西南大学1903[0931工程数学》机考大作业
国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
a.
b.
c.
d.
8-2.设 A,B 为两个随机事件,则(B)成立.
a.
b.
c.
d.
9-1.若事件 A,B 满足
,则 A 与 B 一定(B).
a. 互不相容
b. 不互斥
c. 相互独立
d. 不相互独立
9-2.如果(B)成立,则事件 A 与 B 互为对立事件.
a.
b.
且
c. A 与
互为对立事件
d.
10-1.袋中有 5 个黑球,3 个白球,一次随机地摸出 4 个球,其中恰有 3 个白球
1
.
正确答案是:1
试题 18
中元素 C23=
18-1.乘积矩阵
10
.
正确答案是:10
18-2. 乘积矩阵
中元素
C21=
-16
.
正确答案是:-16
试题 19
19-1.设 A,B 均为 3 阶矩阵,且
,则
-72
.
正确答案是:-72
19-2. 设 A,B 均为 3 阶矩阵,且
,则
正确答案是:9
试题 20
20-1.矩阵
.(√)
13-2.已知连续型随机变量 X 的分布函数 F(x),且密度函数 f(x)连续,则
工程数学(本科)形考任务答案
⼯程数学(本科)形考任务答案⼯程数学作业(⼀)答案第2 章矩阵(⼀)单项选择题(每⼩题2分,共20 分)⒈设,则(D ).A. 4B. -4C. 6D.-6⒉若,则(A ).A. B. -1 C. D. 1⒊乘积矩阵中元素(C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶⽅阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶⾮零矩阵,则也是⾮零矩阵D. 若均为阶⾮零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏⽅阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则(D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成⽴的是( A ).A. B.C. D.(⼆)填空题(每⼩题 2 分,共20 分)⒈7 .⒉是关于的⼀个⼀次多项式,则该多项式⼀次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 ×矩4 阵.⒋⼆阶矩阵.⒌设,则⒍设均为3 阶矩阵,且,则72 .⒎设均为3 阶矩阵,且,则-3 .⒏若为正交矩阵,则0.⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每⼩题8 分,共48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满⾜⽅程中的.解:⒋写出 4 阶⾏列式中元素的代数余⼦式,并求其值.答案:⒌⽤初等⾏变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:(1)(2)( 过程略) (3)⒍求矩阵的秩.解:(四)证明题(每⼩题 4 分,共12 分)⒎对任意⽅阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶⽅阵,且,试证或.证明:是阶⽅阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵⼯程数学作业(第⼆次)第3 章线性⽅程组(⼀)单项选择题(每⼩题2分,共16 分)⒈⽤消元法得的解为( C ).A. B.C. D.⒉线性⽅程组(B ).A. 有⽆穷多解B. 有唯⼀解C. ⽆解D. 只有零解⒊向量组的秩为(A).A. 3B. 2C. 4D. 5⒋设向量组为,则(B)是极⼤⽆关组.A. B. C. D.⒌与分别代表⼀个线性⽅程组的系数矩阵和增⼴矩阵,若这个⽅程组⽆解,则(D).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性⽅程组相应的齐次线性⽅程组只有零解,则该线性⽅程组(A).A. 可能⽆解B. 有唯⼀解C. 有⽆穷多解D. ⽆解⒎以下结论正确的是(D).A. ⽅程个数⼩于未知量个数的线性⽅程组⼀定有解B. ⽅程个数等于未知量个数的线性⽅程组⼀定有唯⼀解C. ⽅程个数⼤于未知量个数的线性⽅程组⼀定有⽆穷多解D. 齐次线性⽅程组⼀定有解⒏若向量组线性相关,则向量组内(A)可被该向量组内其余向量线性表出.A. ⾄少有⼀个向量B. 没有⼀个向量C. ⾄多有⼀个向量D. 