带电粒子在匀强磁场中的运动专题
高考物理带电粒子在磁场中的运动题20套(带答案)含解析
高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
带电粒子在匀强磁场中的运动
带电粒子在匀强磁场中的运动带电粒子在匀强磁场中的运动在带电粒子只受洛伦兹力作用、重力可以忽略的情况下,其在匀强磁场中有两种典型的运动:(1)若带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,其运动所需的向心力即洛伦兹力.可见T与v及r无关,只与B及粒子的比荷有关.荷质比q/m相同的粒子在同样的匀强磁场中,T,f和ω相同.(3)圆心的确定.因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和出磁场的两点)的f的方向,其延长线的交点即为圆心.(4)半径的确定和计算.圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.(5)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=θ/360°×T可求出运动时间.有时也用弧长与线速度的比.如图所示,注意到:①速度的偏向角ψ等于弧AB所对的圆心角θ.②偏向角ψ与弦切角α的关系为:ψ<180°,ψ=2α;ψ>180°,ψ=360°-2α;(6)注意圆周运动中有关对称规律如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.确定粒子在磁场中运动圆心的方法①已知粒子运动轨迹上两点的速度方向,作这两速度方向的垂线,交点即为圆心。
②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心。
③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心。
④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心。
带电粒子在匀强磁场中的运动
三、加速器(回旋加速器) 3、注意
1)交变电场的往复变化周期和粒子的运动周期T 相同,这样就可以保证粒子在每次经过交变电场 时都被加速
2)带电粒子每经电场加速一次,回旋半径就增大 一次,每次增加的动能为 E =qU
K
所以各次半径之比为 1 ∶ 2∶ 3∶ ... 3)带电粒子在回旋加速器中飞出的速度为
三、粒子加速器(直线加速)
为了认识原子核内部结构 方案一:利用电场加速
U m q
1 2 qU mv 2
v
2qU U m
可知电压越高,粒子获得的能量越 高,速度越大,但电压不可能无限制地 提高(为什么?)
方案二:多级电场加速
1 2 nqU mv 2
+
粒子
一级 二级 三级
+ ……
n级
世界上最大的直线加速器:
世界上最长的直线加速器位于美国斯坦福大 学一座毫不起眼的灰色建筑群内。美国斯坦 福大学直线加速器实验室的科学家们曾获得 过三次诺贝尔奖,他们目前正在收集首个科 学证据,通过对撞正电子与电子,证明宇宙 中的物质比反物质更多。这个庞然大物长约 3公里 。
美国斯坦福大学直线加速器
在直线加速器末端,600吨重的电磁石坐落在庞大的建筑物— —终端站A的地面,它被用来改变加速器射出的高能粒子束路 径。在磁铁工作时,电阻会产生大量热量,周围的橙色管起到 冷却、散热的作用。
一、带电粒子在匀强磁场中的运动 实验结论: 1.沿着与磁场垂直的方向射入磁场的带电粒子, 在匀强磁场中做 匀速圆周运动 2.洛伦兹力提供了带电粒子做匀速圆周运动所 需的 向心力 3.磁场强度不变,粒子射入的速度增加,轨道半 径 增大 4.粒子射入速度不变,磁场强度增大,轨道半径 减小
带电粒子在匀强磁场中的运动 课件
存在匀强磁场,磁感应强度大小为 B= 3 T ,方向垂直于纸面向里。一正离子 3
沿平行于金属板面,从 A 点垂直于磁场的方向射入平行金属板之间,沿直线射 出平行金属板之间的区域,并沿直径 CD 方向射入圆形磁场区域,最后从圆形区
【典型例题】(多选)如图所示,L1 和 L2 为平行虚线,L1 上方和 L2 下方有垂直纸面向里的 磁感应强度相同的匀强磁场,A、B 两点都在 L2 上。带电粒子 从 A 点以初速度 v 与 L2 成 30°角斜
向上射出,经偏转后正好过 B 点,经过 B 点时速度方向也斜向上,粒子重力不计。下列说法中正
只要带电粒子的速率满足 v=BE,即使电.性.不.同.,电.荷.不.同.,
也可沿直线穿出右侧小孔,而其他速率的粒子要么上偏,要么 下偏,无法穿出。因此利用这个装置可以用来选择某一速率的 带电粒子。
2.磁流体发电机 (1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能。 (2)根据左手定则,如下图中的B板是发电机正极。 (3)磁流体发电机两极板间的距离为d,等粒子体速度为v,磁场磁感应强度为B,则两极板间能 达到的最大电势差U=Bdv。
带电粒子在匀强磁场中的运动
★重难点一:带电粒子在匀强磁场中的运动★
带电粒子在匀强磁场中的运动 1.用洛伦兹力演示仪观察电子的轨迹
(1)不加磁场时,观察到电子束的径迹是直线. (2)加上匀强磁场时,让电子束垂直射入磁场, 观察到的电子径迹是圆周. (3)保持电子的出射速度不变,改变磁场的磁感 应强度,发现磁感应强度变大,圆形径迹的半径变小. (4)保持磁场的磁感应强度不变,改变电子的出 射速度,发现电子的出射速度越大,圆形径迹的半径越 大.
