多酚氧化酶培训资料
多酚氧化酶
多酚氧化酶1 多酚氧化酶的概念植物多酚氧化酶是一类多基因家族表达的产物,是含Cu元素的膜结合蛋白,具有基团专一性,主要与植物色素的生成及其产品的色变有关。
多酚氧化酶最早发现于1895年,1937年KubOwitz在实验室中第1次分离出多酚氧化酶。
1907年Bertrand等从小麦麸皮中发现多酚氧化酶(酪氨酸酶,TyrOsinase)的存在。
多酚氧化酶是一种蛋白体,在茶树生命活动和茶叶加工过程中参与一系列由酶促活动而引起的化学变化,故又被称为生物催化剂。
茶叶中的酶较为复杂,种类很多,包括氧化还原酶、水解酶、裂解酶、磷酸化酶、移换酶和同工异构酶等几大类。
酶蛋白具有一般蛋白质的特性,在高温或低温条件下有易变性失活的特点。
各类酶均有其活性的最适温度范围,一般在30C~50℃范围内酶活性最强。
酶若失活、变性,则就丧失了催化能力。
酶的催化作用具有专一性,如多酚氧化酶,只能使茶多酚物质氧化,聚合成茶多酚的氧化产物茶黄素、茶红素和茶褐素等;蛋白酶只能促使蛋白质分解为氨基酸。
茶叶加工就是利用酶具有的这种特性,用技术手段钝化或激发酶的活性,使其沿着茶类所需的要求发生酶促反应而获得各类茶特有的色香味。
如绿茶加工过程中的杀青就是利用高温钝化酶的活性,在短时间内制止由酶引起的一系列化学变化,形成绿叶绿汤的品质特点。
红茶加工过程中的发酵就是激化酶的活性,促使茶多酚物质在多酚氧化酶的催化下发生氧化聚合反应,生成茶黄素、茶红素等氧化产物,形成红茶红叶红汤的品质特点。
2 多酚氧化酶的分布多酚氧化酶是一种由核基因编码的质体酶,普遍存在于植物、真菌、昆虫的质体中,即主要存在于叶绿体、黄色体和白色体等的内膜上。
植物多酚氧化酶广泛存在于植物体的各种器官和组织中。
各种器官和组织中PPO分布是不均匀的,具有时间和空间特异性,幼嫩部位的PPO活性较高,成熟或衰老部位活性较低。
另外,环境胁迫、化学药品也能诱导PPO的表达,植株组织受到机械损伤或病虫害的侵染,该部位的PPO活性也将上升。
《多酚氧化酶》课件
多酚氧化酶的结构复杂,具有多种催化中心和结构域,可分解和转化多种多酚衍生物,从而 维持生物体内的代谢稳态。
多酚氧化酶的研究历程
发现与发展
自1895年发现多酚氧化酶以来,近年来的研究为人们 阐明了其重要的生物学意义。
研究方法与技术
分子生物学、结构生物学、基因工程等现代技术的广 泛应用推动了多酚氧化酶研究的突破。
先驱科学家
众多科学家如斯沃布、韦尔奇和西川等,通过不懈努
多酚氧化酶的生物学功能
1
动物中的多酚氧化酶
2
多酚氧化酶在动物体内具有多种生理和生化 功能,如消除活性氧、保护细胞膜完整性等。
植物中的多酚氧化酶
多酚氧化酶在植物体内发挥着重要作用,参 与调节植物生长发育和适应环境变化等方面。
多酚氧化酶与健康
Hale Waihona Puke 多酚氧化酶与抗氧化剂多酚氧化酶可作为一种新的生物诊断手段和治疗方 法,如在疗法耐受性上有着很高的应用价值。
总结
1 多酚氧化酶的作用与意义
多酚氧化酶是一种重要的保护酶,具有多种生物学意义。
2 多酚氧化酶的前景与挑战
多酚氧化酶在医学、工业和农业等领域有广泛的应用前景,但也存在着一些挑战和问题。
多酚氧化酶是一种重要的抗氧化剂,在人体内发挥抗氧 化防腐作用,有助于维护身体健康。
多酚氧化酶与疾病
多酚氧化酶在疾病的发生和过程中也扮演着重要角色, 在癌症、心血管病、神经退行性疾病等方面有着显著的 生物学效应。
多酚氧化酶的应用
工业上的应用 医学上的应用
多酚氧化酶的氧化反应可以用于造纸、染料、食品 等行业。
多酚氧化酶
多酚氧化酶是一类重要的酶,具有重要的生物学意义和广泛的应用。
什么是多酚氧化酶
实训 多酚氧化酶的粗提
实训多酚氧化酶的粗提[任务描述]多酚氧化酶(PPO)是一种含铜酶,它能够催化酚类物质转变成醌。
反应如下:很多植物组织受到机械损伤时产生褐变,其主要原因是多酚氧化酶(PPO)作用于天然底物酚类物质所致。
可利用这一原理对提取的多酚氧化酶进行验证。
土豆中或香蕉果皮中的多酚氧化酶主要以潜在形式(结合态)存在,因此本实训任务采用机械法或机械法与非机械细胞破碎相结合的方法提取土豆细胞中或香蕉果皮细胞中的多酚氧化酶。
[任务实施]一、准备工作1.建立工作小组,制定工作计划,确定具体任务,任务分工到个人,并记录到工作表。
2.收集利用机械破碎法和非机械破碎法破碎细胞工作中必须信息,掌握相关知识及操作要点,与指导教师共同确定出一种最佳的工作方案。
3.完成任务单中实际操作前的各项准备工作。
(1)材料准备香蕉果皮和土豆。
(2)试剂不溶性聚乙烯吡咯烷酮(PVP)、Tween-80(吐温)、0.1mol/L,pH7.0磷酸盐缓冲液、0.01mol/L的邻苯二酚溶液(将 1.1g邻苯二酚溶解于1000mL水中,用稀氢氧化钠调节溶液的pH值为6.0)、饱和硫酸铵溶液、柠檬酸缓冲液(0.1mol/L,pH6.0)、0.1mol/L的NaF溶液(将4.2g氟化钠溶于1000mL 水中),0.02 mol/L 多巴胺(最好使用0.1mol/L,pH7.0磷酸盐缓冲液配制,并即配即用,否则需添加1~2滴醋酸)。
(3)器具组织匀浆器、高速冷冻离心机、可见分光光度计、试管、移液管、水浴恒温振荡器等。
二、操作过程(一)机械法从土豆中提取PPO1. 提取PPO(1)拿一块土豆,洗去上面的泥土,去土豆皮后切成小块。
(2)称取50g土豆块放入匀浆器中,再加入氟化钠溶液50mL,在匀浆器中研磨30s。
(3)把匀浆物通过几层细布滤入一个100mL的烧杯中。
(4)加入等体积的饱和硫酸铵溶液,混合后于4℃放置30min 。
(5)在4000r/min 下离心15min ,倒掉上清液。
多酚氧化酶6页
多酚氧化酶(polyphenol oxidase,PPO)是自然界中分布极广的一种金属蛋白酶,普遍存在于植物、真菌、昆虫的质体中,甚至在土壤中腐烂的植物残渣上都可以检测到多酚氧化酶的活性。
由于其检测方便,是被最早研究的几类酶之一。
自1883年Yoghid发现日本漆树液汁变硬可能和某种活性物质相关,1938年Keilin D.和Mann G.研究了蘑菇多酚氧化酶的提取和纯化,得到多酚氧化酶并将这类酶称为polyphenol oxidase。
多酚氧化酶又称儿茶酚氧化酶,酪氨酸酶,苯酚酶,甲酚酶,邻苯二酚氧化还原酶,是六大类酶中的第一大类氧化还原酶。
多酚氧化酶的共同特征是能够通过分子氧氧化酚或多酚形成对应的醌。
在广义上,多酚氧化酶可分为三大类:单酚单氧化酶(酪氨酸酶tyrosinase,EC.1.14.18.1)、双酚氧化酶(儿茶酚氧化酶catechol oxidse,EC.1.10.3.2)和漆酶(laccase,EC.1.10.3.1)。
在这三大类多酚氧化酶中,儿茶酚酶主要分布在植物中,微生物中的多酚氧化酶主要包括漆酶和酪氨酸酶。
现在大部分文献所说的多酚氧化酶一般是儿茶酚氧化酶和漆酶的统称。