任何⼀个向量9 .设A,B为阶矩阵,既是A⼜是B的特征值,既是A⼜是B的属于的特征向量,则结论()成⽴.A.是AB的特征值B.是A+B 的特征值C.是A-B 的特征值D.是A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成⽴,则称A和B相似.A.B.C.D.(⼆)填空题(每⼩题2分,共16 分)⒈当1时,齐次线性⽅程组有⾮零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性⽅程组的系数⾏列式,则这个⽅程组有⽆穷多解,且系数列向量是线性相关的.⒌向量组的极⼤线性⽆关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性⽅程组中有5 个未知量,且秩,则其基础解系中线性⽆关的解向量有2个.⒏设线性⽅程组有解,是它的⼀个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是⽅程的根.10 .若矩阵A满⾜,则称A为正交矩阵.(三)解答题(第1 ⼩题9分,其余每⼩题11 分)1 .⽤消元法解线性⽅程组解:⽅程组解为2.设有线性⽅程组为何值时,⽅程组有唯⼀解?或有⽆穷多解?解:]当且时,,⽅程组有唯⼀解当时,,⽅程组有⽆穷多解3.判断向量能否由向量组线性表出,若能,写出⼀种表出⽅式.其中解:向量能否由向量组线性表出,当且仅当⽅程组有解这⾥⽅程组⽆解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性⽅程组的⼀个基础解系.解:⽅程组的⼀般解为令,得基础解系6.求下列线性⽅程组的全部解.解:⽅程组⼀般解为令,,这⾥,为任意常数,得⽅程组通解7.试证:任⼀4维向量都可由向量组,,,线性表⽰,且表⽰⽅式唯⼀,写出这种表⽰⽅式.证明:任⼀4维向量可唯⼀表⽰为⒏试证:线性⽅程组有解时,它有唯⼀解的充分必要条件是:相应的齐次线性⽅程组只有零解.证明:设为含个未知量的线性⽅程组该⽅程组有解,即从⽽有唯⼀解当且仅当⽽相应齐次线性⽅程组只有零解的充分必要条件是有唯⼀解的充分必要条件是:相应的齐次线性⽅程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .⽤配⽅法将⼆次型化为标准型.解:令,,,即则将⼆次型化为标准型⼯程数学作业(第三次)第4 章随机事件与概率(⼀)单项选择题⒈为两个事件,则( B )成⽴.A. B.C. D.⒉如果(C)成⽴,则事件与互为对⽴事件.A. B.C. 且D. 与互为对⽴事件⒊10 张奖券中含有3 张中奖的奖券,每⼈购买 1 张,则前3个购买者中恰有1 ⼈中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对⽴,则对⽴D. 如果相容,则相容⒌某随机试验的成功率为, 则在3 次重复试验中⾄少失败1次的概率为(D ).A. B. C. D.6. 设随机变量,且,则参数与分别是(A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,(A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则(D).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(⼆)填空题⒈从数字1,2,3,4,5中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时,0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独⽴,且,则.6. 已知,则当事件相互独⽴时,0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为⼆维随机变量的协⽅差.(三)解答题1. 设为三个事件,试⽤的运算分别表⽰下列事件:⑴中⾄少有⼀个发⽣;⑵中只有⼀个发⽣;⑶中⾄多有⼀个发⽣;⑷中⾄少有两个发⽣;⑸中不多于两个发⽣;⑹中只有发⽣.解: (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个⽩球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同⾊;⑵ 2 球中⾄少有 1 红球.解:设= “球2 恰好同⾊”,= “球2 中⾄少有1红球”3. 加⼯某种零件需要两道⼯序,第⼀道⼯序的次品率是2% ,如果第⼀道⼯序出次品则此零件为次品;如果第⼀道⼯序出正品,则由第⼆道⼯序加⼯,第⼆道⼯序的次品率是3% ,求加⼯出来的零件是正品的概率.