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
带电粒子在磁场中的运动问题专题
带电粒子在磁场中运动问题专题一、基本公式带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,原始方程:r mv qvB 2=,推导出的半径公式和周期公式:Bq m T Bq mv r π2,==或vr T π2=。
二、基本方法解决带电粒子在匀强磁场中做匀速圆周运动的问题,物理情景非常简单,难点在准确描绘出带电粒子的运动轨迹。
可以说画好了图就是成功的90%。
因此基本方法是作图,而作图的关键是找轨迹圆的圆心、轨迹圆的半径、充分利用直线与圆、圆与圆相交(相切)图形的对称性。
作图时先画圆心、半径,后画轨迹圆弧。
在准确作图的基础上,根据几何关系列方程求解。
例1.如图,直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30º角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(不考虑正、负电子间的相互作用)分析:正、负电子的轨道半径和周期相同,只是偏转方向相反。
先分析正电子:由左手定则知它的轨迹顺时针,半径与速度垂直,与MN 成60º,圆心一定在这条半径上;经过一段劣弧从磁场射出,由对称性,射出时速度方向也与MN 成30º角,因此对应的半径也与MN 成60º,由这两个半径方向就可以确定圆心O 1的位置;射入、射出点和圆心O 1恰好组成正三角形。
再分析电子:由对称性,电子初速度对应的半径方向与正电子恰好反向,它的射入、射出点和圆心O 2组成与ΔO 1ON 全等的正三角形ΔO 2OM ,画出这个三角形,最后画出电子的轨迹圆弧。
由几何关系不难得出:两个射出点相距2r , 经历时间相差2T /3。
三、带电粒子射入条形匀强磁场区⑴质量m ,电荷量q 的带正电粒子,以垂直于边界的速度射入磁感应强度为B ,宽度为L 的匀强磁场区。
讨论各种可能的情况。
①速率足够大的能够穿越该磁场区(临界速度对应的半径为L )。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
(完整版)带电粒子在匀强磁场中的运动专题
带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。
2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。
3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。
例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。
现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。
一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。
粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。
不计重力。
求M点到O点的距离和粒子在磁场中运动的时间。
二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。
如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。
2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。
如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。
3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。
带电粒子在磁场中运动解题方法及经典例题
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
专题 带电粒子在有界匀强磁场中运动的多解问题
量为m,电量为q的带正电粒子(不计重力),
从左边极板间中点处垂直磁场以速度v平行极板
Lv
射入磁场,欲使粒子不打在极板上,则入射速
+q , m
B
度v应满足什么条件?
L 原因3.临界状态不唯一形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
原因1.磁场方向不确定形成多解
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题 的原因?
例2. 如图,在第I象限范围内有垂直xOy平面的匀强磁场B。质量为
m、电量大小为q的带电粒子(不计重力),在xOy平面里经原点O射
入磁场中,初速度为v0,且与x轴成60º角,
y
试分析计算:
B
带电粒子在磁场中运动时间多长?
60º v
原因2.带电粒子电性不确定形成多解
60º
O 120º
x
任务二 带电粒子在有界匀强磁场中运动的多解问题
思考:造成带电粒子在有界匀强磁场中运动的多解问题
的原因?
