.C.D.考点二利用全等图形求正方形网格中角度之和例题:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=()A.30°B.45°C.60°D.135°【变式训练】+=______ 1.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44´的正方形网格中,求a b度.2.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.考点三全等三角形的概念例题:(2021·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有( ) A.1个B.2个C.3个D.4个【变式训练】1.(2022·上海·七年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.说理过程如下:把△ABC放到△A′B′C′上,使点A与点A′重合,由于 = ,所以可以使点B与点B′重合.又因为 = ,所以射线 能落在射线 上,这时因为 = ,所以点 与 重合.这样△ABC 和△A ′B ′C ′重合,即△ABC ≌△A ′B ′C ′.考点四 全等三角形的性质例题:(2021·重庆大足·八年级期末)如图,ABC V 和DEF V 全等,且A D Ð=Ð,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定【变式训练】1.(2022·云南昆明·三模)如图,ABC DEF △≌△,若80,30A F Ð=°Ð=°,则B Ð的度数是( )A .80°B .70°C .65°D .60°2.(2022·上海·七年级专题练习)如图所示,D ,A ,E 在同一条直线上,BD ⊥DE 于D ,CE ⊥DE 于E ,且△ABD ≌△CAE ,AD =2cm ,BD =4cm ,求(1)DE 的长;(2)∠BAC 的度数.考点五 用SSS 证明三角形全等例题:(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB V V ≌;(2)判断AC 和BD 的位置关系,并说明理由.【变式训练】1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD =,AE DF =,CE BF =,连接AF ;(1)B Ð与C Ð相等吗?请说明理由.(2)若40B Ð=°,20Ð=DFC °,AF 平分BAE Ð时,求BAF Ð的度数.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.考点六 用SAS 证明三角形全等例题:(2022·福建省福州第十九中学模拟预测)如图,点O 是线段AB 的中点,∥OD BC 且OD BC =.求证:AOD OBC V V ≌.【变式训练】1.(2022·云南普洱·二模)如图,ABC V 和EFD V 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC DE =,//AB EF ,.AB EF =求证:BC FD =.2.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE .求证:△ABE ≌△DCF .考点七 用ASA 证明三角形全等例题:(2022·上海·七年级专题练习)已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE .【变式训练】1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ;(2)△ABC ≌△DCB .2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D Ð=Ð,AC DE =.(1)求证:ABC EAD @V V .(2)若60BCE Ð=°,求BAD Ð的度数.考点八 用AAS 证明三角形全等例题:(2022·上海·七年级专题练习)如图,已知BE 与CD 相交于点O ,且BO =CO ,∠ADC =∠AEB ,那么△BDO 与△CEO 全等吗?为什么?【变式训练】1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .2.(2022·全国·九年级专题练习)如图,D是△ABC的边AB上一点,CF//AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.考点九用HL证明三角形全等例题:(2022·四川省南充市白塔中学八年级阶段练习)如图,AB=CD,AE⊥BC于E,DF⊥BC于F,且BF=CE.(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.【变式训练】1.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠CAB=54°,求∠CAO的度数.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.一、选择题1.(2022·河北石家庄·八年级期末)观察下面的6组图形,其中是全等图形的有( )A.3组B.4组C.5组D.6组2.(2022·辽宁大连·八年级期末)如图,△AOC≌△DOB,AO=3,则下列线段长度正确的是( )A.AB=3B.BO=3C.DB=3D.DO=33.(2022·吉林长春·八年级期末)如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL判定△ABC≌△DEF的是( )A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF∥,点M是AD的中点,且MB=4.(2022·重庆长寿·八年级期末)如图,在四边形ABCD中,AD BCMC,若AD=4,AB=6,BC=8,则四边形ABCD的周长为()A.24B.26C.27D.28=,5.(2022·湖北随州·八年级期末)如图,△ABC中,P为AB上一点,Q为BC延长线上一点,且PA CQ过点P 作PM AC ⊥于点M ,过点Q 作QN AC ⊥交AC 的延长线于点N ,且PM QN =,连接PQ 交AC 边于点D ,则以下结论:①PD DQ =; ②AB BC =;③ABC V 为等边三角形;④12DM AC =.