解:设“第i 道⼯序出正品”(i=1,2 )4. 市场供应的热⽔瓶中,甲⼚产品占50% ,⼄⼚产品占30% ,丙⼚产品占20% ,,求买到⼀个热⽔瓶是合格品的概率.甲、⼄、丙⼚产品的合格率分别为90%,85%,80%解:设5. 某射⼿连续向⼀⽬标射击,直到命中为⽌.已知他每发命中的概率是,求所需设计次数的概率分布.解:故X的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独⽴同分布的随机变量,已知,设,求.解:⼯程数学作业(第四次)第6 章统计推断(⼀)单项选择题⒈设是来⾃正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来⾃正态总体(均未知)的样本,则统计量(D)不是的⽆偏估计.A. B.C. D.(⼆)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种⽅法是点估计和区间估计.常⽤的参数点估计有矩估计法和最⼤似然估计两种⽅法.3 .⽐较估计量好坏的两个重要标准是⽆偏性,有效性.4 .设是来⾃正态总体(已知)的样本值,按给定的显著性⽔平检验,需选取统计量.5 .假设检验中的显著性⽔平为事件(u 为临界值)发⽣的概率.(三)解答题1 .设对总体得到⼀个容量为10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0。
最新国家开放大学电大《工程数学》期末题库及答案
最新国家开放大学电大《工程数学》期末题库及答案
考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。
该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
《工程数学》题库及答案一
一、单项选择题(每小题3分.共15分)
试题答案及评分标准(供参考)
《工程数学》题库及答案二一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案。
2014工程数学实验C期末大作业
成绩:轻工学院2014工程数学实验C报告学院:姓名:班级:学号:电话:Email:Ⅰ 展示图形之美篇要求:要求用中文宋体五号字输入文字,Mathematica 程序默认格式即可。
用word 自带公式编辑器输入所有数学公式,在运行结果后输入结果分析,可以是题目的结论,也可以是对题目的理解与认识。
【数学实验一】题目:利用Mathematica 制作如下图形(1)⎩⎨⎧==t k y t k x 2sin sin ,]2,0[π∈t ,其中k 的取值为自己学号的后三位。
(2))20,0(cos sin sin cos sin ππ≤≤≤≤⎪⎩⎪⎨⎧===v u u z vu y kv u x ,其中k 的取值为自己学号的后三位。
Mathematica 程序: 运行结果:结果分析:【数学实验二】题目:请用Mathematica 制作五个形态各异三维立体图形,图形函数自选,也可以由几个函数构成更美观、更复杂的图形;并用简短的语言说明选择该图形的理由和意义。
Mathematica 程序: 运行结果:结果分析:Mathematica 程序: 运行结果:结果分析:Mathematica 程序: 运行结果:结果分析:Mathematica 程序: 运行结果:结果分析:Mathematica 程序: 运行结果:结果分析:Ⅱ演算微积分之快篇要求:1)要求用中文宋体五号字输入文字,Mathematica 程序默认格式即可。
用word 自带公式编辑器输入所有数学公式,在运行结果后输入结果分析,可以是题目的结论,也可以是对题目的理解与认识。
2)从下面的题目中选择5个题目完成。
【数学实验一】题目:证明不等式)0(2sinππ<<>x x x 。
Mathematica 程序: 运行结果:结果分析:【数学实验二】题目:若⎩⎨⎧+=+-=t t y t m t x 2)ln(3(其中m 的取值为自己学号的后三位),利用Mathematica 软件计算xd y d dx dy 22,。
西南大学20年6月[0044]《线性代数》机考【答案】
一、
1答:线性方程组线性方程组是各个方程关于未知量均为一次的方程组(例如2元1次方程组)。
2、矩阵相乘,必须满足矩阵A的列数与矩阵B的函数想等,或者矩阵A的行数与矩阵B的
列数相等,如下表示:
矩阵乘积形式表示如下:
3、解:过程如下:
二、1、(a)设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得:
AB=BA=E。
则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
注:E为单位矩阵。
(b)阐述求逆矩阵的初等行变换方法:
用初等变换求逆矩阵只要程式化地一步一步做下去,就会得到结果。
在要求逆的n阶矩阵右边写一个n阶单位阵,然后对这个n×2n阶矩阵按下面程式进行行
初等变换(不能作列初等变换):
将第一行第一列元素化为1,将第一列其余元素化为0;
将第二行第二列元素化为1,将第二列其余元素化为0;
…………
将第n行第n列元素化为1,将第n列其余元素化为0。
这时只要把右边的n阶方阵写下来,就是所要求的逆矩阵。
三、1、
(a)
100
126
113
λ
λ
λ
-
-
-
=(γ-1)(γ-2)(γ-3)-6(γ-1)=γ(γ-1)(γ-5)
(b):
解:矩阵
100
126
113
⎛⎫
⎪
⎪
⎪
⎝⎭
肥东特征为0,1,5,γ=1对应的特征向量为[]。
2019-2020年电大考试《工程数学》历年期末考试题汇总
期末考试工程数学(本) 试题一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立. A . A B A B +=+B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6 C .0,0 D .2,64.若随机变量(0,1)X N ,则随机变量32Y X =- ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111OA BO ---⎡⎤=⎢⎥⎣⎦.8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B . 9.若随机变量[0,2]XU ,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --.12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩ 中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)XN ,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
从一批产品中随机地抽取4段进行测量,测得的结果如下:(单位:cm )10.4, 10.6, 10.1, 10.4 问:该机工作是否正常(0.9750.05, 1.96u α==)? 四、证明题(本题6分)15. 设n 阶矩阵A 满足2,A I AA I '==,试证A 为对称矩阵。
工程数学2021参考答案
工程数学2021参考答案工程数学2021参考答案工程数学作为一门应用数学学科,广泛应用于工程领域中的问题求解和数据分析。
在2021年的考试中,工程数学的内容涵盖了多个方面,包括微积分、线性代数、概率统计等。
下面将为大家提供一份参考答案,希望能够对同学们的复习和学习有所帮助。
第一部分:微积分1. 求函数f(x) = x^3 - 3x^2 + 2x - 1的极值点和极值。
解:首先,求函数的导数f'(x) = 3x^2 - 6x + 2。
令f'(x) = 0,解得x = 1和x = 2。
然后,求二阶导数f''(x) = 6x - 6。
将x = 1和x = 2代入f''(x),得到f''(1) = 0和f''(2) = 6。
由于f''(1) = 0,说明x = 1处可能是极值点。
由f''(2) = 6 > 0,说明x = 2处是极小值点。
综上所述,函数f(x) = x^3 - 3x^2 + 2x - 1的极值点为x = 1和x = 2,其中x = 1是极值点,为极大值。
2. 求函数f(x) = e^x * sinx的不定积分。
解:根据乘积的积分法则,可以将f(x)拆分为两个函数的乘积:f(x) = e^x * sinx = u * v,其中u = e^x,v = sinx。
然后,对u和v分别求导,得到u' = e^x,v' = cosx。
根据乘积的积分法则,不定积分f(x)的结果可以表示为:∫f(x)dx = u * v - ∫v * u'dx。
将u、v、u'和v'代入上述公式,得到:∫f(x)dx = e^x * sinx - ∫sinx * e^xdx。
对于∫sinx * e^xdx,可以再次使用乘积的积分法则进行求解。
重复上述过程,直到得到不定积分的结果。
西南大学工程数学 【0931】
