第02课时 仰角、俯角、方位角

合集下载

九下数学课件仰角、俯角和方向角有关的问题(课件)

九下数学课件仰角、俯角和方向角有关的问题(课件)
坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为( D)
(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

《仰角、俯角问题》PPT课件 华师版

《仰角、俯角问题》PPT课件 华师版

45°,求旗杆的高度(精确到0.1m).
解:在等腰三角形BCD中∠ACD=90°
BC=DC=40m 在Rt△ACD中
tan ADC AC DC
AC tan ADC DC
tan 54 40 1.38 40 55.2
54°45°
D 40m
C
所以AB=AC-BC=55.2-40=15.2 答:旗杆的高度为15.2m.
当堂练习
1.如图1,在高出海平面100米的悬崖顶A处,观测海平面上 一艘小船B,并测得它的俯角为45°,则船与观测者之间的 水平距离BC=____1_0_0___米. 2.如图2,两建筑物AB和CD的水平距离为30米,从A点测得 D点的俯角为30°,测得C点的俯角为60°,则建筑物CD 的高为_2_0__3_米.
在图中,α=30°,β=60° Rt△ABD中,α=30°,AD=120,
αD Aβ
所以利用解直角三角形的知识求出
俯角
BD;类似地可以求出CD,进而求出BC.
C
解:如图,a = 30°,β= 60°, AD=120.
tan BD ,tan CD
AD
AD
BD AD tan 120 tan30
120 3 40 3 3
CD AD tan 120 tan 60
B
αD Aβ
120 3 120 3
BC BD CD 40 3 120 3
160 3 277 .1
C
答:这栋楼高约为277.1m
练一练
A
建筑物BC上有一旗杆AB,由距BC40m的D处观
B
察旗杆顶部A的仰角54°,观察底部B的仰角为
B 图1 C
B 图2 C
3.为测量松树AB的高度,一个人站在距松树15米的E处,测 得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确 到0.1米).