其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④二、填空题6.(2022·黑龙江佳木斯·八年级期末)如图,点D 在AB 上,点E 在AC 上,AB AC =,添加一个条件______,使ABE ACD △≌△(填一个即可).7.(2022·福建泉州·八年级期末)已知△ABC ≌ΔA ′B ′C ′,AB +AC =12,若ΔA ′B ′C ′的周长为22,则B ′C ′的长为 _____.8.(2021·江苏镇江·八年级期中)如图,若△ABC ≌△DEB ,点D 在线段AB 上,若DE =7,AC =5,则AD =____.9.(2022·福建福州·八年级期末)如图,已知∠CDE =90°,∠CAD =90°,BE ⊥AD 于B ,且DC =DE ,若BE =7,AB =4,则BD 的长为 _____.AD=,延长BC到点E,使10.(2022·江西萍乡·七年级期末)如图,在长方形ABCD中,4AB=,6CE=,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC—CD—DA向终点A运动,设点P的2V全等时,t的值为________.运动时间为t(秒),当ABP△和DCE三、解答题11.(2022·江苏·八年级)如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:AB DE∥.12.(2022·湖北省直辖县级单位·八年级期末)如图,已知:AB=AC,BD=CD,E为AD上一点.(1)求证:△ABD ≌△ACD ;(2)若∠BED =50°,求∠CED 的度数.13.(2022·山东东营·七年级期末)如图,已知∠A =90°,∠ADE =120°,BD 平分∠ADE ,AD =DE .(1)V BAD 与V BED 全等吗?请说明理由;(2)若DE =2,试求AC 的长.14.(2022·辽宁辽阳·七年级期末)如图,在ABC V 和DEF V 中,A ,F ,C ,D 在同一直线上,且AF CD =,A D Ð=Ð.(1)请你添加一个条件:_________,使ABC DEF △≌△;(只添一个即可)(2)根据(1)中你所添加的条件,试说明ABC DEF △≌△的理由.15.(2022·黑龙江哈尔滨·八年级期末)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,∠ACB =∠DFC,(1)求证:△ABC≌△DEF;(2)设AC与DE交于点G,当∠B=50°,∠F=70°时,求∠AGD的度数.16.(2021·河南洛阳·八年级期中)如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100°,∠C=50°,求∠AEB的度数.17.(2022·贵州铜仁·八年级期末)某校八年级数学兴趣小组的同学在研究三角形时,把两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC与BE的位置关系.18.(2022·湖南湘西·八年级期末)(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.。
(完整版)全等三角形的基础和经典例题含有答案
第十一章:全等三角形一、基础知识1.全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13—2就是全等图形图13-1图13—2(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13—3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(4)全等多边形的表示例如:图13—5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
图13—5表示图形的全等时,要把对应顶点写在对应的位置.(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别 (1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等.相似三角形的识别法中有一个与(SSS )全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS )全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.A BDC E B'A’ C ’D ’E’(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
(完整版)全等三角形题型归纳(经典完整)
1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。
专题01全等三角形(原卷版)
专题01 全等三角形知识点1:全等图形全等形:能够完全重合的两个图形叫做全等形。
(一)全等形的形状相同,大小相等,与图形所在的位置无关。
(二)两个全等形的面积一定相等,但面积相等的两个图形不一定是全等形。
(三)一个图形经过平移、翻折、旋转后,形状、大小都没有改变,只是位置发生了变化,即平移、翻折、旋转前后的图形全等。