编辑本段二、多酚氧化酶在自然界的分布1植物中的多酚氧化酶及作用在植物(如苹果、荔枝、菠菜、马铃薯、豆类、茶叶、桑叶、烟草等)组织中,PPO是与内囊体膜结合在一起的,天然状态无活性,但将组织匀浆或损伤后PPO被活化,从而表现出活性。
在果蔬细胞组织中,PPO存在的位置因原料的种类、品种及成熟度的不同而有差异,绿叶中PPO活性大部分存在于叶绿体内[7];马铃薯块茎中几乎所有的亚细胞部分都含有PPO,含量大约与蛋白质部分相同[8];在茶叶中的PPO 分为游离态和束缚态,前者主要存在于细胞液中属可溶态PPO,而后者则主要存在于叶绿体、线粒体等细胞器中,与这些细胞器的膜系统或其他特异部位结合呈不溶态[9],ThanarajS.N.(1990)研究了茶树新梢中PPO活性及多酚含量对红茶品质的影响,发现PPO活性强,多酚含量高,对红茶品质有利,相反则利于绿茶的生产[10];新鲜的苹果中,多酚氧化酶几乎全部存在于叶绿体和线粒体中。
06-1多酚氧化酶
第六章多酚氧化酶主要内容1多酚氧化酶的酶学特性2多酚氧化酶的生理作用3水果蔬菜的酶促褐变及其预防4茶叶风味的形成多酚氧化酶(PPO)是自然界中分布极广的一种铜结合酶,普遍存在于植物、真菌、昆虫和动物中。
不同来源的PPO具有不同的结构,大多数具有含2个铜结合位点且每个Cu与3个His 残基以配位键相连所形成有特定三维结构。
漆酶是最早发现的PPO。
PPO能催化酚酸基团的羟基,使酚酸氧化形成邻醌,并进一步聚合成为深褐色物质。
PPO是一种末端氧化酶,参与生物氧化;与氧结合调节胞质中的氧化还原水平,调节叶绿体中的氧化反应速度,从而调节叶绿体内的能量转移。
在植物抗病虫、对嫁接植物的生根扦插、果蔬加工褐变、茶叶、烟叶的香味物质形成等这些方面起作用。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)50%的热带水果因酶促褐变而损造成果汁和新鲜蔬菜的色泽味道和营养价值变坏。
酶促褐变反应的发生必须具备三个条件:多酚类物质、PPO和氧。
决定酶促褐变率的最重要的因素为组织中活性多酚氧化酶和酚类化合物的浓度、可利用的氧含量、pH值和温度等。
冷藏加热和漂烫抑制酶促褐变的方法——物理法PPO 对热不稳定降低温度以降低催化反应速率超滤除去大分子的PPO ,留下低分子量的多酚类物质电场处理加压处理抑制酶促褐变的方法——物理法加压处理使PPO 分子聚合,导致酶的活性降低甚至丧失抑制果蔬中PPO 的酶活隔绝氧气驱除氧气、气调包装、可食性涂膜有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)抑制酶促褐变的方法——化学法酸(有机酸、无机酸)处理pH在3以下,PPO的活性就几乎丧失。
添加还原剂或抗氧化剂二氧化硫或亚硫酸盐;抗坏血酸添加铜离子鳌合剂EDTA和植酸抑制酶促褐变的方法——化学法无机盐处理高浓度的钠盐溶液可使酶蛋白质发生“盐析”,从而抑制了多酚氧化酶的活性改变底物基质络合法、添加醌类偶联剂抑制酶促褐变的方法——生物法基因工程利用基因工程培育出低褐变性的果蔬产品。
实验六马铃薯多酚氧化酶制备和化学性质
实验六马铃薯多酚氧化酶制备和化学性质一、实验目的1、学习从组织细胞中制备酶的方法。
2、掌握多酚氧化酶的作用和化学性质。
二、实验原理多酚氧化酶是一种含铜的酶,其最适pH值为6-7。
由多酚氧化酶催化的反应,如以邻苯二酚为底物,可以被氧化形成邻苯二醌。
由多酚氧化酶催化的氧化还原反应可通过溶液的颜色的变化鉴定,这个反应在自然界中是常见的,如去皮的马铃薯和水果变成褐色就是由于该酶作用的结果。
多酚氧化酶的最适底物是邻苯二酚(儿茶酚)。
间苯二酚和对苯二酚与邻苯二酚的结构相似,它们也可以被氧化为各种有色物质。
三、实验器材1、实验仪器匀浆机,离心机,冰箱,恒温水浴,烧杯,三角瓶,漏斗,小刀,纱布,2、材料与试剂1)马铃薯2)0.1mol/L的NaF溶液:将4.2g氟化钠溶于1000mL水中。
3)0.01mol/L的邻苯二酚溶液:将1.1g邻苯二酚溶解于1000mL水中,用稀NaOH调节溶液的pH值为6.0,防止其自身的氧化作用。
当溶液变成褐色时,应重新配制。
新配制的溶液应贮存于棕色瓶中。
4)pH6.8的磷酸盐缓冲液5)5%三氯乙酸溶液6)0.01mol/L的间苯二酚溶液:将0.11g间苯二酚溶解于100 mL水中。
7)0.01mol/L的对苯二酚溶液:将0.11g对苯二酚溶解于100 mL水中。
8)硫酸铵晶体四、实验步骤1、多酚氧化酶的制备每三个小组一起,称取150 g马铃薯(新马铃薯可以不去皮),切块后放入匀浆机,加入150mLNaF溶液,匀浆后用四层纱布过滤。
各组分别量取50mL滤液置离心管中,于4000r/min离心10min,取上清夜,加入硫酸铵晶体16g,溶解,于4℃放置30min,于4000转/min离心15min,弃上清液,沉淀用15ml pH4.8的柠檬酸缓冲液溶解,即为粗酶液。
2、多酚氧化酶的催化作用按表1加入各试剂,观察反应现象并记录和分析原因。
表1多酚氧化酶的催化作用混匀后37℃保温5、10、15、20min,观察并试管号酶液邻苯二酚水记录颜色变化(用+表示)1 15滴15滴-2 15滴-15滴3 -15滴15滴3、多酚氧化酶的化学性质按表2加入各试剂,观察反应现象并记录和分析原因。
9多酚氧化酶,过氧化物酶,脂肪氧合酶
化学方法 含硫氨基酸
含巯基氨基酸如半胱氨酸通过与醌类物质 反应形成无色稳定化合物也能阻止黑色素 的形成,用在土豆、苹果、莴苣等切分果蔬 的褐变抑制上.
它也成为一些防褐变的商业产品的主要活 性成分之一.若能与柠檬酸联合(如 0.5%L2cys+2%柠檬酸)则效果更佳
酶法 蛋白酶
有人发现蛋白酶对土豆和苹果切片的褐变有较好 的抑制作用.
我们讨论第一种酶,PPO这个缩写指的就是第一种
二、多酚氧化酶在自然界的分布
含量随品种不同,橄榄中活力最高.
分布取决于品种和年龄及成熟度.
在果蔬的不同部分的含量差别很大.
分结合的(bound)和可溶性(soluble)的两类,其比 例随果蔬的成熟度而变.
品种
桃 甜樱桃 杏子 苹果
可溶态的PPO占总酶活力的百分数
从理论上讲,果蔬的多酚氧化酶引起的酶促 褐变可以通过加热钝化酶、去除一个或几 个 PP底O物抑(制O2剂和或多黑酚色类素物形质成)、的降抑低制p剂H、等添方加法 来加以控制。目前已知的PPO抑制剂有很 多种, 但真正有潜力能替代亚硫酸盐的不多。
天然方法: 如利用色拉酱的几种成分进行互 相抑制.如菠萝汁对苹果切片的酶促褐变有 很好的抑制作用;蜂蜜中分子量大于600的 某些多肽对白葡萄及一些水果切片的PPO 酶有很好的抑制作用.
1)相互作用生成高分子量聚合物; 2)与氨基酸或蛋白质作用生成高分子络合物;
这两个非酶反应导致褐色素的生成;色素的分子量 愈高,颜色愈暗。
此外邻醌也可 3)氧化那些氧化-还原电位较低的化合物,形成 无色的产物。
黑色素的形成
Formation of melanins from tyrosine
二、PPO的底物
食品酶学多酚氧化酶共43页文档
谢谢!
