多项式乘以多项式课件.ppt
合集下载
多项式与多项式相乘课件
![多项式与多项式相乘课件](https://img.taocdn.com/s3/m/bd136d5625c52cc58bd6beab.png)
(3)结合刚才(2)中的图形,你能用不同的形式 表示这个图形的面积吗?并进行比较。
观察归纳
(m+a)(n+b)=
mn + mb + an + ab
多项式与多项式相乘的运算法则
先用一个多项式的每一项乘另 一个多项式的每一项(带符号) 再把所得的积相加。
1、已知(5x 2)(2x a) 10 x2 6x b,求a,b的值.
§1.4 整式的乘法
第三课时
多项式与多项式相乘
a(n+b)
(m+a)(n+b)=?
如何计算?
自主探究
1、代数法
(m+a)(n+b)=? (m+a)(n+b)= (m+a)n +(m+a)b
=mn+mb + an+ab
自主探究
2、几何面积法
(1)如果mn表示长、宽分别为m和n的长方形 的面积,那么(m+a)(n+b)的几何意义是什么? (2)你能画出(m+a)(n+b)对应的几何图形?试一试
运用多项式乘法法则,要有 序地逐项相乘,不要漏乘, 并注意项的符号.
最后的计算结果要化简 ̄ ̄ ̄ 合并同类项.
作业
P19 习题 1.8
1题
2、在x2 px 8与x2 3x q的积中不含x3与x项, 求p, q的值。
2.试一试,计算: (a+b+c)(c+d+e)
注意!
1.计算(2a+b)2应该这样做
(2a+b)2=(2a+b)(2a+b)
切记 一般情况下
观察归纳
(m+a)(n+b)=
mn + mb + an + ab
多项式与多项式相乘的运算法则
先用一个多项式的每一项乘另 一个多项式的每一项(带符号) 再把所得的积相加。
1、已知(5x 2)(2x a) 10 x2 6x b,求a,b的值.
§1.4 整式的乘法
第三课时
多项式与多项式相乘
a(n+b)
(m+a)(n+b)=?
如何计算?
自主探究
1、代数法
(m+a)(n+b)=? (m+a)(n+b)= (m+a)n +(m+a)b
=mn+mb + an+ab
自主探究
2、几何面积法
(1)如果mn表示长、宽分别为m和n的长方形 的面积,那么(m+a)(n+b)的几何意义是什么? (2)你能画出(m+a)(n+b)对应的几何图形?试一试
运用多项式乘法法则,要有 序地逐项相乘,不要漏乘, 并注意项的符号.
最后的计算结果要化简 ̄ ̄ ̄ 合并同类项.
作业
P19 习题 1.8
1题
2、在x2 px 8与x2 3x q的积中不含x3与x项, 求p, q的值。
2.试一试,计算: (a+b+c)(c+d+e)
注意!
1.计算(2a+b)2应该这样做
(2a+b)2=(2a+b)(2a+b)
切记 一般情况下
《多项式乘以多项式》整式的乘除与因式分解PPT课件 (共12张PPT)
![《多项式乘以多项式》整式的乘除与因式分解PPT课件 (共12张PPT)](https://img.taocdn.com/s3/m/ce454e448e9951e79b89276d.png)
练习: (1) (2x+1)(x+3); (2) 2 (3) ( a - 1) ; (4) (5) (x+2)(x+3); (6) (7) (y+4)(y-2); (8)
(m+2n)(m+ 3n): (a+3b)(a –3b ). (x-4)(x+1) (y-5)(y-3)
(x+2)(x+3) = 5x+6; 2 (x-4)(x+1) = x – 3x-4 2 (y+4)(y-2) = y + 2y-8 2 (y-5)(y-3). = y - 8y+15 观察上述式子,你可以 得出一个什么规律吗? 2 (x+p)(x+q) = x + (p+q) x + p q
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
七年级数学下册第一章课件:多项式乘以多项式
![七年级数学下册第一章课件:多项式乘以多项式](https://img.taocdn.com/s3/m/13b64d3a59eef8c75fbfb3f9.png)
B )
4.(福州中考)计算:(x-1)(x+2)的结果是 x2+x-2 的面积是 xy-x+y-1
5.将一个长为 x,宽为 y 的长方形的长增加 1,宽减少 1,得到的新长方形 .