知识点2:全等多边形(1)定义:能够完全重合的两个多边形叫做全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(2)性质:全等多边形的对应边相等,对应角相等.(3)判定:边、角分别对应相等的两个多边形全等.知识点3:全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.知识点4:全等三角形的判定方法(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.知识点5:全等三角形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.考点剖析1.(2023秋•太和县期中)下列各组图形,是全等图形的是()A.B.C.D.2.(2023秋•平原县期中)下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等3.(2023•东丽区一模)两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积4.(2022秋•东莞市期末)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形5.(2023秋•淮阳区期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.135°B.125°C.120°D.90°6.(2022秋•西乡塘区校级期末)下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.全部7.(2023秋•永泰县期中)如图,四边形ABCD与四边形A'B'C'D'是全等四边形,若∠A'=95°,∠B=75°,∠D'=130°,则∠C=.8.(2023秋•虞城县期中)如图,△ABC≌△CDA,AB=5,BC=8,AC=7,则AD的长是()A.5B.6C.7D.89.(2023秋•阜平县期中)如图,△ABC≌△ADE,点D在边BC上,下列结论不正确的是()A.AD=AB B.DE=BD+DC C.∠B=∠E D.∠BAD=∠CAE 10.(2023秋•丹江口市期中)如图,△ABC≌△AED,点D在BC边上.若∠EAD=85°,∠B=30°,则∠ADC的度数是()A.50°B.55°C.65°D.30°11.(2023秋•鹤庆县期中)如图,△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),若∠B=25°,∠C=45°,则∠D的度数为()A.110°B.105°C.100°D.90°12.(2022秋•长春期末)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.4012.(2023秋•文成县期中)如图,△ABC≌△DEF,BC=12,EC=7,则CF的长为()A.5B.6C.7D.813.(2023秋•天长市期中)如图,△ABD≌△ACE,BE=16,DE=10,则BC的长是()A.24B.20C.21D.2214.(2022秋•市中区期末)如图,已知△CAD≌△CBE,若∠A=30°,∠C=80°,则∠CEB =()A.50°B.60°C.70°D.80°15.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.516.(2023秋•琼中县期中)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE交于点F,△ADC≌△BDF,若BD=4,CD=2,则△ABC的面积为()A.24B.18C.12D.817.(2023秋•社旗县期中)如图所示的四个三角形中,全等的三角形是()A.①③B.①②C.②④D.①③④18.(2023秋•太和县期中)如图,AB∥DE,BC=EF.补充下列一个条件,不能使△ABC≌△DEF的是()A.AC=DF B.∠A=∠D C.AB=DE D.AC∥DF19.(2023秋•新和县期中)已知:如图,AB=DC,AE=BF,∠A=∠FBD,求证:△AEC ≌△BFD.20.(2023•咸阳一模)已知,如图,AB=AE,AB∥DE,∠ACB=∠D,求证:△ABC≌△EAD.21.(2023秋•曹县期中)如图,点F,C在BE上,BF=CE,AB=DE,∠B=∠E.求证:△ABC≌△DEF.22.(2022秋•祁阳县期末)已知,如图,∠1=∠2,∠C=∠D,BC=BD,求证:△ABD≌△EBC.23.(2023秋•建湖县期中)已知,如图,点D、E分别在AB、AC上,AD=AE,BE、CD相交于点O,∠B=∠C,求证:(1)△ABE≌△ACD;(2)△BOD≌△COE.24.(2022秋•汉阳区校级期末)如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.25.(2023春•渭滨区期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′26.(2023秋•疏勒县期中)已知:如图AD为△ABC的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:Rt△BFD≌Rt△ACD.27.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.28.(2023春•垦利区期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.29.(2022春•泾阳县期中)已知:如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.30.(2023秋•礼县期中)如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的有()A.1个B.2个C.3个D.4个31.(2023秋•临颍县期中)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°32.(2023秋•太和县期中)如图,在△ABC中,AB=AC,∠B=∠EDF,若BE=CD=1,BC=3,则CF的长为()A.1B.2C.3D.433.(2023秋•鹤庆县期中)已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为()A.2<AD<12B.5<AD<7C.1<AD<6D.2<AD<1034.(2023秋•辉县市期中)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,BD=6,CD=4,则线段AF的长度为()A.1B.2C.4D.635.(2023秋•应城市期中)如图,在△ABC和△CDE中,点B,C,E在同一条直线上,∠B=∠E=∠ACD,AC=CD,若AB=1,BE=4,则DE的长为()A.1B.2C.3D.436.