O
例3.如图,长为L的水平不带电极板间有垂直纸
面向内的匀强磁场B,板间距离也为L,现有质
例4.如图所示,边长为l的等边三角形ACD内、外分布着方向相反
的匀强磁场,磁感应强度大小均为B。顶点A处有一粒子源,能沿
∠CAD的平分线方向发射不同速度的粒子,粒子质量均为m,电
荷量均为+q,不计粒子重力。则粒子以下列
哪一速度发射时不能通过D点
qBl A. 4m
qBl B. 2m
√3qBl Cபைடு நூலகம் 4m
例1.如图所示,A点的粒子源在纸面内沿垂直OQ方向向上射出一束带负 电荷的粒子,粒子重力忽略不计.为把这束粒子约束在OP之下的区域, 可在∠POQ之间加垂直纸面的匀强磁场.已知OA间的距离为s,粒子比荷 为 q/m ,粒子运动的速率为v,OP与OQ间夹角为30°.则所加磁场的磁感 应强度B满足条件?
带电粒子在匀强磁场中的运动(含各种情况)
回旋加速器
回旋加速器是一种利用磁场和电场控制带电粒子运动轨迹的装置,常用于高能物理 实验和核物理研究。
在回旋加速器中,带电粒子在磁场中做匀速圆周运动,通过改变电场强度使粒子不 断加速,最终获得高能粒子束。
回旋加速器在高能物理实验中用于研究基本粒子的性质和相互作用,对于深入理解 物质的基本结构和性质具有重要意义。
带电粒子在磁场中的偏转角度和偏转量
总结词
带电粒子在匀强磁场中的偏转角度和偏 转量取决于粒子的速度、质量和磁感应 强度。
VS
详细描述
带电粒子在匀强磁场中的偏转角度和偏转 量可以通过洛伦兹力公式和牛顿第二定律 计算得出。具体计算需要考虑粒子的速度 、质量和磁感应强度等因素。
04 带电粒子在匀强磁场中的 能量问题
1 2 3
匀速圆周运动
当带电粒子以一定的速度进入匀强磁场时,会受 到洛伦兹力的作用,使粒子做匀速圆周运动。
螺旋线运动
当带电粒子的速度方向与磁感应强度平行时,不 受洛伦兹力作用,粒子将沿磁感应强度方向做等 距螺旋线运动。
匀速直线运动
当带电粒子的速度方向与磁感应强度平行且大小 相等时,不受洛伦兹力作用,粒子将沿磁感应强 度方向做匀速直线运动。
详细描述
带电粒子在匀强磁场中做匀速圆周运动的周期T和频率f由公式T=2πm/qB和f=qB/2πm决定,其中m为粒 子的质量,q为粒子的电荷量,B为磁感应强度。这两个公式描述了粒子运动的周期和频率与各个物理量 之间的关系。
03 带电粒子在匀强磁场中的 偏转问题
垂直射入情况
总结词
当带电粒子以垂直方向射入匀强磁场 时,将做匀速圆周运动。
THANKS FOR WATCHING
感谢您的观看
线运动,从而实现带电粒子的加速。
专题12 带电粒子在磁场中的运动-2023年高考物理大题限时集训(解析版)
专题12带电粒子在磁场中的运动【例题】如图所示,直线MN 上方有垂直纸面向外的匀强磁场,磁感应强度2T B =。
两带有等量异种电荷的粒子,同时从O 点以相同速度6110m/s v =⨯射入磁场,速度方向与MN 成30°角。
已知粒子的质量均为236.410kg m -=⨯,电荷量-163.210C q =⨯,不计粒子的重力及两粒子间相互作用力,求:(1)它们从磁场中射出时相距多远?(2)射出的时间差是多少?【答案】(1)0.2m ;(2)7410s 3π-⨯【解析】(1)易知正、负电子偏转方向相反,做匀速圆周运动的半径相同,均设为r ,根据牛顿第二定律有2v qvB m r=解得0.1m mv r qB==作出运动轨迹如图所示,根据几何关系可得它们从磁场中射出时相距220.2m mv d r qB===(2)正、负电子运动的周期均为72210s r T vππ-==⨯根据几何关系可知正、负电子转过的圆心角分别为60°和300°,所以射出的时间差是7410s 3603t T θπ-︒∆∆==⨯1.带电粒子在有界匀强磁场中的运动(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角.(如图,θ1=θ2=θ3)(2)圆形边界(进、出磁场具有对称性)①沿径向射入必沿径向射出,如图所示.②不沿径向射入时.射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的夹角也为θ,如图所示.2.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.3.多解问题题目描述的条件不具体,存在多解的可能性,常见的多解原因有:(1)磁场方向不确定形成多解;(2)带电粒子电性不确定形成多解;(3)速度不确定形成多解;(4)运动的周期性形成多解.【变式训练】如图所示,矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度的大小为25.010T B -=⨯,矩形区域长为235,宽为0.2m 。