《第2课时仰角与俯角问题》示范教学方案

《第2课时仰角与俯角问题》示范教学方案

第23章解直角三角形23.2解直角三角形及其应用第2课时仰角与俯角问题一、教学目标1.使学生掌握仰角、俯角的概念,并学会正确地运用这些概念和解直角三角形的知识解决一些实际问题;2.让学生体验方程思想和数形结合思想在解直角三角形中的用途;3.使学生感知本节课与现实生活的密切联系,进一步认识到将数学知识运用于实践的意义.二、教学重点及难点重点:将实际问题转化为解直角三角形问题;难点:将实际问题中的数量关系如何转化为直角三角形中元素间的关系求解.三、教学用具多媒体课件.四、相关资料《解直角三角形应用举例》微课.五、教学过程【情景引入】南浦大桥建桥时为世界第三大斜拉桥,桥全长8346米,6车道,主塔高154米,塔柱中间,由两根高8米、宽7米的上下拱梁牢牢地连接着,呈“H”型.南浦大桥于1991年12月1日建成通车.南浦大桥横卧在黄浦江上,它使上海人圆了“一桥飞架黄浦江”的梦想.问题:南浦大桥主塔高154米,最高的一根钢索与桥面的夹角为30°,问最高的钢索有多长?追问:第二根钢索与桥面的夹角为35°,如何求第二根钢索的长呢?教师带领学生看题目.设计意图:从问题来引出今天的知识点,激发兴趣,增强学生的学习热情.【合作探究】操场上有一根旗杆,老师让小明去测量旗杆的高度,小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34°,并已知目高为1米.然后他很快就算出旗杆的高度了.请同学们思考这个问题,想想他是如何计算的.学生思考,讨论.教师找一生板演,并让他解释自己的思路.【探究新知】1.讲解.师:在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.教师在黑板上作图.师:当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线以下的角叫做俯角.注意:(1)仰角和俯角必须是视线与水平线所夹的角,而不是与铅垂线所夹的角;(2)仰角和俯角都是锐角.师:我们自己测量角时用什么工具啊?生:量角器.量:测量仰角、俯角也有专门的工具,是测角仪.【典型例题】如图,一学生要测量校园内一棵水杉树的高度.他站在距离水杉树8m的E处,测得树顶的仰角∠ACD=52°.已知测角器的架高CE=1.6m,问树高AB为多少米?(精确到0.1m)答案:在Rt △ACD 中,∠ACD =52°,CD =EB =8 m .AD =CD ·tan ∠ACD =8×tan 52°=8×1.2799≈10.2(m ).由DB =CE =16 m 得AB =AD +DB =10.2+1.6=11.8(m ).答:树高AB 为11.8 m .本图片是微课的首页截图,本微课资源通过讲解实例,进一步巩固解直角三角形的应用,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】解直角三角形应用举例.【新知应用】如图所示,为了测量山的高度AC ,在水平面B 处测得山顶A 的仰角为30°,AC ⊥BC ,自B 沿着BC 方向向前走1000m ,到达D 处,又测得山顶A 的仰角为45°,求山高.(结果保留根号)解析:要求AC ,无论是在Rt △ACD 中,还是在Rt △ABC 中,只有一个角的条件,因此这两个三角形都不能解,所以要用方程思想,先把AC 看成已知,用含AC 的代数式表示BC 和DC ,由BD =1000m 建立关于AC 的方程,从而求得AC .答案:在Rt △ABC 中,AC BC =tanB =tan 30°=33, ∴BC =3AC .在Rt △ACD 中,AC DC=tan ∠ADC =tan 45°=1,∴DC =AC .∴BD =BC -DC =3AC -AC =(3-1)AC =1000,∴AC =10003-1=500(3+1)(m ).答:山高为500(3+1)m .方法总结:在解直角三角形时,若仰角、俯角不是直角三角形的内角时,应利用已知条件将它转化为直角三角形的内角,再利用直角三角形的边角关系列方程求解.【随堂检测】1.如图,飞机A 在目标B 正上方1000m 处,飞行员测得地面目标C 的俯角为30°,则地面目标B ,C 之间的距离是________.解析:由题意可知,在Rt △ABC 中,∠B =90°,∠C =∠CAD =30°,AB =1000m ,∴BC =ABtan C =1000tan30°=10003(m ),故填10003m . 方法总结:解此类问题,首先要找到合适的直角三角形,然后根据已知条件解直角三角形.2.如图,某人站在楼顶观测对面笔直的旗杆AB ,已知观察点C 到旗杆的距离(CE 的长度)为8m ,测得旗杆顶的仰角∠ECA 为30°,旗杆底边的俯角∠ECB 为45°,那么,旗杆AB 的高度是( )A .(82+83)mB .(8+83)mC .(82+833)mD .(8+833)m 解析:由题意可知:在Rt △BCE 中,∵CE =8m ,∠ECB =45°,∠ACE =30°,∴BE =CE =8(m ),AE =EC ·tan ∠ACE =8×tan 30°=833(m ), ∴AB =AE +BE =(8+833)m .故选D . 方法总结:解此类问题,要作好辅助线,将问题分为仰角和俯角两个问题来解直角三角形.设计意图:通过学生练习,使教师及时了解学生对知识点的理解情况,以便教师及时对学生进行矫正.六、课堂小结解直角三角形的应用1.仰角问题2.俯角问题设计意图:将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识.七、板书设计23.2解直角三角形及其应用第2课时仰角与俯角问题。