(2022秋•阿荣旗期末)如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC,连接AD,若BC=8,则BD+DE等于()A.6B.7C.8D.937.(2022秋•和平区校级期末)如图所示,BC、AE是锐角△ABF的高,相交于点D,若AD =BF,AF=7,CF=2,则BD的长为()A.2B.3C.4D.538.(2023秋•京口区期中)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长.39.(2023秋•连山区期中)如图,点D在AC边上,∠A=∠B,AE=BE,∠1=∠2.(1)求证:△AEC≌△BED;(2)若∠1=45°,求∠BDE的度数.40.(2023秋•科尔沁区期中)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.41.(2023秋•合江县期中)如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.42.(2023秋•镇平县期中)一名工作人员不慎将一块三角形模具打碎成了如图所示的四块,他需要去商店再配一块与原来大小和形状完全相同的模具.现只能拿能两块去配,其中可以配出符合要求的模具的是()A.①③B.②④C.①④D.②③43.(2023秋•昭阳区期中)如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB=40°,然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA44.(2023春•龙岗区校级期末)如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.HL45.(2023•怀化三模)如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,点P在BE上,已知AP=PF,∠APF=90°.(1)求证:△ABP≌△PEF;(2)求BE的长.46.(2023秋•云梦县期中)在测量一个小口圆形容器的壁厚时(容器壁厚度均匀),小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,只需测得AB=a,EF=b,就可以知道圆形容器的壁厚了.(1)请你利用所学习的数学知识说明AB=CD;(2)若a=58.6mm,b=61.2mm,求出圆形容器的壁厚.47.(2023春•渠县校级期末)生活中的数学:(1)启迪中学计划为现初一学生暑期军训配备如图1所示的折叠凳,这样设计的折叠凳坐着舒适、稳定,这种设计所运用的数学原理是三角形具有稳定性.(2)图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD 的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,请说明AD=CB的理由.过关检测一.选择题(共10小题)1.(2023秋•巴东县期中)下列汽车标志中,是由多个全等图形组成的有()个.A.1B.2C.3D.42.(2023秋•沂南县期中)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为()A.30°B.31°C.32°D.33°3.(2022秋•海淀区校级期末)如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34°B.56°C.62°D.68°4.(2023秋•广陵区校级月考)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA 5.(2023秋•张北县期中)如图,要测量池塘A,B两端的距离,作线段AC与BD相交于点O.若AC=BD=8m,AO=DO,△COD的周长为14m,则A,B两点间的距离为()A.6m B.8m C.10m D.12m6.(2023秋•崆峒区校级期中)装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③D.④7.(2023秋•青秀区校级期中)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB'的中点.只要量出A′B′的长度.就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短8.(2022秋•正定县期末)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E9.(2023秋•丹阳市期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.5个D.6个10.(2022秋•灵宝市校级期末)现有一块如图所示的四边形草地ABCD,经测量,∠B=∠C,AB=10m,BC=8m,CD=12m,点E是AB边的中点.小狗汪汪从点B出发以2m/s的速度沿BC向点C跑,同时小狗妞妞从点C出发沿CD向点D跑,若能够在某一时刻使△BEP 与△CPQ全等,则妞妞的运动速度为()A.B.C.2m/s或D.2m/s或二.填空题(共5小题)11.(2023秋•武都区期中)如图,点A,D,C,E在一条直线上,AB∥EF,AB=EF,∠B =∠F,AE=10,AC=7,则CD的长为.12.(2023秋•招远市期中)如图,已知BD=CE,∠ADB=∠AEC,若AC=9,AE=2,则线段DC的长为.13.(2023秋•湖北期中)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别截取OM,ON,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB 的平分线.则△OMC≌△ONC的理由是.14.(2023秋•宁江区期中)如图,在△ABC中,CD平分∠ACB,过点B作BE⊥CD于点D,交AC于点E.已知∠ABE=∠A,AC=10,BC=6.则BD的长为.15.(2023春•文登区期中)如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ =AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP=时,△ABC 和△QP A全等.三.解答题(共3小题)16.(2023•工业园区校级模拟)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.17.(2023秋•南川区期中)如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若BD=8,DC=5,求ED的长.18.(2023春•周村区期末)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.。