6.计算: (1)(2a+3b)(3a-b); (2)(-2m-1)(3m-2).
解:(1)原式=6a2+7ab-3b2; (2)原式=-6m2+m+2.
第一章 整式的乘除
4
整式的乘法
第3课时
多项式乘以多项式
多项式乘以多项式. 【例 1】计算: (1)(x+1)(x2-x+1); (2)(a-b)(a2+ab+b2).
【思路分析】用二项式 x+1 的每一项去乘以三项式 x2-x+1 的每一项,再 把积相加即可.
【规范解答】 (1)原式=x3-x2+x+x2-x+1=x3-x2+x2+x-x+1=x3+1;
解:a2+7a+12;a2+a-12;a2-a-12;a2-7a+12;(1)x2+(p+q)x+pq; (2)①x2-3016x+2016000;②x2-4015x+4030000;
(3)
11.若等式(x-5)(x-7)=x2-mx+35 成立,则 m 的值为 12 12.若(ax+3y)(x-y)的展开式不含 xy 项,则 a 的值为 3 .
13.如图,正方形卡片 A 类、B 类和长方形卡片 C 类若干张,如果要拼一 个长为(a+2b),宽为(a+b)的大长方形,那么需要 C 类卡片 3 张.
14.计算: (1)(3x+4)(2x-1); (2)(x+7)(x-6)-(x-2)(x+1).
解:(1)原式=6x2+5x-4; (2)原式=2x-40.
15.先化简,再求值: 3x(2x+1)-(2x+3)(x-5),其中 x=-2.
沪科版数学七年级下册多项式与多项式相乘课件
![沪科版数学七年级下册多项式与多项式相乘课件](https://img.taocdn.com/s3/m/018eb90c76232f60ddccda38376baf1ffd4fe315.png)
跟我学
例 6 计算:
(1)(ax+b)(cx;
解:(1)(ax b)(cx d ) ax • cx ax • d b • cx b • d acx2 (ad bc)x bd
跟我学
(2)(2x 1)(3x 2) (2x) • 3x (2x) • (2) (1) • 3x (1) • (2) 6x2 4x 3x 2 6x2 x 2
分析与比较
视察这几个式子:
(a+b)(m+n) (a+b)m+(a+b)n a(m+n)+b(m+n) am+an+bm+bn
你能说出它们有何关系吗?
分析与比较
可以发现:
(a+b)(m+n) = (a+b)m+(a+b)n = a(m+n)+b(m+n) = am+an+bm+bn
由此你能得到什么启示?
长方形的面积,再求总面积。扩大后菜
地的面积为 :(a+b)m + (a+b)n
探究与思考
问题3 一块长方形的菜地,长为a,宽为m。 现将它的长增加b,宽增加n,求扩大后的菜 地的面积。
n a(m+n)
b(m+n)
m
a
b
算法四:如图所示,分别求出图中两个
长方形的面积,再求总面积。扩大后菜
地的面积为 : a(m+n) + b(m+n)
地的面积。
an
bn
n
m am
bm
a
b
算法二:先算4块小矩形的面积,再求总面积。扩
PPT教学课件多项式与多项式相乘
![PPT教学课件多项式与多项式相乘](https://img.taocdn.com/s3/m/20de63debed5b9f3f80f1ca7.png)
依据图中标注的 C
a- b
数据,计算绿地的
面积?(a>b)
a+b
2.求不等式(3 x+4)(3x–4)>9(x –2)(x +3) 的正整数解.
2.求长方体的体积?(a>b)
a-b a+b
a+2b
长方体
今天我们学习了什么?你有哪些收获?