仰角和俯角的意思

仰角和俯角的意思

仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。

在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。

本文将详细介绍仰角和俯角的概念、计算方法及实际应用。

1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。

在天文学中,仰角通常用于描述天体在天空中的位置。

在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。

2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。

假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。

如果B点比A点高,则仰角为90度减去俯角。

(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。

仰角=90度-天体高度角。

俯角=天体高度角。

(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。

无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。

2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。

(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。

三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。

飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。

在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。

在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。

地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。

3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。

天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。

四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。

方位角与仰俯角

方位角与仰俯角

测量设备
罗盘
罗盘是一种常用的测量方位角的 工具,通过磁针指示方向,可以
测量出目标物的方位角。
陀螺仪
陀螺仪可以测量出物体的仰俯角和 方位角,其原理是利用高速旋转的 陀螺在空间中的进动和自转来测量 角度。
全站仪
全站仪是一种集成了测距、测角、 数据处理等多种功能的测量仪器, 可以测量出目标物的三维坐标、仰 俯角和方位角等参数。
环境因素
环境因素如磁场干扰、温度变化等也会影响测量精度,需要在测量 时尽量减少这些因素的影响。
操作误差
操作人员的技能水平和经验也会影响测量精度,正确的操作方法和 熟练的操作技能可以提高测量精度。
05 2 3
定位目标
在军事领域,方位角和仰俯角是确定目标位置的 重要参数,有助于精确制导和射击。
导航
在复杂的地形和气象条件下,通过测量方位角和 仰俯角,可以确定军用车辆、飞机和舰艇的准确 位置,进行导航。
情报侦察
通过测量和分析不同地点的方位角和仰俯角,可 以获取敌方阵地、装备部署等信息,为军事决策 提供依据。
航空应用
飞行控制
01
在飞机导航和控制系统,方位角和仰俯角是重要的飞行参数,
用于确定飞行方向和高度,确保安全飞行。
方位角与仰俯角
目录
• 方位角 • 仰俯角 • 方位角与仰俯角的转换关系 • 方位角与仰俯角的测量工具 • 方位角与仰俯角的实际应用
01
方位角
定义
• 方位角:指从正北方向顺时针转到目标方向线的夹角,范围是 0°到360°。
计算方法
01
02
03
计算公式
方位角 = arctan((y坐标 值/x坐标值)×tan(北向角 度))。
在定位系统中的应用

方位角俯角仰角课件

方位角俯角仰角课件

从而
答:这根电线杆与这座楼的距离约为112m.
实际问题
建立几何模型
转化
B
数学问题
A
75° · D
C
1.5m 28.5m
解直角三角形
例3 : 如图,河对岸有一铁塔AB,测角器的高
度为1m,在C处测得塔顶A的仰角为30°,向塔前 进16m到达D,在D处测得塔顶A的仰角为45°, 求铁塔AB的高。 A 分析: 解决此题的关键是什么? 根据题意画出 几何模型
布置作业:
1、为了测量顶部不能到达的建筑物AB的高度,现在地 平面上取一点C,用测量仪器测得A点的仰角为45°,再向 前行走20m取一点D,使点D在BC的延长线上,此时测得 A点的仰角为30°,已知测角仪器的高为1.5m,求建筑物 A AB的高度。
F D
30º E
45º
G B
C
布置作业:
2、如图,在一座山的山顶处用高为1m的测角器望地面 C、D两点,测得俯角分别为60°和45° ,若已知DC长 为20m,求山高。
答: AC = 2400 tan 60
= 4157(m ) .
A B
图4-27
2400m
C
2、A港在B地的正南方10千米处,一艘轮船由A 港开出向西航行,某同学第一次在B处测得该 船在南偏西30°,半小时后又测得该船在南偏 西60°,求该船速度.
例2 如图4-26,在高为28.5m的楼顶平台D处,用仪 器测得一路灯电线杆底部B的俯角为 15 ,仪器高度 AD为1.5m.求这根电线杆与这座楼的距离BC(精确到 1m).
视线 铅 直 线 视线 仰角 俯角 水平线
例1 如图4-25,一艘游船在离开码头A后,以和河岸 成 30°角的方向行驶了500m到达B处,求B处与河岸 的距离.

仰角、俯角和方位角

仰角、俯角和方位角

变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
A
300
D 60° F x
E
30°
C
x
B
3、在山顶上D处有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
30米30°
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。
·
F
·
12
11
10
30°
9
B
·
如图, 海上有一灯塔P, 在它周围3海里内有 暗礁. 一艘客轮以9海里/时的速度由西向东 航行, 行至A点处测得P在它的北偏东60度的 方向, 继续行驶20分钟后, 到达B处又测得 灯塔P在它的北偏东45度方向. 问客轮不改变 方向继续前进有无触礁的危险?
问题的本质:

C
B
被观测点
这个问题归结为: 在Rt△ABC中,已知∠A= 60°, 斜边AB=30,求AC的长
问题本质是 直线与圆的关系
例2.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。