全等三角形证明题(完整版)
全等三角形证明题全等三角形证明题第一篇:全等三角形证明题全等三角形证明题1在直角坐标系中,有两个点a△ab≌△aed;ob=oe .e8.如图,在△ab和△db中,ab = d,a = db,a与db交于点m.(1)求证:△ab≌△db ;(2)过点作n∥bd,过点b作bn∥a,n与bn交于点n,试判断线段bn与n的数量关系,并证明你的结论.bn9.在⊿ab中,∠b=60。
,∠ba和∠ba的平分线ad和f交于i 点。
试猜想:af、d、a三条线段之间有着怎样的数量关系,并加以证明。
10. 在?ab中,ab=a,de∥b.(1)试问?ade是否是等腰三角形,说明理由.(2)若m为de上的点,且bm平分?ab,m平分?ab,若?ade的周长20,b=8.求?ab的周长.amdeb11. 如图, 已知: 等腰rt△oab中,∠aob=900, 等腰rt△eof 中,∠eof=900, 连结ae、bf. 求证:ae=bf;ae⊥bf.1如图,△ab中,d是b的中点,过d点的直线gf交a于点f,交a的平行线bg于点g,de⊥gf交ab于点e,连接eg。
(1)求证:bg=f;(2)请你判断be+f与ef的大小关系,并证明。
13.如图:△ab和△ade是等边三角形.证明:bd=e.bg dabde14. 如图,一艘轮船从点a向正北方向航行,每小时航行15海里,小岛p在轮船的北偏西15°,3小时后轮船航行到点b,小岛p此时在轮船的北偏西30°方向,在小岛p的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由。
北b15.如图若直线ae绕a点旋转到图若直线ae绕a点旋转到图.a. 全等三角形周长相等b. 全等三角形能够完全重合. 形状相同的图形就是全等图形d.全等图形的形状和大小都相同9.如图,已知△ab ≌△def,且ab=4,b=5,a=6,则de的长为.a.4b.5c.6d.不能确定10.如图,若△oad≌△ob,且∠0=65°,∠=20°,则∠oad等于().a. 85°b. 95°c. 65°d.105°11. 如图,已知∠1=∠2,要使△ab≌△ade,还需条件().a. ab=ad,b=deb. b=de,a=ae. ∠b=∠d,∠=∠ed.a=ae,ab=adaeebdbfbd1如图,△ab≌△aef,ab=ae,∠b=∠e,则对于结论①a=af;②∠fab=∠eab;③ef=b;④∠eab=∠fa,其中正确结论的个数是().a. 1个b. 2个. 3个d. 4个13.如图,已知△ab中,ab=a,它的周长为24,又ad⊥b于d,△abd的周长为20,则ad的长为().a. 6b.8. 10d. 12三、证明题1.已知:如图点是ab的中点,d∥be,且d=be.求证:∠d=∠e.adbe、f是ab上的两点,ae=bf,又a∥db,且a=db.求证:f=de。
(完整版)全等三角形练习题(很经典)
第十二章 全等三角形第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等 B 。
面积相等的两个三角形全等 C 。
完全重合的两个三角形全等 D.所有的等边三角形全等2。
如图所示,a ,b ,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE≌△ACD ,∠1=∠2,∠B=∠C,下列不正确的等式是( )A 。
AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4。
在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5。
如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE≌△BCD B。
△BGC≌△AFC C 。
△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两第3题图第5题图第2题图第6题图ABCD点C,D ,使CD=BC ,再作出BF 的垂线DE,使A,C ,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( )A.边角边 B 。
角边角 C 。
边边边 D 。
边边角7。
已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC≌△CED D.∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A 。
专题01 全等三角形的性质与判定、应用(原卷版)
专题01 全等三角形的性质与判定、应用全等三角形的性质1.(2022秋•鄞州区校级期末)如图,△AOB≌△ADC,∠O=∠D=90°,记∠OAD=α,∠ABO =β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°2.(2022秋•嘉兴期末)如图,△ABC≌△DEF,若∠A=100°,∠F=47°,则∠E的度数为( )A.100°B.53°C.47°D.33°3.(2022秋•拱墅区期末)如图,△ABC≌△EFD,则下列说法错误的是( )A.FC=BD B.EF平行且等于ABC.∠B=∠ACB D.AC平行且等于DE4.(2021秋•青田县期末)如图,已知△ABC≌△DEF,B,E,C,F在同一条直线上.若BF=8cm,BE=2cm,则CE的长度( )cm.A.5B.4C.3D.25.(2022秋•仙居县期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F = °.6.