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
食品酶学多酚氧化酶
51、没有用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
多酚氧化酶SURI
主讲:罗嘉佩 组员:颜君丽、梁小玲、凌燕 婷
Contents
• 1、多酚氧化酶的名称和在自然界的分布
• 2、多酚氧化酶的反应及其作用的底物 • 3、PH和温度对多酚氧化酶活力的影响 • 4、展望
一、 概念
• 多酚氧化酶(PPO)是核编码的铜金属酶,在细胞质中合成, 普遍存在于植物、真菌、昆虫的质体中。其性质比较稳定,甚 至在土壤中,腐烂的植物残渣上都可以检测到多酚酶的存在。
PPO与一些水果和作物的褐化有关。 涂以抗坏血酸、柠檬酸为主剂的复合护色剂, 用沸水烫,套袋防止荔枝、菠萝等水果的褐化, 保持水果新鲜
滴几滴柠檬汁, 就能做出色泽好 看,酸甜可口的 梨子酱~
而柠檬汁中含有大
量的维生素C,会
抑制多酚氧化酶的 活性
挑水果
有黑斑
芒果皮与香蕉皮里都含有多酚氧化 酶类,它们在受到外界碰撞、冷冻 等刺激的时候就会从细胞中释放出 来,引起褐变反应,从而产生深色 斑点
分布在细胞液中,结合态的组要存在于叶绿体、线粒体等
细胞器中。
多酚氧化酶,能使茶多酚物质氧化,聚合成茶多 酚的氧化产物茶黄素、茶红素和茶褐素等;
• 如绿茶加工过程中的杀青 就是利用高温钝化酶的活 性,在短时间内制止由酶 引起的一系列化学变化, 形成绿叶绿汤的品质特点。
• 红茶加工过程中的发酵就
是激化酶的活性,促使茶 多酚物质在多酚氧化酶的 催化下发生氧化聚合反应, 生成茶黄素、茶红素等氧
四、展望: 多酚氧化酶的现实作用
由于PPO在植物抗病性上的作用,现在PPO的应用多用 于提高植物对病原菌的抗性。
• 黄瓜对黑星病的抗性
• 苹果对轮纹病的抗性
• 香蕉对束顶病的抗性
• 工业上通过低温诱导等方式 提高PPO的活性以缩短生产 时间,提高红茶品质。
实验四、多酚氧化酶的活性的测定及酶学性质
实验四、多酚氧化酶的活性的测定及酶学性质多酚氧化酶(Polyphenol oxidase, PPO)是一种广泛存在于植物、菌类和动物体内的酶,主要催化化学反应为将多酚氧化成醛或酮。
本实验旨在通过测定PPO的活性来了解酶的基本特性及其酶学性质。
一、实验材料1、经过离心沉淀的香蕉、苹果、洋葱原汁。
2、6%聚乙烯醇(PVA)溶液。
3、明胶溶液(1%)。
4、酚酞指示剂。
5、75mM bicine缓冲液(pH 8.5)。
6、0.05% 过氧化氢溶液。
7、1% 多巴胺溶液。
8、分光光度计。
二、实验原理多酚氧化酶是一种铜单子酶,催化剂的过程时首先将基质中的酚乙酸类化合物与氧气反应形成间醌,然后间醌的氧化、聚合,形成花青素、黑色素等产物。
本实验采用的基质是多巴胺(L-dopa),媒介是酚酞指示剂,测定体系的光学吸收度。
酶的活性按单位时间内反应的基质质量而计算。
三、实验步骤1、提取PPO将香蕉、苹果、洋葱各取50g,切碎,加入200ml 0.1M盐酸溶液,搅拌后放在4℃冷库20-30min,滤去上清液。
将残渣加入100ml冷水,搅拌,离心至沉淀物无明显色泽,取上清液后pH调节至8.5,保存于冷库。
2、测定PPO的活性(1)制备基质溶液:10mg多巴胺溶于2ml 0.1M的硫酸钠溶液中,用1M的NaOH溶液调节pH至8.5,加入12ml0.75M缓冲液,加水至50ml。
(2)制备酚酞指示剂溶液:2mg的酚酞溶于100ml的乙醇中,加水至1L,制成0.2%的酚酞溶液。
(3)测定反应系统:将基质溶液、酚酞指示剂溶液和一定量提取液混合,在25℃下恒温反应5min。
(4)实验对照:在上述条件下,仅加入基质溶液和酚酞指示剂溶液,无提取液作为实验对照。
(5)催化反应停止:加入0.5ml 的聚乙烯醇溶液。
(6)光度计测量:在650nm处上述反应体系产生的色素的吸光度。
4、结果计算将吸收度计算为1cm光程曲线的峰高比,用表格法计算多酚氧化酶活性反应速率以μmol/min为单位。
实验五多酚氧化酶的制备和性质研究
实验五多酚氧化酶的制备和性质研究一、目的⒈学习从组织细胞中制备酶的一般方法⒉学习多酚氧化酶的作用特性及影响多酚氧化酶作用的因素二、原理多氧化物酶是一种含铜的酶,广泛存在于各种组织如鲜蘑菇、土豆和水果中。
土豆、水果去皮后表面变成褐色就是由于该酶作用的结果。
由多酚氧化酶催化的反应(以邻苯二酚为例)可用下式表示:多酚氧化酶作用的最适pH为6~7,最适底物是邻苯二酚(儿茶酚);间苯二酚和对苯二酚与邻苯二酚的结构相似,他们也可被氧化为相应的醌类化合物。
因此,由多酚氧化酶催化的氧化还原反应可通过溶液颜色的变化鉴定。
细胞环境中的各种因素直接影响酶的催化活性,因为酶是生物催化剂。
要研究某一种因素对于酶催化反应的影响时,仅在被研究的因素呈变化的情况下,测定它对于反应速度的影响,而其他的实验条件应保持一致。
三、材料1)土豆2)高速组织捣碎机3)烧杯(100mL)4)平纹布或纱布5)试管及试管架6)恒温水浴7)小刀8)移液管(2mL、5mL、10mL)四、试剂⑴0.1mol/L的氟化钠(NaF)溶液:把4.2gNaF溶于1000mL水中。
⑵0.01mol/L的邻苯二酚溶液:将1.1g邻苯二酚溶解于1000mL水中,用1%的氢氧化钠调节溶液的pH为6.0 。
新鲜配制,并储存于棕色瓶中。
⑶柠檬酸缓冲液(0.05mol/L,Ph4.8)⑷5%的三氯乙酸溶液⑸苯硫脲(结晶)⑹0.01mol/L的间苯二酚溶液⑺0.01mol/L的对苯二酚溶液⑻饱和硫酸铵溶液⑼0.96%的盐酸:把9.6mL浓盐酸加水稀释至1L⑽0.1%的乳酸溶液(100mL水中含有0.1mL的乳酸)⑾0.5%的碳酸钠溶液⑿0.01%的碳酸钠溶液五、操作步骤⒈多酚氧化酶的制备⑴拿一块土豆,洗去上面的泥土⑵把土豆削皮后切成小块⑶称取100g小块土豆,立即加入氟化钠溶液100mL,放入组织捣碎机中研磨30s,(此步最好6个同学一起做,上述用量乘6)⑷把匀浆物通过几层纱布过滤⑸取50mL滤液(注:滤液应无色,若为红色应重新匀浆提取),加入等体积的饱和硫酸铵溶液,混合后于4℃放置30min,可见有白色沉淀产生。
实验四多酚氧化酶的活性的测定及酶学性质
一、实验目的1掌握分光光度法测定多酚氧化酶活性的一般原理及操作技术方法。
2了解酶的活性与植物组织褐变以及生理活动之间的关系。
二、实验原理马铃薯不耐储藏,在加工过程中去皮切分后非常容易发生酶促褐变,使外观品质和营养价值大为降低,制约着马铃薯的开发利用。
酶促褐变是马铃薯加工产业必须解决的难题。
其中多酚氧化酶是导致马铃薯等果蔬发生酶促褐变的重要酶类。
多酚氧化酶活性大小直接影响酶促褐变程度。
多酚氧化酶(polyphenoloxidase, PPO)又称酪氨酸酶、儿茶酚酶、酚酶等.是自然界中分布极广的一种含铜氧化酶•普遍存在于植物、真菌、昆虫的质体中。
植物受到机械损伤和病菌侵染后,PPO催化酚与02氧化形成醌,使组织形成褐变.以便损伤恢复,防止或减少感染,提高抗病能力。
研究多酚氧化酶的特性对食品的加工与保藏工艺有非常重要的意义。
因此,检测食品中多酚氧化酶具有重要意义。
多酚氧化酶是一种含铜的氧化酶,在一定的温度、pH条件下,有氧存在时,能使催化邻苯二酚氧化生成有色物质,单位时间内有色物质在410 nm处的吸光度与酶活性强弱成正相关,在分光光度计410nm处使反应体系的0D值产生变化,通过0D值的变化确定PPO的酶活大小。
多酚氧化酶邻苯二酚(儿茶酚)+ 1 / 2O2 -------------------------------- 邻醌+ H2O三、试验材料、试剂及试验用品1. 材料:马铃薯块茎。
2. 仪器:分光光度计;离心机;恒温水浴;研钵;试管;移液管;容量瓶3 .试剂:0.1mmol/L 磷酸缓冲液(pH=7.0);0.01mol/L 邻苯二酚;0.1mol/L 磷酸氢二钠;0.1mol/L 磷酸二氢钠;10mmol/L柠檬酸;10mmol/L抗坏血酸;10mmol/L乙二胺四乙酸二钠(EDTA );10mmol/L 亚硫酸钠四、实验方法:1•多酚氧化酶的提取取0.5g马铃薯块茎样品,加入预冷的磷酸缓冲液(pH7.0)3ml,研磨匀浆,转移到离心管中,再用7mL磷酸缓冲液冲洗研钵,合并提取液,在4C下离心(8000r/min)5min,取上清液为多酚氧化酶提取液,并量取粗酶液体积。
多酚氧化酶的作用机理
多酚氧化酶的作用机理多酚氧化酶(polyphenol oxidase,简称PPO)是一种广泛存在于植物和动物中的酶,它在许多生物体内发挥着重要的作用。
它引起了许多食物和植物的颜色变化,如水果和蔬菜的变黑,茶叶的氧化等。
多酚氧化酶的作用机理主要与其催化氧化反应有关。
多酚氧化酶的催化反应是一个复杂的过程。
首先,多酚氧化酶通过与底物分子结合,形成酶底物复合物。
然后,酶底物复合物发生氧化反应,将底物分子中的酚类化合物氧化为醌类化合物。
最后,醌类化合物可以进一步反应或分解,形成新的产物。
多酚氧化酶的催化反应主要通过两个关键过程实现:氧化和聚合。
在氧化过程中,多酚氧化酶通过将氧分子与底物分子结合,将底物分子中的酚类化合物氧化为醌类化合物。
氧化反应是多酚氧化酶的主要催化反应,也是多酚氧化酶起作用的关键步骤。
在聚合过程中,多酚氧化酶通过将氧化后的醌类化合物聚合成高分子化合物,进一步改变底物的颜色。
这一过程也被称为聚合酶活性。
聚合反应可以使底物分子中的多酚类化合物聚合成具有更高分子量的聚合物。
多酚氧化酶的作用机理还涉及到一些辅助物质,如金属离子和辅酶。
金属离子可以作为多酚氧化酶的辅助因子,促进催化反应的进行。
辅酶则可以增强多酚氧化酶的催化活性,使其更有效地催化反应。
多酚氧化酶通过催化氧化和聚合反应,改变底物的颜色和性质。
它的作用机理主要与其催化氧化反应有关,通过与底物结合、氧化和聚合等关键过程实现。
多酚氧化酶在生物体内起着重要的作用,对于食物和植物的颜色变化具有重要意义。
对于深入了解多酚氧化酶的作用机理,还有许多待研究的问题,需要进一步的研究和探索。
多酚氧化酶及过氧化物酶
Inhibition of polyphenol oxidase and peroxidase activities on fresh-cut apple by simultaneous treatment of ultrasound and ascorbic acidJi-Hyun Jang,Kwang-Deog Moon *Department of Food Science and Technology,Kyungpook National University,1370Sankyuk-dong,Buk-gu,Daegu 702-701,Republic of Koreaa r t i c l e i n f o Article history:Received 11February 2010Received in revised form 29March 2010Accepted 14June 2010Keywords:Ultrasound Ascorbic acidPolyphenol oxidase PeroxidaseFresh-cut applea b s t r a c tThe effects of ultrasound and ascorbic acid on activity changes of polyphenol oxidase and peroxidase,of fresh-cut apple during storage,were investigated.The combined treatment of ultrasound and ascorbic acid inactivated monophenolase,diphenolase,and peroxidase,whilst the individual treatment of ultra-sound or ascorbic acid had inverse and limited inhibitory effect on the enzymes.The main protein bands had a molecular weight of approximately 63kDa.A diffuse band,lacking the electrophoretic mobility of proteins,was observed after combined treatment.This investigation revealed that simultaneous treat-ment with ultrasound and ascorbic acid had synergistic inhibitory effects on several enzymes related to enzymatic browning.