【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。

华师版九年级上册数学24.4 第2课时 仰角、俯角问题教案

华师版九年级上册数学24.4 第2课时 仰角、俯角问题教案

第2课时 仰角、俯角问题1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点) 2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)一、情境导入在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.二、合作探究探究点:利用仰(俯)角解决实际问题 【类型一】 利用仰角求高度星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A 处测得她看塔顶C 的仰角α为45°,小涛站在B 处测得塔顶C 的仰角β为30°,他们又测出A 、B 两点的距离为41.5m ,假设他们的眼睛离头顶都是10cm ,求塔高(结果保留根号).解析:设塔高为x m ,利用锐角三角函数关系得出PM 的长,再利用CPPN =tan30°,求出x 的值即可.解:设塔底面中心为O ,塔高x m ,MN ∥AB 与塔中轴线相交于点P ,得到△CPM 、△CPN 是直角三角形,则x -(1.6-0.1)PM =tan45°,∵tan45°=1,∴PM =CP =x -1.5.在Rt △CPN中,CP PN =tan30°,即x -1.5x -1.5+41.5=33,解得x =833+894.答:塔高为833+894m.方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.【类型二】 利用俯角求高度如图,在两建筑物之间有一旗杆EG ,高15米,从A 点经过旗杆顶部E 点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.若旗杆底部G 点为BC 的中点,求矮建筑物的高CD .解析:根据点G 是BC 的中点,可判断EG 是△ABC 的中位线,求出AB .在Rt △ABC 和Rt △AFD中,利用特殊角的三角函数值分别求出BC 、DF ,继而可求出CD 的长度.解:过点D 作DF ⊥AF 于点F ,∵点G 是BC 的中点,EG ∥AB ,∴EG 是△ABC 的中位线,∴AB =2EG =30m.在Rt △ABC 中,∵∠CAB =30°,∴BC =AB tan ∠BAC =30×33=103m.在Rt △AFD 中,∵AF =BC =103m ,∴FD =AF ·tan β=103×33=10m ,∴CD =AB -FD =30-10=20m.答:矮建筑物的高为20m.方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.【类型三】 利用俯角求不可到达的两点之间的距离如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约是多少m(精确到0.1m ,参考数据:2≈1.41,3≈1.73)?解析:在Rt △ACD 中,根据已知条件求出AC 的值,再在Rt △BCD 中,根据∠EDB =45°,求出BC =CD =21m ,最后根据AB =AC -BC ,代值计算即可.解:∵在Rt △ACD 中,CD =21m ,∠DAC =30°,∴AC =CD tan30°=2133=213m.∵在Rt △BCD 中,∠EDB =45°,∴∠DBC =45°,∴BC =CD =21m ,∴AB =AC -BC =213-21≈15.3(m).则河的宽度AB 约是15.3m.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,把实际问题化归为直角三角形中边角关系问题加以解决.【类型四】 仰角和俯角的综合某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12m 的建筑物CD 上的C 处观察,测得此建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1m ,可供选用的数据:2≈1.4,3≈1.7).解析:过点C 作AB 的垂线CE ,垂足为E ,根据题意可得出四边形CDBE 是正方形,再由BD =12m 可知BE =CE =12m ,由AE =CE ·tan30°得出AE 的长,进而可得出结论.解:过点C 作AB 的垂线,垂足为E ,∵CD ⊥BD ,AB ⊥BD ,∠ECB =45°,∴四边形CDBE 是正方形.∵BD =12m ,∴BE =CE =12m ,∴AE =CE ·tan30°=12×33=43(m),∴AB =43+12≈19(m).答:建筑物AB 的高为19m. 方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、板书设计1.仰角和俯角的概念; 2.利用仰角和俯角求高度;3.利用仰角和俯角求不可到达两点之间的距离; 4.仰角和俯角的综合.备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能真正提高课堂教学效率.。

数学九年级上册《仰角、俯角问题》课件

数学九年级上册《仰角、俯角问题》课件

视线

仰角

线
俯角
水平线
视线
2.梯形通常分解成矩形和直角三角形(或分解成平行 四边形与直角三角形)来处理.
3.认真阅读题目,把实际问题去掉情境转化为数学中 的几何问题.把四边形问题转化为特殊四边形(矩形或平 行四边形)与三角形来解决.
水平距离为120m,这栋高楼有多高(结果精确到0.1m).
分析:我们知道,在视线与水平线所 成的角中视线在水平线上方的是仰角,
仰角 水平线
B
视线在水平线下方的是俯角,因此,
在图中,α=30°,β=60° Rt△ABD中,α=30°,AD=120,
αD Aβ
所以利用解直角三角形的知识求出
俯角
BD;类似地可以求出CD,进而求出BC.
C
解:如图,a = 30°,β= 60°, AD=120.
tan BD ,tan CD
AD
AD
BD AD tan 120 tan30
120 3 40 3 3
CD AD tan 120 tan 60
B
αD Aβ
120 3 120 3
BC BD CD 40 3 120 3
B 图1 C
B 图2 C
3.为测量松树AB的高度,一个人站在距松树15米的E处,测 得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确 到0.1米).
A 解:依题意可知,在Rt∆ADC中
AD tanACD CD tan52 15 1.28015
19.2米
CLeabharlann DEB所以树高为19.2+1.72≈20.9(米)
24.4 解直角三角形
第2课时 仰角、俯角问题
学习目标