多项式与多项式相乘的内容在课本第26页~ 第27页,请同学们课后认真阅读,记住所学的法
代表作:“三吏” “三别” 石壕吏 杜甫
暮投石壕村,有吏夜捉人。老翁逾墙走,老妇出门看。
吏呼一何怒,妇啼一何苦。听妇前致词:“三男邺城戍。
一男附书至,二男新战死。存者且偷生,死者长已矣。
室中更无人,惟有乳下孙。有孙母未去,出入无完裙。
老妪力虽衰,请从吏夜归。急应河阳役,犹得备晨炊。
夜久语声绝,如闻泣幽咽。天明登前途,独与老翁别。
1
2
3
4
积相加得:x·5a+x·3b+2y·5a+2y·3b
解:(x+2y)(5a+3b) = x ·5a +x ·3b +2y ·5a +2y ·3b
=5ax +3bx +10ay +6by
(2) (2x–3)(x+4) ;
1
2
拆分成多个单项式:(2x,-3)(x,4)
3
4
按法则算得:2x·x, 2x·4, -3·x , -3·4
《诗经》和楚辞
• 屈原和楚辞:
– 屈原是我国古代的伟 大诗人,在我国文学 史上占有崇高的地位, 也是世界文化名人之 一
路漫漫其修远兮, 吾将上下而求索
八年级数学多项式乘以多项式优秀课件
![八年级数学多项式乘以多项式优秀课件](https://img.taocdn.com/s3/m/8515deef03d8ce2f0166238c.png)
例二 小丽设计了两幅邮票,第一幅的宽是m,长比宽多x厘米,第二 幅的宽是第一幅的长,且第二幅的长比宽多2x厘米。 〔1〕求第一幅邮票的面积; 〔2〕第二幅比第一幅的面积大多少? 解:〔1〕第一幅邮票宽是m厘米,那么长是m+x厘米;
∴其面积为:m(m+x)=m2+mx (2) 由题意知:第二幅邮票的宽是〔m+x〕厘米,那么长 是m+3x厘米 。 ∴〔m+x〕(m+3x)-(m2+mx) =3mx+3x2
(m+b)·〔n+a〕=mn+ma+bn+ba
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
运用法那么时注意:
拓展研学:
例一计算 〔1〕(3x+1) (x+2)
解:原式=3x·x+3x·2+1·x+1+1×2 =3x2+6x+x+2 =3x2+7x+2
〔2〕(x-8y) (x-y)
解:原式=x·x+x·(-y)+(-8y)·x+(-8y)·(-y) =x2-xy-8xy+8y2 =x2-9xy+8y2
〔3〕(x+y) (x2-xy+y2) 解:原式(x=3x+·xx22+x-·2(-)xy)+x·y2+y·x2+y·(-xy)+y·y2
=x3-x2y+xy2+x2y-xy2+y3 =x3+y3
D.(m+2)(3m+6)=3m2+6m+12 a=-4,b=16,c=-15;
∴其面积为:m(m+x)=m2+mx (2) 由题意知:第二幅邮票的宽是〔m+x〕厘米,那么长 是m+3x厘米 。 ∴〔m+x〕(m+3x)-(m2+mx) =3mx+3x2
(m+b)·〔n+a〕=mn+ma+bn+ba
多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
运用法那么时注意:
拓展研学:
例一计算 〔1〕(3x+1) (x+2)
解:原式=3x·x+3x·2+1·x+1+1×2 =3x2+6x+x+2 =3x2+7x+2
〔2〕(x-8y) (x-y)
解:原式=x·x+x·(-y)+(-8y)·x+(-8y)·(-y) =x2-xy-8xy+8y2 =x2-9xy+8y2
〔3〕(x+y) (x2-xy+y2) 解:原式(x=3x+·xx22+x-·2(-)xy)+x·y2+y·x2+y·(-xy)+y·y2
=x3-x2y+xy2+x2y-xy2+y3 =x3+y3
D.(m+2)(3m+6)=3m2+6m+12 a=-4,b=16,c=-15;
多项式的乘法——多项式乘多项式(课件)-七年级数学下册(浙教版)
![多项式的乘法——多项式乘多项式(课件)-七年级数学下册(浙教版)](https://img.taocdn.com/s3/m/ecc1dffe250c844769eae009581b6bd97f19bc83.png)
解:原式=2x 2 -4x+6-(x-1)(x-1)
解:原式=2x 2 -4x-3x+6-(x2-12)
=2x 2 -4x+6-(x 2 -2x+1) =2x 2 -4x+6-x 2 +2x-1
3x =x2 -2x+5
=2x 2 -7x+6-x 2 +1
(x 1)(x 1)
=x 2 -7x +7
(x2 2x 1)
【归纳总结】 (x+a)(x+b)型多项式乘法的技巧 先算两头(确定二次项与常数项),再算中间(确定一次项).确定一次项系数时,
特别要注意符号.