专题7带电粒子在直线边界匀强磁场中的运动(解析版)
专题七 带电粒子在直线边界匀强磁场中的运动基本知识点 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,作这两速度方向的垂线,交点即为圆心,如图所示。
(2)已知粒子轨迹上的两点和其中一点的速度方向时,画出粒子轨迹上的两点连线(即过这两点的圆的弦),作它的中垂线,并画出已知点的速度方向的垂线,则弦的中垂线与速度方向的垂线的交点即为圆心,如图所示。
2.三种求半径的方法 (1)根据半径公式r =m vqB求解。
(2)根据勾股定理求解,如图所示,若已知出射点相对于入射点侧移了x ,则满足r 2=d 2+(r -x )2。
(3)根据三角函数求解,如图所示,若已知出射速度方向与入射方向的夹角为θ,磁场的宽度为d ,则有关系式r =dsin θ。
3.四种角度关系 (1)如图所示,速度的偏向角(φ)等于圆心角(α)。
(2)圆心角α等于AB 弦与速度方向的夹角(弦切角θ)的2倍(φ=α=2θ=ωt )。
(3)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(4)进出同一直线边界时速度方向与该直线边界的夹角相等。
4.两种求时间的方法(1)利用圆心角求解,若求出这部分圆弧对应的圆心角,则t =θ2πT 。
(2)利用弧长s 和速度v 求解,t =sv 。
5.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.6.带电粒子的电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正负粒子在磁场中运动轨迹不同,导致多解。
如图所示,带电粒子以速率v垂直进入匀强磁场,若带正电,其轨迹为a;若带负电,其轨迹为b.7.磁场方向的不确定形成多解磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,而未说明磁感应强度的方向,则应考虑因磁场方向不确定而导致的多解。
《带电粒子在有界匀强磁场中的运动》课件
思考:o1为线段EF的中点吗?
m t Bq
θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
v
o
圆心在磁场原边界上 B
d
B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
v v v v
M
d
B N
带电粒子沿逆时针方向做半径相同的匀速圆周运动,如果从 下板进入场区的带电粒子不从板间穿出,则这些正电荷就都 不从板间穿出.
eBd 3eBd v 2m m
2.如图所示,一足够长的矩形区域abcd内充满方向垂 直纸面向里的、磁感应强度为B的匀强磁场,在ad边 中点O方向垂直磁场射入一速度方向跟ad边夹角 θ=300 、大小为v0的带电粒子,已知粒子质量为m、 电量为q,ab边足够长,ad边长为L,粒子的重力不 计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。 ⑵.如果带电粒子不受上述v0大小范围的限制,求粒子 在磁场中运动的最长时间。 b a
5L L 2 r2 r L (r ) 4 2 qBr2 5qBL 5qBL v2 v m 4m 4m
拓展:一大群这种带电粒子沿平行于板的方向从各个 位置以速度v从金属板的左端射入板间,为了使这些正 电荷都不从板间穿出,这些带电粒子的速度需满足什 么条件?