26方位角与仰俯角

26方位角与仰俯角
台山市李谭更开纪念中学数学组
高考第一轮复习
• 3、视角 视角:视线的夹角 如:人从点A看B、C两点的视角为∠BAC
C B
A
台山市李谭更开纪念中学数学组
高考第一轮复习
台山市李谭更开纪念中学数学组
高考第一轮复习
台山市李谭更开纪念中学数学组
高考第一轮复习
• 有一只蚂蚁,从A点出发沿北偏东35° 方向爬行了2.5cm到达B,接着又沿南偏 东25°方向爬行了3cm到达C,求它的位 移。
台山市李谭更开纪念中学数学组
高考第一轮复习
台山市李谭更开纪念中学数学组
高考第一轮复习
台山市李谭更开纪念中学数学组
高考第一轮复习
• 如图,某校的教室 A位于工地O的正西方向, 且OA=200m ,一台拖拉机从O点出发,以每秒 5m的速度沿北偏西53°方向行驶,设拖拉机的 噪声污染半径为130m,试问教室A是否在拖拉 机的噪声污染范围内?若不在,请说明理由; 若在,求出教室A受噪声污染的时间有几秒? • (已知:sin53°=0.80 ,sin37°=0.60 , tan37°=0.7数学组
高考第一轮复习 1. (人教A版教材习题改编)如图 3- 8- 2所示,已知两座灯塔 A和B与 海洋观察站C的距离都等于a km,灯 塔 A在观察站C的北偏东 20°,灯塔B 在观察站 C的南偏东40°,则灯塔A与 灯塔 B的距离为( ) A. a km B. 3a km
【解析】 °, ∴∠ACB=180°-75°-60°=45°, AC AB 又AB=2,由正弦定理,得 = ,故AC sin 60° sin 45° = 6. 在△ABC中,∠CAB=75°,∠CBA=60
【答案】
6
台山市李谭更开纪念中学数学组