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionIn recent years,a rapid market growth for fresh-cut fruits and vegetables has been observed due to the consumers’increased de-mand for convenience,fresh-like quality,and high nutritive value (Rico,Martín-Diana,Barat,&Barry-Ryan,2007).Fresh-cut apples,in particular,are desired as a convenient snack for catering services to salad-bars,schools,and company cafeterias (Saftner,Abbott,Bhagwat,&Vinyard,2005).Surface colour is one of the most important quality attributes because consumers usually judge the quality of fresh-cut fruits and vegetables on the basis of appearance.However,the shelf-life of fresh-cut products is re-stricted by physiological injury resulting from essential processing operations,including peeling,coring,and cutting.These processes cause browning on the cut surface which limits the development and commercialisation of fresh-cut fruits and vegetables.There-fore,the food industry is constantly searching for effective and safe means to control such problems (Kader,2002;Sapers,Hicks,&Miller,2002).Polyphenol oxidase (PPO)and peroxidase (POD)are the en-zymes involved in the browning process.Browning occurs almost instantly when the cell structure is destroyed,and the enzyme and substrate are mixed.PPO catalyses the hydroxylation of mon-ophenols (monophenolase)and oxidation of o -diphenols to o -qui-nones (diphenolase),which subsequently polymerise to yieldundesirable brown pigments in the presence of oxygen (Espín,Gar-cía-Ruiz,Tudela,Varón,&García-Cánovas,1998).POD,an indicator of quality deterioration such as flavour loss and various biodegradation reactions,is also relevant to enzymatic browning since diphenols may function as reducing substrate in the enzyme reaction and could promote darkening in fruit and veg-etable products during processing and preservation.Although POD is limited by the availability of electron acceptor compounds like hydrogen peroxide,its involvement in browning of various fruits and vegetables has been reported (Chisari,Barbagallo,&Spagna,2007;Mdluli,2005;Richard-Forget &Gauillard,1997;Valderrama &Clemente,2004).Several studies have focused on the inhibition of enzymatic browning by ascorbic acid and thermal treatments.Ascorbic acid can reduce o -quinones,produced by PPO-catalysed oxidation of polyphenols,back to dihydroxy polyphenols and has been widely used as an antibrowning agent for processing of fruits and vegeta-bles.However,the effect of ascorbic acid is temporary since once it is added,it is completely oxidised and o -quinones could accumu-late,leading to browning pigment formation (Özoglu &Bayindirli,2002;Rojas-Graü,Sobrino-López,Tapia,&Martín-Belloso,2006).Therefore,ascorbic acid is insufficient in controlling browning and maintaining the commercial value of fresh-cut products.On the other hand,though thermal treatment effectively inactivates enzymes,non-thermal treatment is needed as a substitute to keep the fresh-like colour and texture of fresh-cut fruits and vegetables (Rico et al.,2007).Ultrasound causes enzyme inactivation by cell lysis using vibration energy,which produces cavitation bubbles and temporarily generates spots of extremely high pressure and0308-8146/$-see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.foodchem.2010.06.052*Corresponding author.Tel.:+82539505773;fax:+82539506772.E-mail address:kdmoon@knu.ac.kr (K.-D.Moon).temperature when imploded(Morris,Brody,&Wicker,2007). Ultrasonication has been found to be more effective in inhibiting enzyme activity when combined with other processes,such as high pressure and/or heat,contrary to the minimal inhibitory effects of individual application(Mason&Paniwnyk,2003;Morris et al., 2007).Although a lot of studies on ascorbic acid or ultrasound have been conducted,the combined treatment with ultrasound and ascorbic acid has not been studied yet.Furthermore,the effects of combined treatment on the changes of monophenolase and diphenolase activities in fresh-cut fruits and vegetables have never been studied.In our previous work,the effects of ultrasound appli-cation with ascorbic acid on fresh-cut apples were investigated and a positive effect was observed on the inhibition of discolouration and PPO activity as compared to that of the samples treated sepa-rately with ultrasound or ascorbic acid(Jang,Kim,&Moon,2009).In the present study,as a continuation of enzymatic browning studies in fresh-cut apples treated by ultrasound combined with ascorbic acid,the characterisation of concentrated PPO enzyme and monophenolase and diphenolase activities in terms of sub-strate specificities,and changes in peroxidase activity in treated fresh-cut apples were investigated.2.Materials and methods2.1.Apples and chemicalsThe apples(Malus domestica Borkh.cv.Fuji)were harvested in a farm located at Kyungpook National University,Republic of Korea in November2008and kept at4°C until used.L-Tyrosine, 3-(4-hydroxyphenyl)propionic acid(PHPPA),3,4-dihydroxy-L-phenylalanine(L-DOPA),4-methylcatechol,catechol,3-(3,4-dihydroxyphenyl)propionic acid(DHPPA),and chlorogenic acid were purchased from Sigma–Aldrich Chemical Co.(St.Louis, Mo.,USA)and all the other chemicals,including3-methyl-2-ben-zothiazolinone hydrazone(MBTH),N,N0-dimethylformamide (DMF),and ascorbic acid,were of analytical grade.The1%ascor-bic acid solutions were cooled to10°C before use.2.2.Sample preparationThe apple discs(5mm thick,15mm diameter),without core and peel,were prepared using a cork borer and a sharp knife.After preparation,the apple discs were randomly divided and immedi-ately applied with each treatment.The control sample(Cont) was rinsed with distilled water and the other discs were treated with either ultrasound(US),1%ascorbic acid(AA),or a combina-tion of ultrasound and1%ascorbic acid(UA).An ultrasonic gener-ator with a frequency of40kHz(Daihan Scientific Co.,Ltd., Republic of Korea)was used for the ultrasound treatment.Fifteen discs were packed in polypropylene bags(10Â10cm,0.04mm thick)and sealed after draining.The samples were stored at 10°C and analysed after0(treatment day),4,8,and12days of storage.2.3.Enzyme extractionThe apple discs were homogenised in a twofold amount of chilled50mM sodium phosphate buffer(pH5.0for crude enzyme extraction and pH7.0for partial purification)containing polyvinyl-polypyrrolidone(50g/l)for2min using a homogenizer.The homogenate wasfiltered through cheese cloth and thefiltrate was centrifuged at16,000Âg for30min at4°C.The supernatant solution was used in experiments.2.4.Protein determinationThe protein content in each enzyme was quantified using Quan-tiPro TM BCA Assay Kit(Sigma–Aldrich Chemical Co.,St.Louis,Mo, USA).Bovine serum albumin was used as standard(Mdluli, 2005).Absorbance at520nm was determined using a plate reader (Victor3,Perkin Elmer,USA).2.5.Assay of enzyme activityThe monophenolase and diphenolase activities of PPO enzyme from crude enzyme were assayed by measuring the increase in absorbance at494nm for4-methylcatechol,505nm for DHPPA, and500nm for all other substrates(Espín,Morales,Varón,Tudela, &García-Cánovas,1995;Winder&Harris,1991).The