5d
+ + + +
穿透磁场时的速度与电子原来的入射方向的夹
角为300.求: (1)电子的质量 m (2)电子在磁场中的运动时间t B e v
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。
2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。
3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。
例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。
现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。
一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。
粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。
不计重力。
求M点到O点的距离和粒子在磁场中运动的时间。
二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。
如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。
2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。
如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。
3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。
4.运动的周期性形成多解带电粒子在部分是电场,部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示。
例题3、如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点。
一个带正电的粒子仅在洛伦兹力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场。
现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向,以大小不同的速率射入正方形内,粒子重力不计。
那么下列说法中正确的是( ) A .若该带电粒子从ab 边射出,它经历的时间可能为t 0 B .若该带电粒子从bc 边射出,它经历的时间可能为5t 03C .若该带电粒子从cd 边射出,它经历的时间为5t 03D .若该带电粒子从ad 边射出,它经历的时间可能为2t 03 例题4、如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向。
有一群正离子在t =0时垂直于M 板从小孔O 射入磁场。
已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响。
求: (1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值。
练习:1、如图所示,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外。
一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2。
已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( ) A.qBR 2m B.qBR m C.3qBR 2m D.2qBR m2、两个质量相同、所带电荷量相等的带电粒子a 、b ,以不同的速率对准圆心O 沿着AO 方向射入圆形匀强磁场区域,其运动轨迹如图所示。
若不计粒子的重力,则下列说法正确的是( )A .a 粒子带正电,b 粒子带负电B .a 粒子在磁场中所受洛伦兹力较大3、如图所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S 。
某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场。
已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时间为( )A.T 3B.T 2C.2T 3D.5T 64、如图所示,在第二象限和第四象限的正方形区域内分别存在着两匀强磁场,磁感应强度均为B ,方向相反,且都垂直于xOy 平面。
一电子由P (-d ,d )点,沿x 轴正方向射入磁场区域Ⅰ(电子质量为m ,电量为e ,sin 53°=0.8)。
(1)求电子能从第三象限射出的入射速度v 的范围;(2)若电子从⎝ ⎛⎭⎪⎫0,d 2位置射出,求电子在磁场Ⅰ中运动的时间t ;(3)求第(2)问中电子离开磁场Ⅱ时的位置坐标。
三、带电粒子在复合场中的运动 1.复合场与组合场(1)复合场:电场、磁场、重力场共存,或其中某两场共存。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或在同一区域,电场、磁场分时间段或分区域交替出现。
2.带电粒子在复合场、组合场中的常见运动静止或匀速 直线运动 当带电粒子在复合场中所受合力为零时,将处于静止状态或匀速直线运动状态匀速圆 周运动 当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动较复杂的 曲线运动 当带电粒子所受合力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况3、带电粒子在复合场中运动的应用实例装置原理图规律质谱仪粒子由静止被加速电场加速12mv2=qU,粒子在磁场中做匀速圆周运动qvB=mv2r,则比荷qm=2UB2r2回旋加速器交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动过程中每次经过D形盒缝隙都会被加速。
由qvB=mv2r得E km=q2B2r22m速度选择器若qv0B=Eq,即v0=EB,粒子做匀速直线运动磁流体发电机等离子体射入,受洛伦兹力偏转,使两极板带正、负电,两极电压为U时稳定,qUd=qv0B,U=Bdv0电磁流量计UDq=qvB,所以v=UDB,所以Q=vS=UDBπ⎝⎛⎭⎪⎫D2 2霍尔效应当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现电势差4、带电粒子在组合场中的运动:“电偏转”和“磁偏转”的比较内容项目垂直进入磁场(磁偏转) 垂直进入电场(电偏转) 情景图受力F B=qv0B大小不变,方向总指向圆心,方向变化,F B为变力F E=qE,F E大小、方向不变,为恒力运动规律匀速圆周运动r=mv0Bq,T=2πmBq类平抛运动v x=v0,v y=Eqmt,x=v0t,Eq2运动时间t=θ2πT=θmBqt=Lv0动能不变变化例题1、如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。
一带电荷量为+q、质量为m 的粒子,自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场。
以后仅保留磁场。
已知OP=d,OQ=2d,不计粒子重力。
(1)求粒子过Q点时速度的大小和方向。
(2)若磁感应强度的大小为一确定值B0,粒子将以垂直y轴的方向进入第二象限,求B0;(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q 点时相同,求该粒子相邻两次经过Q点所用的时间。
例题2、如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里。
结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处距A点2d(AG⊥AC)。
不计离子重力,离子运动轨迹在纸面内。
求:(1)此离子在磁场中做圆周运动的半径r;(2)离子从D处运动到G处所需时间;(3)离子到达G处时的动能。
5、带电粒子在复合场中的运动(1)是否考虑粒子重力①对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与静电力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。
②在题目中有明确说明是否要考虑重力的,按题目要求处理。
③不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
(2)带电粒子在复合场中运动的三种情况①当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解。
②当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解。
例题3、如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上。
两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。
将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v0、带相等电荷量的墨滴。
调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点。
(1)判断墨滴所带电荷的种类,并求其电荷量;(2)求磁感应强度B的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置。
为了使墨滴仍能到达下板M点,应将磁感应强度调至B′,则B′的大小为多少?例题4、如图所示,与水平面成37°的倾斜轨道AC,其延长线在D点与半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上)。
一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为v C=1007m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8)。