(2022秋•宁波期末)如图,若△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠B = °.7.(2022秋•鄞州区校级期末)如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.全等三角形的判定8.(2022秋•丽水期末)如图,已知AB=DC,下列条件中,不能使△ABC≌△DCB的是( )A.AC=DB B.∠A=∠D=90°C.∠ABC=∠DCB D.∠ACB=∠DBC9.(2021秋•湖州期末)我国传统工艺中,油纸伞制作非常巧妙,其中蕴含着数学知识.如图是油纸伞的张开示意图,AE=AF,GE=GF,则△AEG≌△AFG的依据是( )A.SAS B.ASA C.AAS D.SSS10.(2022秋•鄞州区校级期末)如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是( )A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C11.(2022秋•鄞州区校级期末)下列所给条件中,能画出唯一的△ABC的是( )A.AC=3,AB=4,BC=8B.∠A=50°,∠B=30°,AB=10C.∠C=90°,AB=90D.AC=4,AB=5,∠B=60°12.(2022秋•新昌县期末)已知:如图,AC与DB相交于点O,∠1=∠2,∠A=∠D.求证:△AOB≌△DOC.13.(2022秋•镇海区校级期末)如图,在△ABC中,AC=AB,AD⊥BC,过点C作CE∥AB,∠BCE=70°,连接ED并延长ED交AB于点F.(1)求∠CAD的度数;(2)证明:△CDE≌△BDF;全等三角形的性质与判定14.(2022秋•江北区期末)如图,已知∠ABC,以点B为圆心,适当长为半径作弧,分别交AB,BC于P,D;作一条射线FE,以点F圆心,BD长为半径作弧l,交EF于点H;以H为圆心,PD长为半径作弧,交弧l于点Q;作射线FQ.这样可得∠QFE=∠ABC,其依据是( )A.SSS B.SAS C.ASA D.AAS15.(2023春•宁波期末)如图,△ABC的两条高AD和BF相交于点E,AD=BD=8,AC=10,AE=2,则BF的长为( )A.11.2B.11.5C.12.5D.1316.(2021秋•海曙区校级期末)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE 交AD于点F,AG平分∠DAC,给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论有( )个.A.2B.3C.4D.517.(2022秋•杭州期末)如图,在△ABC中,AB=AC,AD平分∠BAC,DF⊥AB于F点,DE⊥AC于点E,则下列四个结论:①AD上任意一点到AB,AC两边的距离相等;②AD⊥BC且BD=CD;③∠BDF=∠CDE;④AE=AF.其中正确的有( )A.②③B.①③C.①②④D.①②③④18.(2022秋•鄞州区校级期末)如图,已知△ABC和△CDE都是等腰直角三角形,∠EBD=50°,则∠AEB的度数为( )A.130°B.135°C.140°D.145°19.(2022秋•温州期末)如图,在等腰三角形ABC中,AD是底边BC上的高线,CE⊥AB于点E,交AD于点F,若∠BAC=45°,AF=6,则BD的长为 3 .20.(2022秋•拱墅区期末)已知,如图,点A、D、B、E在同一直线上,AC=EF,AD=BE,∠A =∠E,(1)求证:△ABC≌△EDF;(2)当∠C=90°,∠CBA=60°时,求∠E的度数.21.(2022秋•鄞州区期末)如图,已知△ABC和△ADE,AB=AD,∠BAD=∠CAE,∠B=∠D,AD与BC交于点P,点C在DE上.(1)求证:BC=DE;(2)若∠B=30°,∠APC=70°.①求∠E的度数;②求证:CP=CE.22.(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.全等三角形的应用23.(2021秋•临海市期末)如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯的水平长度DF相等,那么判定△ABC与△DEF全等的依据是( )A.HL B.ASA C.AAS D.SSS24.(2022秋•温州期末)如图是某纸伞截面示意图,伞柄AP平分两条伞骨所成的角∠BAC,AE=AF.若支杆DF需要更换,则所换长度应与哪一段长度相等( )A.BE B.AE C.DE D.DP25.(2022秋•金东区期末)如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样的玻璃,只需带到玻璃店( )A.①B.②C.③D.①、②、③其中任一块26.(2022秋•武义县期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.27.(2021秋•金华期末)如图,A,B两点分别位于一个池塘的两端,小明通过构造△ABC与△BCD 来测量A,B间的距离,其中AC=CD,∠ACB=∠BCD.那么量出的BD的长度就是AB的距离.请你判断小明这个方法正确与否,并给出相应理由.1.(2022秋•临海市期末)下列说法正确的是( )A.面积相等的两个三角形全等B.形状相同的两个三角形全等C.三个角分别相等的两个三角形全等D.斜边和一条直角边对应相等的两个直角三角形全等2.(2021秋•诸暨市期末)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB =25°,则∠ADC的度数是( )A.45°B.60°C.75°D.70°3.(2023春•镇海区校级期末)如图,已知△OAB≌△OA1B1,AB与A1O交于点C,AB与A1B1交于点D,则下列说法中错误的是( )A.∠A=∠A1B.AC=COC.OB=OB1D.∠A1DC=∠AOC4.(2022秋•江北区校级期末)如图,要测量池塘两岸相对的两点A,B的距离,小明在池塘外取AB的垂线BF上的点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长,依据是( )A.SSS B.SAS C.ASA D.HL5.