reaction mix-ture contained assay buffer(4%DMF),5mM of substrate solution, and20.7mM of MBTH and this gavefinal concentrations of50mM sodium phosphate buffer,2%DMF,1mM substrate,and6mM MBTH,and afinal pH of5.0.The reaction mixture was incubated at37°C for10min.The crude enzyme extract was then added and the cuvette contents were mixed by inversion.The absorbance was measured using a spectrophotometer after additional incuba-tion at37°C for5min.The enzyme activity was expressed as units of enzyme/mg protein and one unit was defined as an increase in absorbance of0.001.The peroxidase activity of the crude enzyme was also deter-mined spectrophotometrically using the modified method of Aydin and Kadioglu(2001).The assay mixture contained20mM guaiacol, an equal volume of40mM hydrogen peroxide,and50mM sodium phosphate buffer(pH5).Changes in the absorbance at475nm were monitored for3min using a spectrophotometer after the crude enzyme solution was added.One unit was defined as an in-crease in absorbance of0.001per min and the enzyme activity was expressed as units of enzyme/mg protein.2.6.Characteristics of the concentrated polyphenol oxidase2.6.1.Enzyme concentration and activity determinationPrepared supernatants from the treated apple discs were col-lected through centrifugation.Briefly,the supernatants were placed in ultrafiltration tubes(Vivaspin20,Sartorius,Germany) and centrifuged at1500Âg at4°C to remove proteins with molec-ular weights of less than30kDa.Sodium phosphate buffer(50mM, pH7)was added to the supernatant in equivalent volume and cen-trifugation was repeated to obtain afinal volume of2.5ml.After protein determination,a concentration adjustment was performed.The reaction mixture for measuring PPO activity included20l l of the concentrated enzyme and100l l of10mM catechol solution in50mM sodium phosphate buffer(pH5).Absorbance at405nm was measured using a plate reader.One unit of enzyme activity was defined as an increase in absorbance of0.001per min and the enzyme activity was expressed as units of enzyme/mg protein.2.6.2.Semi-native polyacrylamide gel electrophoresisElectrophoresis was conducted on a Mini-ProteanÒthree Cell electrophoresis unit(Bio-Rad,USA)equipped with a power supply (SP-250,Seoulin Scientific Co.,Ltd.Republic of Korea).Eight per cent polyacrylamide gels were used and sample buffer with a2% sodium dodecyl sulphate(SDS)was added to each enzyme concen-trate without heating(Voulhoux,Bos,Geurtsen,Mols,&Tommas-sen,2003).After electrophoresis,the gels were sufficiently rinsed with sodium phosphate buffer solution in order to remove the remaining SDS.One gel was stained with Coomassie Blue R-250 to determine the PPO molecular weight and the other gel was trea-ted with a catechol paper to determine the PPO activity.The cate-chol paper was prepared by immersing it into a50mM catecholJ.-H.Jang,K.-D.Moon/Food Chemistry124(2011)444–449445solution,followed by drying(Cheng,Huang,Pan,Lin,&Mao,2007), and was used immediately after preparation.The intensity and molecular weight of the developed bands were determined using a Gel-Pro Analyser software(Media Cybernetics,Silver Spring, USA).2.7.Statistical analysisAnalysis of Variance and Duncan’s multiple range tests were performed using the SAS programme version9.1for windows. The level of significance was set at p<0.05.3.Results and discussion3.1.Substrate specificity of crude apple PPOL-Tyrosine and PHPPA as monophenolic substrates,and L-DOPA, 4-methylcatechol,catechol,and DHPPA as diphenolic substrates were examined and their activities were compared with the activ-ity in the presence of DHPPA as100%,respectively(Table1).All of the substrates were oxidised considerably by‘Fuji’apple PPO and the diphenolase activities were relatively higher than monopheno-lase activities.The crude PPO showed the highest activity towards PHPPA and DHPPA as monophenolic and diphenolic substrates, respectively.The enzyme showed the lowest activity towards L-tyrosine,which is in accordance with the previous reports for PPO enzymes from other plant sources(Kolcuog˘lu,Colak,Sesli, Yildirim,&Saglam,2007;Özen,Colak,Dincer,&Güner,2004).3.2.Effect of ultrasound and ascorbic acid on monophenolase activitiesThe monophenolase activities of the treated fresh-cut apples are presented in Fig.1.Since the monophenolase activity of PPO is generally considered as thefirst step in enzymatic browning be-cause the enzyme catalyses the hydroxylation of monophenols to o-diphenols(Sánchez-Ferrer,Rodríguez-López,García-Cánovas,& García-Carmona,1995),a lower activity can be interpreted as inhi-bition of enzymatic browning.In monophenolase activity,different trends were observed following various substrates application. When L-tyrosine was used as substrate,the activity in AA-treated samples increased dramatically at the end of storage period.Higher concentrations of ascorbic acid can temporarily retard the induc-tion period,however,monophenolase activity increases rapidly when all the ascorbic acid has been consumed(Ramon,Neptuno, &Francisco,1993).Lower activities in UA-treated samples were initially observed regardless of the substrates,although the activity on L-tyrosine steadily increased during storage.The significantly lowest activity in UA-treated samples using PHPPA as substrate was maintained.McHedlishvili et al.(2005)reported that mono-phenolase lost half of its activity in PPO from tea leaf after2h incu-bation at30°C and the monophenolase activity is more thermolabile as compared with the diphenolase activity.In con-trast,our results showed the inhibition rate of monophenolase activity by UA treatment ranged from75%to90%.Therefore,UA treatment effectively inhibited monophenolase activity,unlike in the individual application of ultrasound or ascorbic acid.3.3.Effect of ultrasound and ascorbic acid on diphenolase activitiesThe changes in diphenolase activities in the treated fresh-cut apples during storage are illustrated in Fig.2.The diphenolase activities,measured using several substrates,showed a similar pat-tern of change during storage.The significantly highest dipheno-lase activities were observed in Cont and US-treated samples. Especially,US-treated samples showed significantly higher activi-ties when L-DOPA and4-methylcatechol were used as substrates than Cont during