a4 = a1+3a2-a3 a5 = -a2 +a3三、求解方程组12341234123431231/2 x x x xx x x xx x x x--+=⎧⎪-+-=⎨⎪--+=-⎩.写出此方程组的增广矩阵,用初等行变换来解:1 -1 -1 1 01 -1 1 -3 11 -1 -23 -1/2 第2行减去第1行,第3行减去第1行~1 -1 -1 1 00 0 2 -4 10 0 -1 2 -1/2 第1行减去第3行,第2行加上第3行乘以2,第3行乘以-1~1 -1 0 -1 1/20 0 0 0 00 0 1 -2 1/2 交换第2行和第3行~1 -1 0 -1 1/20 0 1 -2 1/20 0 0 0 0显然(1/2,0,1/2,0)^T是方程组的特解,而增广矩阵的秩为2,所以基础解系中有4-2即2个向量,分别为(1,1,0,0)^T和(1,0,2,1)^T那么方程组的解为:c1*(1,1,0,0)^T +c2*(1,0,2,1)^T +(1/2,0,1/2,0)^T,c1c2为任意常数四、某工厂有甲、乙、丙三个车间,生产同一种产品,每个车间的产量分别占全厂的25%、35﹪、40﹪,各车间产品的次品率分别为5%、4﹪、2﹪。
求全厂产品的次品率。
解:由概率公式得出五、设二维随机变量(,)X Y的联合概率分布为YX1 2 30 0.1 0.1 0.31 0.25 0 0.25求(1){0}P X=;(2){2}P Y≤;(3){1,2}P X Y<≤;(4){2}P X Y+=.- 2 -。
国家开放大学《工程数学本》形成性考核作业-参考答案(一)
国家开放大学《工程数学本》形成性考核作业-参考答案(一)最近,国家开放大学的学生们正在进行《工程数学本》的形成性考核作业,本文将为大家提供参考答案。
首先,本次形成性考核作业分为两个部分,分别是选择题和计算/证明题。
下面将分开讲解。
一、选择题1. 垂直于平面x+y+z=1的平面方程是()A. x+y-z=1B. x-y+z=1C. -x+y+z=1D. -x-y+z=1答案:D。
解析:由题意可知,要求垂直于平面x+y+z=1,因此可以设计一个法向量n=[1,1,1],那么直线上任意一点与法向量的内积都为0。
从而有x+y+z-1=0。
将其化简得到该平面的方程为-x-y+z=1。
2. 已知曲线的参数方程 r(t) = (1+2t)i + (t-3)j + (t^2-1)k,它在t=1的单位切向量是()A. 2i-j+2kB. 2i+j+2kC. 4i-j+6kD. -2i-j+2k答案:B。
解析:曲线在t=1时的单位切向量就是它的导数,即r’(1)。
求导可得r’(t) = 2i+j+2tk。
代入t=1得到r’(1) = 2i+j+2k。
3. 行列式D=|2 2 1;3 2 4;1 3 2|的值是()A. -2B. 2C. 4D. 6答案:A。
解析:该行列式可以通过按第二行展开化简为:D=2|2 1| - 2|3 4| + |1 3| = 2*(-2) - 2*(-12) + 3 = -2。
二、计算/证明题1.设A、B、C为3×3的矩阵,且满足:AB=BC,且B可逆,证明:AC=C。
证明:由已知AB=BC可得 A=BCB^-1。
于是有 AC=BCB^-1C = B(IB^-1)C = BC = C。
2.已知函数y=e^(kx)sin(ax+b)在[x0,x0+pi/a]上的最大值为2,最小值为-2,求k和b的值情况。
解析:根据已知条件,可推出y的表达式为y=e^(kx)sin(ax+b),并知道在[x0,x0+pi/a]上最大值为2,最小值为-2,因此可列出以下两个等式:e^(kx0)sin(ax0+b)=2e^(k(x0+pi/a))sin(a(x0+pi/a)+b)=-2将两式相除,可得到e^(kpi/a)=-1。
国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.
西南大学2020年春季计算机数学基础【0838】课程考试大作业参考答案
4. 请给出“函数 不定积分”的含义,并计算 .
5. 请给出“函数 在[a定积分 .
二、大作业要求
大作业共需要完成三道题:
第1题必做,满分30分;
第2-3题选作一题,满分30分;
第4-5题选作一题,满分40分.
西南大学培训与继续教育学院课程考试试题卷
学期:2020年春季
课程名称【编号】:计算机数学基础【0838】 A卷
考试类别:大作业 满分:100 分
答案在下方答题页
一、大作业题目
1.请给出“函数极限 ”的直观含义,并计算 .
2. 请给出“函数f(x)在x0点导数”的定义及其几何意义,并求曲线 在点(1,1)处的切线方程.