例3 用如图所示的正方形和长方形卡片若干张,拼成一个长为 2a+b 、
宽为 a+3b 的长方形,需要A类卡片
张,B类卡片
张,C类
卡片
张
点拨:S=(2a+b)(a+3b)=2a2+7ab+3b2 ∴需要A类卡片2张,B类卡片7张,C类卡片3张
解:不正确.错因:在运算过程中,漏乘了(-3)×(-2). 正解:原式=4m·3m+(-3)·3m+4m·(-2)+(-3)×(-2)=12m2-17m+6.
课堂小结
谢谢
【归纳总结】多项式乘多项式法则图示 多项式×多项式
=单项式1×单项式3 + 单项式1×单项式4 + 单项式2×单项式3 + 单项式2×单项式4.
例 2 先化简,再求值:x(x+2)-(x+1)(x-1),其中 x=-12.
[解析] 先将式子利用整式乘法展开,合并同类项化简,然后再代入计算.
解:原式=x2+2x-(x2-x+x-1)=x2+2x-(x2-1)=x2+2x-x2+1=2x+1. 当 x=-12时,原式=2×-12+1=-1+1=0.
多项式乘以多项式PPT课件
![多项式乘以多项式PPT课件](https://img.taocdn.com/s3/m/b51f30c6f46527d3250ce0a2.png)
多项式的乘法法则
多项式与多项式相乘, 先用一个 多项式的每一项乘以另一个多项式 的每一项, 再把所得的积相加.
2020年10月2日
3
例题教学
(1) (x+2y)(3a+2b)
解:原式= (x·3a) + (x·2b)+ (2y·3a) + (2y·2b)
=3ax+2bx+6ay+4by
(2) (2x–3)(x+4)
+(3y·(-xy) )+( 3y·2y )
2
=-2x3 +2x2y-4xy2+3x2y-3xy2+6y3
=-2x3 +5x2y-7xy2+6y3
2020年10月2日
5
展示风采
(1) (2a–3b)(a+5b) ;
(2) (xy–z)(2xy+z) ;
(3) (x–1)(x2+x+1) ;
2020年10月2日
解:原式= (2x·x) + (2x·4) + (-3·x) + (-3·4)
=2x2+8x+(-3x)+(-12)
=2x2+5x-12
2020年10月2日
4
(3) (-2x+3y)(x2-xy+2y2) 解:原式= (-2x·x2)+( -2x ·(-xy) )+(-2x·2y2 )+( 3y·x2 )
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
八年级数学课件多项式乘以多项式(2)特殊的乘法公式
![八年级数学课件多项式乘以多项式(2)特殊的乘法公式](https://img.taocdn.com/s3/m/e2b09d3f172ded630a1cb64e.png)
(3)(m 2)(m 1) (4)(a 2)(a 3)
36
54
练习2:计算
(1)(a 6)(a 6)
(2)( x 1 )2 2
例2
确定下列各式中m的值:
(1) (x+4)(x+9) = x2 + m x + 36 (1) m =13
(2) (x-2)(x-18) = x2+ m x + 36 (2) m = - 20
观察上述式子,你可以 得出一 个什么规律吗?