storage.Higher activities in US-treated samples were observed at the end of storage period as compared to that of other samples.These results indicate that ultrasound treatment stimulates diphenolase activity.They are also in agreement with the results obtained by Wu and Lin(2002),who observed that the PPO activities of Panax ginseng cells showed a sharp increase immediately after ultrasonication.Lower values,with an increas-ing trend,in diphenolase activities were observed in AA-treated samples during storage.From the results,it was found that the remaining ascorbic acid on the surface of fresh-cut apples just after processing acted as a reducing agent and thereafter its reducing ability gradually disappeared towards the end of the storage period.On the other hand,UA treatment almost completely inhibited the diphenolase activity on the treatment day and also showed the lowest activity during the entire storage period.The diphenolase activities in UA-treated samples using all substrates,except4-methylcatechol,increased slightly for eight days,followed by a decrease to the initial level.The effectiveness of ultrasound in food preservation can be ameliorated by combination with otherTable1Substrate specificities of‘Fuji’apple polyphenol oxidase.Substrate Wavelength(nm)Relative activity(%)a MonophenolsL-Tyrosine500 1.3±0.2PHPPA500 6.4±0.1DiphenolsL-DOPA50011.3±0.54-Methylcatechol49490.1±1.8Catechol50028.6±1.2DHPPA505100±0.9168.9±1.5b Chlorogenic acid50037.5±1.1a Assay medium:50mM sodium phosphate buffer(pH5),2%DMF,1mM sub-strate,and6mM MBTH at37°C.b Specific activity(U/mg)using DHPPA as substrate.446J.-H.Jang,K.-D.Moon/Food Chemistry124(2011)444–449treatments,such as heat and/or high pressure,since the resistance of microorganisms and enzymes to ultrasound is very high.To attain the desired levels of effectiveness,it may require prolonged ultra-sonication for several hours,however,severe changes could occur in the fresh fruits and vegetables(López et al.,1994;Mason&Pani-wnyk,2003).In this study,it was found that simultaneous treat-ment with ultrasound and ascorbic acid is capable of effectively inhibiting diphenolase activities even with a relatively short treat-ment of time without severe appearance deterioration in compari-son with thermal treatment(McHedlishvili et al.,2005).Asemota, Wellington,Odutuga,and Ahmad(1992)reported that diphenolase activities in cut yam increased steadily up to the third week of stor-age and the browning intensity and rate after cutting were very clo-sely correlated with the diphenolase activities(Wu&Lin,2002). Therefore,the UA-treated samples were able to maintain their light-er colour(Jang et al.,2009)due to the fact that the UA treatment di-rectly affects diphenolase activity and its inhibitory effect against the enzyme was maintained in fresh-cut apples during storage.3.4.Effect of ultrasound and ascorbic acid on peroxidaseAlthough it has been recognised that PPO is the main enzyme related to enzymatic browning on fresh-cut apples,it is also neces-sary to study the changes in POD enzymes as they can also contrib-ute to the discolouration in fresh-cut products.Changes in POD activity in fresh-cut apples were clearly distinguished by the differ-ent treatments(Fig.3).The POD activity in Contfluctuated with the highest value on the forth day of storage.On the other hand, in US-treated samples significantly low POD activity was detected, when compared to Cont and AA-treated samples at treatment day. However,the POD activity of US-treated samples showed steady increase with time.There have been conflicting reports on the inhibitory effect on POD enzyme by ultrasound.Cruz,Vieira,and Silva(2006)reported that the increase in POD activity in water-cress with ultrasound was observed at low temperatures and Wu and Lin(2002)also found that the POD activity was enhanced with the increase in ultrasound intensity.On the other hand,Mason, Paniwnyk,and Lorimer(1996)reported that the original activity of commercially purified POD was progressively reduced by90% with ultrasound application for over3h.The AA-treated sample showed high activity immediately after processing,but the activity decreased until eighth day of storage.With the exception of the high POD activity on treatment day,our results are consistent with those of Lamikanra and Watson(2001),who reported that the presence of ascorbic acid effectively reduced the POD activity in the fresh-cut cantaloupe melon.The researchers also indicated thatJ.-H.Jang,K.-D.Moon/Food Chemistry124(2011)444–449447the reduced POD activity in the fruit treated with ascorbic acid could be the result of a lower oxidative stress on the fruit surface due to the antioxidant ability of ascorbic acid.In the present study,the UA treatment effectively reduced the POD activity in fresh-cut apples during the entire storage period.It is inferred from these re-sults that UA treatment allowed the ascorbic acid to act inside the cells disrupted by ultrasound treatment,hence,it was possible to inhibit the POD activity by enhanced antioxidant action.3.5.Characteristics of the concentrated PPOSemi-native electrophoresis was performed to detect any electrophoretic changes or loss of PPO activity in fresh-cut applestreated with ultrasound and ascorbic acid.The approximate molec-ular weight of the main bands of the concentrated PPO in treated apples was calculated to be 63kDa (Fig.4A).Similar observations have also been reported in ‘Fuji’apple’s PPO (Haruta et al.,1998;Murata,Tsurutani,Tomita,Homma,&Kaneko,1995).The electro-phoretic mobility of proteins in concentrated enzymes was little affected by the ultrasound and/or ascorbic acid treatment.When the gel was stained to detect PPO activity,there was a decrease in the intensity by AA treatment (Fig.4B),which is in agreement with the results obtained by Golan-Goldhirsh and Whitaker (1984).On the other hand,the PPO activity was slightly enhanced by US treatment.Differences in the band intensity closely resem-bled the enzyme activities that were directly measured (Fig.4C).The indistinct protein band was observed in lane four from UA-treated samples (Fig.4B).This means that simultaneous treatment with ultrasound and ascorbic acid has synergistic inhibitory effects on PPO activity without deformation of enzyme protein,whilst ascorbic acid