19年西南大学春季[0933]《机械工程控制基础》--答案
0933 20191单项选择题1、对数幅频特性的渐近线如图所示,它对应的传递函数为()。
1.2.3.4.2、一系统在干扰单独作用下的误差函数,在输入信号单独作用下的误差函数,则系统总的稳态误差为(1.9/52.-9/53.04.∞3、延时环节的相频特性为()。
1.-τω2.τω3.180°4.90°4、二阶系统当时,如果增加,则输出响应的最大超调量将()。
1.增加2.不变3.减小4.不定5、一系统的传递函数为,则其相频特性为()。
1.arctan3ω2.-90°-arctan3ω3.-arctan3ω4.90°-arctan3ω6、某环节的传递函数为,该环节是()。
1.微分环节2.一阶微分环节3.惯性环节4.积分环节7、当系统已定,并且输入知道时,求系统的输出(响应),并通过输出来研究系统本身的有关问题,称为(1. A. 最优控制2.数学建模3.系统校正4.系统分析8、下列系统属于闭环系统的是()。
1.普通洗衣机2.工业机器人3.交通红绿灯4.简易数控机床9、二阶欠阻尼系统的最大超调量和振荡次数反映了系统的()。
1.稳定性2.相对稳定性3.精度4.快速性10、惯性环节的传递函数是()。
1.2.3.4.11、某系统的传递函数为,则影响系统时间响应快速性的因素是()。
1.K2.K和T3.输入信号大小4.T12、的拉氏变换为()。
1.2.3.4.13、某控制系统的方框图如图所示,则该系统的稳态误差表达式为(1.2.3.4.14、单位斜坡响应的导数是()。
1.都不是2.单位阶跃响应3.单位加速度响应4.单位脉冲响应15、若,则()。
1.2.3.4.16、某系统的传递函数为,其零点和极点是()。
1.零点,极点2.零点,极点3.零点,极点4.零点,极点17、设系统的开环传递函数为,则该系统()。
1.幅相特性曲线是一条与虚轴平行的直线,所以闭环是稳定的2.幅相特性曲线是一条与实轴平行的直线,所以闭环是稳定的3.幅相特性曲线是一条与实轴平行的直线,所以闭环是不稳定的4.幅相特性曲线是一条与虚轴平行的直线,所以闭环是不稳定的18、系统的传递函数为,则其单位阶跃响应函数为()。
工程数学“概率论与数理统计”测试题参考答案
工程数学期末复习要点邹斌现在主要讨论工程数学这门课程的考核要求,08秋工程数学考试形式为半开卷,行考比例占30%,我们将分章节复习。
本课程分线性代数和概率统计两部分共7章内容。
分别是行列式、矩阵、线性方程组、矩阵的特征值及二次型、随机事件与概率、随机变量的分布和数字特征、数理统计基础。
第一部分线性代数一、行列式复习要求(1)知道n阶行列式的递归定义;(2)掌握利用性质计算行列式的方法;(3)知道克莱姆法则。
考核要求:行列式性质的计算(选择或填空)二、矩阵复习要求(1)理解矩阵的概念,了解零矩阵、单位矩阵、数量矩阵、对角矩阵、上(下)三角矩阵、对称矩阵的定义,了解初等矩阵的定义;(2)熟练掌握矩阵的加法、数乘矩阵、乘法、转置等运算;(3)掌握方阵乘积行列式定理;(4)理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件;(5)熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,掌握求解简单的矩阵方程的方法;(6)理解矩阵秩的概念,掌握矩阵秩的求法;(7)会分块矩阵的运算。
考核要求:(1)矩阵乘法(选择或填空)(2)求逆矩阵(3阶)初等行变换法(计算题)(3)求矩阵的秩(等于阶梯形矩阵的非零行数)三、线性方程组复习要求(1)掌握向量的线性组合与线性表出的方法,了解向量组线性相关与线性无关的概念,会判别向量组的线性相关性;(2)会求向量组的极大线性无关组,了解向量组和矩阵的秩的概念,掌握求向量组的秩和矩阵的秩的方法;(3)理解线性方程组的相容性定理,理解齐次线性方程组有非零解的充分必要条件。
熟练掌握用矩阵初等行变换方法判断齐次与非齐次线性方程组解的存在性和惟一性;(4)熟练掌握齐次线性方程组基础解系和通解的求法;(5)了解非齐次线性方程组解的结构,掌握求非齐次线性方程组通解的方法。
考核要求:(1)线性相关性(选择或填空)(2)会求向量组的极大线性无关组(计算题)(3)线性方程组的判定定理(选择或填空)(4)熟练掌握齐次和非齐次方程组的基础解系和通解的求法(计算题)四、矩阵的特征值及二次型复习要求(1)理解矩阵特征值、特征多项式及特征向量的定义,掌握特征值与特征向量的求法;(2)了解矩阵相似的定义,相似矩阵的性质;(3)知道正交矩阵的定义和性质;(4)理解二次型定义、二次型的矩阵表示、二次型的标准形,掌握用配方法化二次型为标准形的方法;(5)了解正定矩阵的概念,会判定矩阵的正定性。
工程数学(本科)形考任务答案解析
_工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D._⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”, = “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则(A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴接受 H 0。
《工程数学》期末考试试卷附答案