方位角和俯仰角的取值范围

方位角和俯仰角的取值范围

方位角和俯仰角的取值范围
方位角和俯仰角是空间中位置和方向的两个重要参数。

方位角指
的是某一点相对于某一基准点的方向角度,通常用度数表示,数值范
围为0-360度。

在天文学中,方位角指的是某一恒星相对于地球观测
者的方向角度。

例如,在北半球,北极点的方位角为0度,东方的方
位角为90度,南方的方位角为180度,西方的方位角为270度。

俯仰角是指某一点或某一物体相对于水平面的仰角或俯角。

在天
文学中,俯仰角通常指的是天空中某一恒星或行星相对于地平线的仰
角或俯角。

俯仰角一般用度数表示,其数值范围为-90度到90度。

例如,在北半球观测到的天空中,天顶的俯仰角为90度,地平线的俯仰
角为0度,而南方的天空中某一星座的俯仰角则需要具体情况具体分析。

方位角和俯仰角的测量是天文学研究和定位的重要工具。

通过测
量一个天体的方位角和俯仰角,就可以确定其在天空中的位置。

同时,方位角和俯仰角也被广泛应用于导航、航空、地质、军事等领域。


实际使用过程中,为了避免混淆,通常将方位角和俯仰角分别用不同
的符号表示,例如方位角用“Az”表示,俯仰角用“Alt”表示。

这样
就方便人们在探索和研究天文学、地质学、军事等领域时更有效地使
用这些参数。

方位角和俯仰角的取值范围

方位角和俯仰角的取值范围

方位角和俯仰角的取值范围方位角和俯仰角是天文学中常用的两个角度参数,用于描述天体在天空中的位置。

方位角指的是天体相对于北极点的方向角度,俯仰角则是天体相对于地平面的高度角度。

在天文观测中,方位角和俯仰角的取值范围对于观测的准确性和有效性具有重要意义。

方位角的取值范围通常是0°到360°之间,以北极点为基准,顺时针方向为正。

北极点的方位角为0°,东方为90°,南方为180°,西方为270°。

在实际观测中,方位角的取值范围可以根据观测场地的位置和观测目标的运动轨迹进行调整。

例如,在地球表面观测行星运动时,方位角的取值范围会随着行星的位置和运动方向而变化。

俯仰角的取值范围通常是0°到90°之间,以地平面为基准,垂直于地面为正。

观测目标的俯仰角越高,其在天空中的位置就越高。

在实际观测中,俯仰角的取值范围也会随着观测场地的位置和观测目标的高度而变化。

例如,在赤道地区观测天体时,俯仰角的取值范围可以达到90°,而在北极地区观测时则可能只有20°左右。

方位角和俯仰角的取值范围对于天文观测的准确性和有效性具有重要意义。

首先,正确设置方位角和俯仰角的取值范围可以确保观测目标在天空中的位置被准确地确定和记录。

其次,合理地设置方位角和俯仰角的取值范围可以提高观测的效率和准确性,避免观测误差和重复观测的浪费。

最后,方位角和俯仰角的取值范围还可以帮助天文学家更好地理解天体在天空中的运动规律和变化趋势,为天文学研究提供更加准确和全面的数据支持。

综上所述,方位角和俯仰角是天文学中常用的两个角度参数,其取值范围对于天文观测的准确性和有效性具有重要意义。

正确设置方位角和俯仰角的取值范围可以确保观测结果的准确性和完整性,为天文学研究提供重要的数据支持。

冀教版九年级数学上册26.仰角、俯角、方向角课件

冀教版九年级数学上册26.仰角、俯角、方向角课件
P , C 在一条直线上,且 P 点到塔底 B 的距离比到树底 C 的距离多8米,
求塔高 AB . (结果精确到1米.参考数据: sin 37°≈0.60, cos 37°≈0.80,
tan 37°≈0.75,
≈1.73)
1
2
3
4
第1课时
仰角、俯角、方向角
知识梳

课时学业质量评价
解:如图,延长 CD 交 GH 于点 E ,延长 BA 交 GH 于点 F .
在Rt△BCD中,tan∠CBD=tan 60°=

1
= .
tan 60° 3


.
若设CD=x,则BD=
在Rt△ACD中,∠CAD=30,
CD 即 AD CD
tan

CAD

tan
30


所以
,
tan 30
AD
∵ AD BD
AB
, AB 30
40
20,
60
3x .
典例精讲
例1
如图所示,一艘渔船以30海里/时的速度由西向东航行.在A处
看见小岛C在船北偏东60°的方向上.40 min后,渔船行驶到B处,此
时小岛C在船北偏东30°的方向上.已知以小岛C为中心,10海里为
半径的范围内是多暗礁的危险区.如果这艘渔船继续向东航行,有
没有进入危险区的可能?
典例精讲
解: 如图所示,过点C作CD⊥AB,交AB的延长线于点D,则∠CBD=60°,
水平距离BC=_________米.
100
A
B
图①
C
当堂训练
2. 如图②,两建筑物AB和CD的水平距离为30米,从A点测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(5 分)如图,某地修建高速公路,要从 B 地向 C 地修一座隧道(B,
C 在同一水平面上),为了测量 B,C 两地之间的距离,某工程师乘坐热
气球从 C 地出发,垂直上升 100 m 到达 A 处,在 A 处观察 B 地俯角为
30°,则 B,C 两地之间的距离为( A )
A.100 3 m
B.50 2 m
一、选择题(每小题 6 分,共 12 分)
7.如图,从热气球 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
如果此时热气球 C 处的高度 CD 为 100 米,点 A,D,B 在同一直线上,
则 A,B 两点的距离是( D )
A.200 米
B.200 3 米
C.220 3 米
D.100( 3+1)米
CED=60°,sin∠CED=CCDE ,∴CE= sinC6D0°= 2
3+1.5 3 =(4+
3)
2
≈5.7(米),答:拉线CE的长约为5.7米
11.(14分)(2014·黔东南州)黔东南州某校九年级某班开展数学活 动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得 旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为 30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身 高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,
三、解答题(共42分) 10.(14分)(2014·钦州)如图,在电线杆CD上的C处引拉线CE,CF 固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米 的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30 °,求拉线CE的长.(结果保留小数点后一位,参考数据: 2 ≈ 1.414, 3≈1.732)
1.在进行测量时,从下向上看,视线与水平线的夹角
叫做 仰角;从上往下看,视线与水平线的夹角叫做 俯角 .
2.方位角:指北或指南方向线与目标方向线所成的小于 90°的水 平角,如图中的目标方向线 OA,OB,OC,OD 的方向角分别
表示 北偏东 60°, 南偏东 45°(或东南方向), 南偏西80°及 北偏西 30°.
4.(10 分)(2014·海南)如图,一艘核潜艇在海面 DF 下 600 米 A 点 处测得俯角为 30°正前方的海底 C 点处有黑匣子,继续在同一深度直 线航行 1464 米到 B 点处测得正前方 C 点处的俯角为 45°.求海底 C 点 处距离海面 DF 的深度.(结果精确到个位,参考数据: 2≈1.414, 3 ≈1.732, 5≈2.236)
,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=
10.3(m).答:旗杆的高EF为10.3 m
【综合运用】 12.(14分)(2014·河南)在中俄“海上联合-2014”反潜演习中, 我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1 000米的反潜直 升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平 面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈ 0.4,tan68°≈2.5, 3≈1.7)
解:过点 P 作 PC⊥AB,垂足为 C.由题意,得∠PAB=30 °,∠PBC=60°.∵∠PBC 是△APB 的一个外角,∴∠APB =∠PBC-∠PAB=30°.∴∠PAB=∠APB.故 AB=PB=400 米.在 Rt△PBC 中,∠PCB=90°,∠PBC=60°,PB=400, ∴PC=PB·sin60°=400× 23=200 3(米)
解:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C
的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=
x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=
AD tan∠ACD