behaves as reversible and temporary PPO inhibitor and ultrasound treatment has no effect on enzyme inhibition.4.ConclusionThis study demonstrated that several enzymes related to browning of fresh-cut ‘Fuji’apples were inhibited by the combined treatment with ultrasound and ascorbic acid during storage.This treatment was considerably effective in deactivating PPO and POD,whilst the individual application of ultrasound or ascorbic acid did not inactivate the enzymes.The inhibitory effect of this simultaneous treatment resulted from different mechanisms,rather than from the individual use of ultrasound or ascorbic acid,as manifested by the stronger inhibitory effect on the diphenolase activity compared to that of the monophenolase activity,and the loss of PPO activity without electrophoretic migration of the pro-tein.Therefore,results of this study suggest that combined treat-ment with ultrasound and ascorbic acid has noteworthy possibilities in improving the qualities of fresh-cut fruits and veg-etables.Further research is needed for the establishment of opti-mum treatment conditions in order to completely inactivate the enzyme activities.ReferencesAsemota,H.N.,Wellington,M.A.,Odutuga,A.A.,&Ahmad,M.H.(1992).Effect ofshort-term storage on phenolic content,o -diphenolase and peroxidase activities of cut yam tubers (Dioscorea sp.).Journal of the Science of Food and Agriculture,60,309–312.Aydin,N.,&Kadioglu,A.(2001).Changes in the chemical composition,polyphenoloxidase and peroxidase activities during development and ripening of medlar fruits (Mespilus germanica L.).Bulgarian Journal of Plant Physiology,27,85–92.Cheng,T.-M.,Huang,P.-C.,Pan,J.-P.,Lin,K.-Y.,&Mao,S.J.T.(2007).Gelelectrophoresis of polyphenol oxidase with instant identification by in situ blotting.Journal of Chromatography B,849,331–336.Chisari,M.,Barbagallo,R.N.,&Spagna,G.(2007).Characterization of polyphenoloxidase and peroxidase and influence on browning of cold stored strawberry fruit.Journal of Agricultural and Food Chemistry,55,3469–3476.Cruz,R.M.S.,Vieira,M. C.,&Silva, C.L.M.(2006).Effect of heat andthermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale ).Journal of Food Engineering,72,8–15.Espín,J.C.,García-Ruiz,P.A.,Tudela,J.,Varón,R.,&García-Cánovas,F.(1998).Monophenolase and diphenolase reaction mechanisms of apple and pear polyphenol oxidases.Journal of Agricultural and Food Chemistry,46,2968–2975.Espín,J. C.,Morales,M.,Varón,R.,Tudela,J.,&García-Cánovas, F.(1995).Acontinuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase.Analytical Biochemistry,231,237–246.Golan-Goldhirsh, A.,&Whitaker,J.R.(1984).Effect of ascorbic acid,sodiumbisulfite,and thiol compounds on mushroom polyphenol oxidase.Journal of Agricultural and Food Chemistry,32,1003–1009.Haruta,M.,Murata,M.,Hiraide,A.,Kadokura,H.,Yamasaki,M.,Sakuta,M.,et al.(1998).Cloning genomic DNA encoding apple polyphenol oxidase and comparison of the gene product in Escherichia coli and in apple.Bioscience,Biotechnology,and Biochemistry,62,358–362.ContUS AA UAIntensity 12341234kDa 119.590.563448J.-H.Jang,K.-D.Moon /Food Chemistry 124(2011)444–449Jang,J.-H.,Kim,S.-T.,&Moon,K.-D.(2009).Inhibitory effects of ultrasound in combination with ascorbic acid on browning and polyphenol oxidase activity of fresh-cut apples.Food Science and Biotechnology,18,1417–1422.Kader,A.A.(2002).Quality parameters of fresh-cut fruit and vegetable products.In mikanra(Ed.),Fresh-cut fruits and vegetables:Science,technology,and market(pp.11–20).New York:CRC Press.Kolcuog˘lu,Y.,Colak,A.,Sesli,E.,Yildirim,M.,&Saglam,N.(2007).Comparative characterization of monophenolase and diphenolase activities from a wild edible mushroom(Macrolepiota mastoidea).Food Chemistry,101,778–785. Lamikanra,O.,&Watson,M.A.(2001).Effects of ascorbic acid on peroxidase and polyphenoloxidase activities in fresh-cut cantaloupe melon.Journal of Food Science,66,1283–1286.López,P.,Sala,F.J.,Fuente,J.L.d.l.,Condón,S.,Raso,J.,&Burgos,J.(1994).Inactivation of peroxidase,lipoxygenase,and polyphenol oxidase by manothermosonication.Journal of Agricultural and Food Chemistry,42,252–256. Mason,T.J.,&Paniwnyk,L.(2003).Ultrasound as a preservation technology.In P.Zeuthen&L.Bøgh-Sørensen(Eds.),Food preservation techniques(pp.303–337).New York:CRC Press.Mason,T.J.,Paniwnyk,L.,&Lorimer,J.P.(1996).The uses of ultrasound in food technology.Ultrasonics Sonochemistry,3,S253–S260.McHedlishvili,N.I.,Omiadze,N.T.,Gulua,L.K.,Sadunishvili,T.A.,Zamtaradze,R.K., Abutidze,M.O.,et al.(2005).Thermostabilities of plant phenol oxidase and peroxidase determining the technology of their use in the food industry.Applied Biochemistry and Microbiology,41,145–149.Mdluli,K.M.(2005).Partial purification and characterisation of polyphenol oxidase and peroxidase from marula fruit(Sclerocarya birrea subsp.Caffra).Food Chemistry,92,311–323.Morris, C.,Brody, A.L.,&Wicker,L.(2007).Non-thermal food processing/ preservation technologies:A review with packaging implications.Packaging Technology and Science,20,275–286.Murata,M.,Tsurutani,M.,Tomita,M.,Homma,S.,&Kaneko,K.(1995).Relationship between apple ripening and browning:Changes in polyphenol content and polyphenol oxidase.Journal of Agricultural and Food Chemistry, 43,1115–1121.Özen,A.,Colak,A.,Dincer,B.,&Güner,S.(2004).A diphenolase from persimmon fruits(Diospyros kaki L.,Ebenaceae).Food Chemistry,85,431–437.Özoglu,H.,&Bayindirli,A.(2002).Inhibition of enzymic browning in cloudy apple juice with selected antibrowning agents.Food Control,13,213–221.Ramon,R.J.,Neptuno,R.-L.J.,&Francisco,G.-C.(1993).Effect of L-ascorbic acid on the monophenolase activity of tyrosinase.Biochemical Journal,295,309–312. Richard-Forget, F. C.,&Gauillard, F. A.(1997).Oxidation of chlorogenic acid, catechins,and4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv.Williams)polyphenol oxidase and peroxidase:A possible involvement of peroxidase in enzymatic browning.Journal of Agricultural and Food Chemistry,45,2472–2476.Rico,D.,Martín-Diana,A.B.,Barat,J.M.,&Barry-Ryan,C.(2007).Extending and measuring the quality of fresh-cut fruit and vegetables:A review.Trends in Food Science and Technology,18,373–386.Rojas-Graü,M. A.,Sobrino-López, A.,Tapia,M.S.,&Martín-Belloso,O.(2006).Browning inhibition in fresh-cut‘Fuji’apple slices by natural antibrowning agents.Journal of Food Science,71,59–65.Saftner,R.A.,Abbott,J.,Bhagwat,A.A.,&Vinyard,B.