探究 计算下面式子的积:
(x p)(x q) x2 qx px pq x2 ( p q)x pq
你能得出什么规律?
xp
x x2
q
px 长为(x+p) 宽为 (x+q)
S = (x+ p) (x +q)
s x2 px qx pq
3.常数项为两常数之积;
例1:计算
(1)(x 1)(x 2) (2)(x 2)(x 3)
(1)解:原式 x2 (1 2)x 1 2 x2 3x 2
(2)解:原式 x2 [2 (3)]x 2 (3) x2 x 6
练习1:计算
(1)(x 6)(x 3) (2)(x 5)(x 2)
一、知识回顾 1、单项式乘以多项式的法则 m(a+b+c)=ma+mb+mc
2、多项式乘以多项式的法则 (a+b)(m+n)=am+an+bm+bn
计算:
(x+2)(x+3) = x2 5x 6
(x-4)(x+1) = x2 3x 4
(y+4)(y-2) = y2 2 y 8 (y-5)(y-3) =y2 8y 15
课件:8.2.5 多项式与多项式相乘
![课件:8.2.5 多项式与多项式相乘](https://img.taocdn.com/s3/m/2962bee8bb68a98270fefa84.png)
=am+bm+an+bn. (a+b)(m+n)=am+bm+an+bn.
1.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与 另一个多项式的每一项相乘,再把所得的积相加. 用字母表示为:(a+b)(m+n)=am+bm+an+bn.
要点精析: (1)该法则的本质是将多项式乘多项式最终转化为几个
总结
多项式与多项式相乘,为了做到不重不漏,可
以用“箭头法”标注求解.如计算
3
x
3 4
2x
1 4
时,可在草稿纸上进行如下标注:
根据箭头指示,结合对象,即可得到-3x·2x,
3x
1 4
,43
2x,3 4
1 4
,把各项相加,继续求解
即可.
1 计算:(1)(x+2)(x+4)-x(x+1)-8; (2)(3x+2y)(2x+3y)-(x-3y)(3x+4y); (3)(3x2+2x+1)(2x2+3x-1).
试求
1 4
a2
1 2
ab
b2
1 2
a
b
的值;
2 已知x2-4x-1=0,求代数式(2x+2)(x-3)-(x+
y)(x-3y)-y(2x+3y)的值.
3 若(x-1)(x+3)=x2+mx+n,那么m,n的值分别是
() A.m=1,n=3 C.m=4,n=5
B.m=2,n=-3 D.m=-2,n=3
例2 先化简,再求值: (x-2y)(x+3y)-(2x-y)(x-4y),其中:x=-1,y=2.
导引:先分别对两组多项式相乘,并将第二个多项式乘以 多项式的结果先用括号括起来,再去括号,最后再 合并同类项.
解: 原式=x2+3xy-2xy-6y2-(2x2-8xy-xy+4y2) =x2+xy-6y2-(2x2-9xy+4y2) =x2+xy-6y2-2x2+9xy-4y2 =-x2+10xy-10y2.
1.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与 另一个多项式的每一项相乘,再把所得的积相加. 用字母表示为:(a+b)(m+n)=am+bm+an+bn.
要点精析: (1)该法则的本质是将多项式乘多项式最终转化为几个
总结
多项式与多项式相乘,为了做到不重不漏,可
以用“箭头法”标注求解.如计算
3
x
3 4
2x
1 4
时,可在草稿纸上进行如下标注:
根据箭头指示,结合对象,即可得到-3x·2x,
3x
1 4
,43
2x,3 4
1 4
,把各项相加,继续求解
即可.
1 计算:(1)(x+2)(x+4)-x(x+1)-8; (2)(3x+2y)(2x+3y)-(x-3y)(3x+4y); (3)(3x2+2x+1)(2x2+3x-1).
试求
1 4
a2
1 2
ab
b2
1 2
a
b
的值;
2 已知x2-4x-1=0,求代数式(2x+2)(x-3)-(x+
y)(x-3y)-y(2x+3y)的值.
3 若(x-1)(x+3)=x2+mx+n,那么m,n的值分别是
() A.m=1,n=3 C.m=4,n=5
B.m=2,n=-3 D.m=-2,n=3
例2 先化简,再求值: (x-2y)(x+3y)-(2x-y)(x-4y),其中:x=-1,y=2.