(2022秋•义乌市校级期末)如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是 .6.(2021秋•西湖区期末)若△ABC≌△DEF,A与D,B与E分别是对应顶点,∠A=50°,∠B =60°,则∠F= °.7.(2021秋•海曙区期末)如图,AB=DB,∠1=∠2,要使△ABC≌△DBE还需添加一个条件是 .(只需写出一种情况)8.(2022秋•平湖市期末)如图,在等边三角形ABC的AC、BC边上各取一点P、Q,使AP=CQ,AQ、BP相交于点O,则∠POQ的度数为 .9.(2021秋•莲都区期末)如图,∠D=∠ACB=∠E=90°,AC=BC.求证:△ADC≌△CEB.10.(2021秋•临海市期末)如图,点B,E,C,F在同一条直线上,AB=DE,BE=CF,∠B=∠DEF.求证:△ABC≌△DEF.11.(2022秋•余姚市校级期末)在△ABC和△ADE中,AB=AD,∠1=∠2,∠E=∠C,求证:BC=DE.12.(2020•婺城区校级期末)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定二根木条AB、BC不动,AB=2cm,BC=5cm,量得木条CD=5cm,∠B=90°,写出木条AD的长度可能取得的一个值(直接写出一个即可)(3)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.。
(完整版)全等三角形证明经典50题(含答案)
1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延伸 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延伸 CD 与 P,使 D 为 CP 中点。
连结AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连结 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连结 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。
∵ ∠ ABC= ∠ AED 。
∴ ∠ABE= ∠ AEB 。
∴AB=AE 。
在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。
∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延伸线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 均分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延伸AB 取点 E,使 AE = AC ,连结 DE∵AD 均分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD∴AE = AB+BD∵AE = AB+BE∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 均分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连结 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 均分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF ∴AE =AF + FE=AD + BE12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别均分∠ ABC 、∠ BCD ,且点 E在AD 上。
全等三角形专题复习(含练习讲评)
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形专题一
全等三角形的定义及性质
1.如图,已知点A、B、C、D在同一条直线上,△AEC≌△DFB,如果AD=37,BC=15,那么AB 的长为()
A.10
B.11
C.12
D.13
2.已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1,
若两个三角形全等,则x= 。
3.一个三角形的三条边长分别为3,5,7,另一个三角形的三边长分别为3,3x-2y,x+2y,若这两个三角形全等,则x+y= 。
4.如图,已知△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D为AB的中点,点P在线段BC
上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A以a cm/s的速度运动,设运动时间为ts。
(1)求CP的长(用含t的式子表示);
(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B和∠C是对应角,求a的值。
5.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()
A.15︒
B.20︒
C.25︒
D.30︒
6.如图,△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25︒,
∠ACB=∠AED=105︒,∠DAC=10︒,则∠DFB为()
A.40︒
B.50︒
C.55︒
D.60︒
7.如图,已知BE是△ABC的高,P为BE延长线上一点,Q为BE上一点,△PAB≌△AQC,请猜想AP与AQ的位置关系,并证明你的结论。
8.如图,将△ABC绕点B旋转一定角度,得到△DBE,若∠AGF=20︒,∠ABE=3∠EBC,求
∠DBE的度数
9.如图,△ABC≌△ADE,BC的延长线过点E并交AD于点F,∠ACD=∠AED=105︒,∠CAD= 10︒,∠B=50︒,求∠DEF的度数。
SSS判定
1.如图,已知AB=AD,CB=CD,求证:∠ADC=∠ABC。
2.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,求证:
∠A=∠C。