(2005).Quality measurement of intact and fresh-cut slices of Fuji,Granny Smith,Pink Lady,and Gold Rush apples.Journal of Food Science,70,317–324.Sánchez-Ferrer,Á.,Rodríguez-López,J.N.,García-Cánovas,F.,&García-Carmona,F.(1995).Tyrosinase:A comprehensive review of its mechanism.Biochimicaet Biophysica Acta(BBA)–Protein Structure and Molecular Enzymology,1247, 1–11.Sapers,G.M.,Hicks,K.B.,&Miller,R.L.(2002).Antibrowning agents.In A.L.Branen, P.M.Davidson,S.Salminen,&J.H.T.III(Eds.),Food additives(pp.543–561).New York:Marcel Dekker Inc.Valderrama,P.,&Clemente,E.(2004).Isolation and thermostability of peroxidase isoenzymes from apple cultivars Gala and Fuji.Food Chemistry,87,601–606. Voulhoux,R.,Bos,M.P.,Geurtsen,J.,Mols,M.,&Tommassen,J.(2003).Role of a highly conserved bacterial protein in outer membrane protein assembly.Science,299,262–265.Winder,A.J.,&Harris,H.(1991).New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase.European Journal of Biochemistry,198, 317–326.Wu,J.,&Lin,L.(2002).Ultrasound-induced stress responses of Panax ginseng cells: Enzymatic browning and phenolics production.Biotechnology Progress,18, 862–866.J.-H.Jang,K.-D.Moon/Food Chemistry124(2011)444–449449。
多酚氧化酶
是价格较贵。
㈢生物技术
• 通过对果蔬基因改良,选育抗褐变新品种,达到
抑制褐变的目的。目前较成功的是反义RNA。 由于生物技术可以免除繁琐的灭酶工艺,避免 使用抗氧化剂带来的潜在隐患,具有广阔的前 景。
• 关于果实酶促褐变方面的研究很多,褐变机理也比较
复杂,目前尚未完全弄清。关键问题集中在对PPO及
PPO的催化反应的机理
• ⑴酶活性中心的两个铜原子与O2结合,以氧原子为 桥,两个氧原子仍有键连,酶本身由脱氧型变成含氧 型。
⑵含氧型酶与邻二酚结合,二个羟基中的氧分别结
合在二个铜原子上,同时释放出2个氢离子。
• ⑶酶、氧及邻二酚形成的复合物与二个氢离子在氧桥上结
合,并释放出苯醌。
• ⑷间氧型酶与第二个邻二酚分子结合,结合位点与第一步 相同, 但两个铜原子之间的一个OH基与氢离子结合,生 成一分子水和一个氢离子。
其底物的研究以及采后贮藏环境对酶促褐变的影响。 酶促褐变与果实衰老有密切关系,衰老过程中酶与底 物的分区定位遭到破坏是导致酶促褐变的主要原因。 PPO合成基因的表达可能与衰老有关。对PPO的深入研
究有望从分子水平上搞清酶促褐变的机理,为控制酶
促褐变提供新方法。
• 改变PPO基因的表达 利用反义RNA技术反向表达PPO基因,修饰转基 因植株中多酚氧化酶基因的表达,从而控制酶促 褐变。
植物
微生物
• 广义上,PPO可分为单酚氧化酶、双酚氧化酶、漆酶
1.植物中的多酚氧化酶
• 在植物(如苹果、荔枝、菠菜、马铃薯、 豆类、茶叶、桑叶、烟草等)组织中, PPO是与内囊体膜结合在一起的,天然状 态无活性,但将组织匀浆或损伤后PPO被 活化,从而表现出活性。 • 在高等植物组织发生褐变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多酚氧化酶多酚氧化酶的酶学性质及其应用摘要:本文论述了多酚氧化酶的酶学性质和它对果蔬类食品的影响,以及如何利用它的酶学性质加以控制。
关键词:多酚氧化酶性质抑制0引言多酚氧化酶(polyphenol oxidase,PPO)是自然界中分布极广的一种金属蛋白酶,普遍存在于植物、真菌、昆虫的质体中,甚至在土壤中腐烂的植物残渣上都可以检测到多酚氧化酶的活性。
由于其检测方便,是被最早研究的几类酶之一。
自1883年Yoghid发现日本漆树液汁变硬可能和某种活性物质相关,1938年Keilin D.和Mann G.研究了蘑菇多酚氧化酶的提取和纯化,得到多酚氧化酶并将这类酶称为polyphenol oxidase。
多酚氧化酶又称儿茶酚氧化酶,酪氨酸酶,苯酚酶,甲酚酶,邻苯二酚氧化还原酶,是六大类酶中的第一大类氧化还原酶[1]。
1多酚氧化酶的结构特性多酚氧化酶是一种含有Cu2+离子的结构蛋白,可以催化酚类上的羟基,使之转化为醌或催化多酚类变为氧合醌。
因为醌类具有较强的电化学性质,会发生自动氧化、蛋白质的亲核聚合反应及一些二级反应,而这些反应都会导致酶促褐变反应的发生[2]。
多酚氧化酶的共同特征是能够通过分子氧氧化酚或多酚形成对应的醌。
在广义上,多酚氧化酶可分为三大类:单酚单氧化酶(酪氨酸酶tyrosinase,EC.1.14.18.1)、双酚氧化酶(儿茶酚氧化酶catechol oxidse,EC.1.10.3.2)和漆酶(laccase,EC.1.10.3.1)。
在这三大类多酚氧化酶中,儿茶酚酶主要分布在植物中,微生物中的多酚氧化酶主要包括漆酶和酪氨酸酶。
2 多酚氧化酶的来源和制备2.1多酚氧化酶的来源多酚氧化酶普遍存在于植物、真菌、昆虫的质体中。
2.2多酚氧化酶的制备制备马铃薯丙酮粉:取50g去皮切丁的马铃薯与60mL丙酮(-20℃)混合粉碎抽滤,滤渣用-20 ℃的丙酮冲洗至白色室温下晾干。
PPO粗提液的制备: 5g马铃薯干粉与40mL粗酶提取液混合搅拌1min 静止1hr,4℃离心(4℃,15000rpm,15min)过滤取上清,即得PPO粗提液,粗酶提取液为4.2g+1000mL0.2M PB。
PPO纯化之盐析:PPO的纯化常采用盐析法。
盐析主要是利用酶蛋白在高浓度的盐溶液中溶解度减小而析出的原理。
硫酸铵由于价廉、溶解度大,且能使蛋白质稳定,故是最常用的盐析剂。
粗酶制剂加入等体积饱和(NH4)2SO4静置1hr,4℃离心(4℃,17000rpm,10min)收集沉淀加15mL0.2MPB溶解再次离心(条件同前)收集上清,即得PPO粗酶制剂取4mL粗酶制剂于冷冻干燥机上冻干,得PPO干粉[3]。
3多酚氧化酶的催化机理多酚氧化酶(PolyphenolOxidase,PP0)是从真菌到植物乃至哺乳动物体内都广泛存在的一类铜蛋白,它能有效催化多酚类化合物氧化形成相应的醌类物质。
在茶儿茶素氧化PPO底物儿茶素(eatechin)类能和许多金属离子络合,Cu2+离子形成的配位物中的配位数为4或6,可以从配位体的配位键来阐明PPO的催化生化机理。
PPO的多肽链通过自身的折叠卷曲,形成具有一定构象的高级结构。
Cu2+与多肽链上的氨基酸残基以配位键相连。
主要有His—His和Cys—His残基作为铜离子的配基,形成具有特定立体结构的活件部位[4]。
当邻苯二酚基和底物存在时,由于其“靠近”及“定向”效应,使多肽链和底物的空间构象发生改变,相互契合,从而使底物进入活性中心,邻苯二酚基上的二个羟基与多肽链上的氨基酸残基以氢键相连,形成酶与底物的复合物,由于复合物的不稳定性,多肽链构象发生扭曲,氢键断裂,H被附着在多肽链上,酶与底物不再契合,两者都同时发生构象转变,于是产物脱离了活性部位.成为邻醌。
邻醌可发生一系列次生氧化作用,形成了多种氧化产物。
酶又通过脱氢作用,发生构象回转,恢复以前的天然构象,重新成为具有催化能力的蛋白质。
4多酚氧化酶的生理功能高等植物组织发生褐变主要是PPO活动的结果。
PPO催化单酚羟基化为邻二酚,二羟酚氧化为邻醌。
醌聚合并与细胞内蛋白质的氨基酸反应,结果发生黑色或褐色色素沉淀,最终导致水果、蔬菜等经济作物营养丢失和经济损失。
PPO作为一种氧化还原酶还在光合作用中发挥作用。
如调节叶绿体中有害的光氧化反应速度,参与其中电子传递;PPO还可促进伤口的愈合[5]。
也可增加植物对病原体的抗性。
如烟草对炭疽病、黄瓜对黑星病、苹果对轮纹病、棉苗对枯萎病菌、水稻对自叶枯病菌和细菌性条斑病以及番茄对小昆虫的抗性等。
PPO与水果和作物的褐变有关,为了防止水果褐变保持水果的新鲜性,生产上运用多种方法来降低水果中的PPO含量,例如涂以抗坏血酸、柠檬酸为主剂的复合护色剂等[6]。
5多酚氧化酶活性的抑制食品发生酶促褐变大多是不利的,甚至会带来严重的不良后果,对食品中的酶促褐变通常是要防止的。
人们通过对PPO研究发现许多条件能影响酶促褐变的发生。
必需具备的条件有三个:底物(多酚类物质)、氧和多酚氧化酶。
这三个条件缺一不可[7]。
有些果蔬如桔子、柠檬、西瓜等,由于不含多酚氧化酶,所以不会发生酶促褐变。
但是如前所述,PPO分布广泛,酶促褐变也很普遍,因此控制褐变的发生条件,从而控制、抑制褐变显得十分重要。
实际操作中从食品中除去PPO的底物(多酚类物质)不仅困难,而且不现实。
因此比较有效的是抑制PPO活性,其次是防止与氧接触[8]。
5.1作用于酶辅基的抑制剂PPO是以铜元素做为辅基的一种蛋白质,因此,它能被金属络合物所抑制,如氰化物、氟化物、CO、二乙基二硫氨基甲酸钠(DIECA)、巯基苯噻、二琉基丙醇、叠氮化物、甲基黄原酸钾等,其中有些物质也可以与PPO催化所产生的醒类物质发生反应[9]。
乙二胺四乙酸或其钠盐、焦磷酸钠、多聚磷酸盐等也可以络合金属离子,用作抗褐变剂时一般与其它物质配合使用[10]。
上述抑制剂对不同来源(叶绿体、线粒体和可溶性)PPO的作用存在明显差异.线粒体和可溶性PPO的脱氢活性能被甲基黄原酸钾、硫脲和DIECA抑制,而相应的叶绿体PPO则不被黄原酸盐所抑制,仅在一定程度上受到DIECA的作用;DIECA 对经基化活性的抑制作用可因添加一二酚(咖啡酸、儿茶酸原和儿茶酚)而完全丧失.抗坏血酸也可以络合PPO的辅基,因而可直接作用于此酶[11]。
5.2作用于酶蛋白的抑制剂以无或亚硫酸盐是预防果蔬酶促褐变最常使用的物质,它们对PPO—多酚系统的作用比较复杂,既可直接作用于酶本身,降低它对单酚和二酚类的催化反应活性,又可与第一步反应生成的醌类物质发生不可逆的结合,形成无色物质;对亚硫酸盐作用的深入研究发现,其对PPO不可逆抑活的直接原因是它能与酶蛋白发生键连,修饰了蛋白质结构[12]。
用多肽酶的激活剂处理可以抑制PPO活性,是因为多肽酶可破坏PPO蛋白质.根据此机理,琥珀酸—2,2—二甲基酰肼可阻止蘑菇的酶促变色,同时,该多肽酶的激活剂还能和PPO作用的底物结合,也可减轻褐变.无花果蛋白酶能抑制果实褐变也是由于其对PPO有分解作用[13]。
蜂蜜能抑制苹果片和葡萄汁褐变的原因是所含的低聚肽(分子量约600Da)对PPO有抑制作用。
4—已基间苯二酚作用于PPO,化学性质稳定,无毒、无致癌性、也无致突变性,它已被推荐用于防治果蔬产品酶促褐变,具有良好的应用前景。
5.3竞争或非竞争性抑制剂苯甲酸和一些取代肉桂酸是甜樱桃、苹果、梨、杏、葡萄和马铃薯PPO最具竞争性的抑制剂,Ki值依次增加的顺序是肉桂酸<p—香豆酸<m—香豆酸<o —香豆酸<苯甲酸,表明PPO有不同的底物和抑制结合位点.芳香酸抑制剂直接需要在苯环上或在共扼位置上有一个游离梭基,开链酸至少有两个共扼乙烯基团.甲基化既可降低抑制作用,又可降低Ki值,因此,抑制剂苯核上甲基化或轻基化均能影响催化位点的竞争性[14]。
6前景调节PPO表达是未来研究热点.一方面因为受伤或衰老会导致黑色素的形成,负调节PPO能大量提高作物的质量;另一方面PPO的过度表达能减少害虫对作物的侵害,或通过影响植物蛋白形成抗营养机制,或在毛状体渗出液中通过它启动聚合作用捕获昆虫[15]。
因此负调节PP0表达或调节PPO使其过度表达在生产及应用方面都具有很好的前景及重要的实际意义。
参考文献:[1] 胡春和;多酚氧化酶的研究现状[J].中国高新技术企业,2009,(03):73-75.[2] 张莉;陈乃富;多酚氧化酶的酶学性质及其应用研究[J].安徽农学通报,2006,(12):29-30+34.[3] 孔龙,霍瑞贞多酚氧化酶催化反应的抑制动力学及机理[J].应用化学,1994,(04):.[4] 蓝虹云,雷福厚,黄道战,吴健,胡仲义多酚氧化酶催化单宁的氧化聚合反应研究[J].湖北化工,2002,(02):12-14.[5] 王曼玲,胡中立,周明全,宋运淳植物多酚氧化酶的研究进展[J].植物学通报,2005,(02):215-222.[6] 韩涛,李丽萍果蔬多酚氧化酶的抑制及褐变的防治因素[J].北京农学院学报,1999,(04):88-93.[7] 韩涛,李丽萍.果实和蔬菜中PPO的作用.北京农学院学报,1998,13(2):117一124[8] 胡瑞波,田纪春小麦多酚氧化酶研究进展[J].麦类作物学报,2004,(01):81-85.[9] 贺立红, 宾金华高等植物中的多酚氧化酶.植物生理学通讯,2001(37): 340-346[10]黄明,彭世清.植物多氧化酶研究进展[J].广西师范大学学报(自然科学版),1998,16(2):65—70[11] 刘文山;肖凯军;郭祀远;苹果多酚氧化酶的提取及其抑制作用的研究[J].现代食品科技,2006,(04):82-84+155.[12]李荣林.固定化多酚氧化酶的化学性质研究[J].茶叶。
1998,24(1).[13]雷东峰,冯怡,梅建生.烟草中多酚氧化酶(PPO)的特征[J].西北植物学报2004,24(1):161—16[14] 伍红,霍瑞贞.蘑菇多酚氧化酶的性质及其催化反应动力学的研究[J].广州化学,1994,(3):24-29.[15] 邹承鲁;李文杰;多酚氧化酶作用机制的研究Ⅰ.有机溶剂对于多酚氧化酶接触邻位双酚氧化的影响[J].生理学报,1957,(04):403-410.。