导引:先分别对两组多项式相乘,并将第二个多项式乘以 多项式的结果先用括号括起来,再去括号,最后再 合并同类项.
解: 原式=x2+3xy-2xy-6y2-(2x2-8xy-xy+4y2) =x2+xy-6y2-(2x2-9xy+4y2) =x2+xy-6y2-2x2+9xy-4y2 =-x2+10xy-10y2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.先化简,再求值:
(x+3)(x-3)-x(x-6),其中x=2
观察下列各式的计算结果与相乘的两个 多项式之间的关系: (x+2)(x+3)=x2+5x+6 (x+a)(x+b) (x+4)(x+2)=x2+6x+8 = x2+(a+b)x +ab (x+6)(x+5)=x2+11x+30 (1)你发现有什么规律?按你发现的规律填空:
积的项数与原多项式的项数的积。 2.多项式的每一项分别与另一多项式的 每一项相乘时,要注意积的各项符号 的确定:
同号相乘得正,异号相乘得负 3.不要出现漏乘现象,运算要有顺序。
1. 先化简,再求值:
2
(2a-3)(3a+1)-6a(a-4) 其中a= 17
2.化简:(2x-1)(-3x)-(1-3x)(1+2x)
多项式与多项式相 乘的结果中,要把 同类项合并.
: (1) (x+2y)(5a+3b) (2) (2x–3)(x+4) ;
(3)(2a+b)2
(4)(x-2y)(x-y-3)
多项式乘以多项式,展开后项数有什么规律?
在合并同类项之前,展开式的项数恰好
等于两个多项式的项数的积。
几点注意:
1.多项式乘多项式的结果仍是多项式,
1.多项式与多项式相乘的法则:
2.会用整式乘法的法则,化简整式. 3.数学思想:转化,数形结合
(1)
(2)
(3)
12
(a+n)(b+m) = a(b+m)+n(b+m)
34
= a1b+a2m+3nb+4nm
多项式× 多项式
分配律
单项 式×
多项
式
分配律
单项式× 单项式
多项式乘法法则:
多项式与多项式相乘,先用一个多项式的 每一项乘另一个多项式的每一项,再把所 得的积相加.即 (a+n)(b+m)=ab+am+nb+nm.
(4) (x-1)(x-2)= x2-3x+2
计算: (1)(x-1)(x+1) =x2-1
(2)(2a-5b)(a+5b) =2a2+5ab-25b2
若(x+a)(x+b)中不含x的一次项,则a与b的关 系是 ( D )
(A)a=b=0 (D)a+b=0
(B)a-b=0
(C)a=b≠0
化简:2(x-8)(x-5)-(2x-1)(x+2) =2(x2-13x+40)-(2x2+3x-2) = 2x2-26x+80-2x2-3x+2 =-29x+82
15.2.4.3 多项式的乘法
小明家买了新房子,要装修厨房,打算在厨房 沿墙做一排矮柜,使厨房的空间得到充分的利 用,而且便于清理.
下图是厨房的平面布局:
你能用几种不同方法来表示此厨房的总面积?
窗口矮柜 b
m
右侧 矮柜
a
n
(1)你有哪几种方法来表示此厨房的总面积?
b+m
(a+n)(b+m)
a+n
(1)我们有哪几种方法来表示此厨房的总面积? ab +am +nb +nm
m
am
mn
ab b
nb
a
n
(1)我们有哪几种方法来表示此厨房的总面积? a(b+m) +n(b+m)
b+m
a(b+m)
n(b+m)
a
n
(1)我们有哪几种方法来表示此厨房的总面积?
m
m(a+n)
b
b(a+n)
a+n
由此,我们可以得到什么结论呢?
(x+3)(x+5)=x2+(—3—+—5—)x +—3—×—5—
(2)你能很快说出与(x+a)(x+b)相等的多项式吗 先猜一猜,再用多项式相乘的运算法则验证。
(3)根据(2)中结论计算: (1) (x+1)(x+2)= x2+3x+2 (2) (x+1)(x-2)= x2-x-2
(3) (x-1)(x+2)= x2+x-2