tan3x0°= 3x,在Rt△BCD中,BD=CD·tan68°,∴1000+x= 3
参考数据: 2≈1.41, 3≈1.73)
解:过点A作AM⊥EF于M,过点C作CN⊥DE于N,∴MN=
0.25 m∵∠EAM=45°,∴AM=ME,设AM=ME=x m,则CN
=(x+6)m,EN=(x-0.25) m,∵∠ECN=30°,∴tan∠ECN=
EN CN

x-0.25 x+6

3 3
5.(5 分)如图,王英同学从 A 地沿北偏西 60°方向走 100 m 到 B
地,再从 B 地向正南方向走 200 m 到 C 地,此时王英同学离 A 地( D )
A.50 3 m B.100 m C.150 m D.100 3 m
6.(10分)如图,李明同学在东西方向的滨海路A处,测得海 中灯塔P在北偏东60°方向上,他向东走400米至B处,测得 灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结 果保留根号)
C.50 3 m
100 3 D. 3 m
2.(5 分)如图所示,在 300 m 高的峭壁上测得一塔的塔顶与塔基的
俯角分别为 30°和 45°,则塔高 CD 为(A )
A.(300-100 3) m
B.300 3 m
C.300 2 m
D.100 m
3.(5 分)(2014·百色)从一栋二层楼的楼顶点 A 处看对面的教学楼, 探测器显示,看到教学楼底部点 C 处的俯角为 45°,看到楼顶部点 D 处的仰角为 60°,已知两栋楼之间的水平距离为 6 米,则教学楼的高 CD 是 (6+6 3) 米.
解:作 CE⊥AB 于 E,依题意,AB=1464,∠EAC=30°, ∠CBE=45°,设 CE=x,则 BE=x,Rt△ACE 中,tan30°= CAEE=146x4+x= 33,整理得出:3x=1464 3+ 3x,解得:x= 732.( 3+1)≈2000 米,∴C 点深度=x+600=2600 米
x·tan68°,解得:x=
1000 3·tan68°-1

1000 1.7×2.5-1
-1≈308米,
∴潜艇C离开海平面的下潜深度面上一点 A 处测得塔顶 B 处的
仰角α=60°,在塔底 C 处测得 A 点俯角β=45°,已知塔高 60 米,
则山高 CD 等于( A )
A.30(1+ 3)米
B.30( 3-1)米
C.30 米
D.(30 3+1)米
二、填空题(每小题6分,共6分) 9.如图,港口A在观测站O的正东方向,OA=4 km,某船从港 口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测 站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的 长)为 2 2 km.
解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为
矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH
中,tan∠CAH=
CH AH
,∴CH=AH·tan∠CAH=6tan30°=6×
3 3
=2 3 (米),∵DH=1.5,∴CD=2 3 +1.5,在Rt△CDE中,∵∠
相关文档
最新文档