《工程数学》期末考试试卷附答案一、单项选择题 (每小题3分,共15分)1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中 B. 至少有一发击中 C. 必然击中 D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( ) A. 对于任意的μ, P 1=P 2 B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正 确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)二、填空题 (每空3分,共15分)1. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
2.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
3.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正 常工作的概率为 。
工程数学(本)-国家开放大学电大学习网形考作业题目答案
工程数学(本)一、单选题1.下列各函数对中,()中的两个函数相等.正确答案: B2.函数y=2sinx的值域是().A.(-2, 2)B.[-2, 2]C.(0, 2)D.[0, 2]正确答案: B3.函数y=x2+2x-7在区间(-4,4)内满足().A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升正确答案: A4.下列函数中为幂函数的是().正确答案: B5.下列函数在区间上单调递增的是().A.x3B.1/xC.-e xD.-sinx正确答案: A6.A.坐标原点B.x轴C.y轴D.y=x7.下列函数中为奇函数是().正确答案: B8.下列极限计算不正确的是().正确答案: D9.在下列指定的变化过程中,()是无穷小量.正确答案: A10.正确答案: A11.12.正确答案: B 13.正确答案: A 14.正确答案: B 15.正确答案: B 16.正确答案: D17.下列结论中()不正确.正确答案: D18.正确答案: D19.A.单调减少且是凸的B.单调减少且是凹的C.单调增加且是凸的D.单调增加且是凹的正确答案: B20.正确答案: B21.正确答案: B22.下列等式成立的是().正确答案: A23.正确答案: D24.正确答案: A25.正确答案: B26.正确答案: D27.正确答案: B28.在斜率为的2x积分曲线族中,通过点(1,4)的曲线方程为().正确答案: A29.正确答案: D30.正确答案: D二、判断题1.A.对B.错正确答案: B2.A.对B.错正确答案: A3.A.对B.错正确答案: A4.A.对B.错正确答案: B5.A.对B.错正确答案: B6.A.对B.错正确答案: B7.A.对B.错正确答案: B8.A.对B.错正确答案: A9.A.对B.错正确答案: B10.A.对B.错正确答案: A11.A.对B.错正确答案: B12.A.对B.错正确答案: A13.A.对B.错正确答案: A 14.A.对B.错正确答案: B15.A.对B.错正确答案: A16.A.对B.错正确答案: B17.A.对B.错正确答案: B18.A.对B.错正确答案: A19.A.对B.错正确答案: B20.A.对B.错正确答案: B21A.对B.错正确答案: B22.A.对B.错正确答案: A23.A.对B.错正确答案: B24.A.对B.错正确答案: A25.A.对B.错正确答案: B26.A.对B.错正确答案: A27.A.对B.错正确答案: A28.A.对B.错正确答案: B29.A.对B.错正确答案: B30.A.对B.错正确答案: B 三、填空题1.设行列式,则= ______ .正确答案:-62.是关于x的一个一次多项式,则该多项式一次项的系数是.正确答案:23.乘积矩阵中元素 C21= ______.正确答案:-164.设A,B均为3阶矩阵,且,则=.正确答案:-725.矩阵的秩为.正确答案:16.若线性方程组有非零解,则.正确答案:-17.一个向量组中如有零向量,则此向量组一定线性.正确答案:相关8.向量组的秩与矩阵的秩.正确答案:相等9.设线性方程组AX=0中有5个未知量,且秩(A)=3,则其基础解系中线性无关的解向量有个.正确答案:210.设A为n阶方阵,若存在数和非零n维向量X,使得,则称数为A的______ .正确答案:特征值11.如果两事件A,B中任一事件的发生不影响另一事件的概率,则称事件A与事件B是.正确答案:独立的12.已知,则当A,B事件互不相容时,=.正确答案:0.313.若,则=.正确答案: 0.997314.称为二维随机变量(X,Y)的.正确答案:协方差15.若都是的无偏估计,而且,则称更 .正确答案:有效四、解答题1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 答案:2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '=答案:3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦.答案:4.求齐次线性方程组1234123413430240450x x x xx x x xx x x-+-=⎧⎪--+=⎨⎪-+=⎩的通解.答案:5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的通解.答案:6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 答案:7. 当λ取何值时,非齐次线性方程组123123123 124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩答案:有解?在有解的情况下求方程组的通解.8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.答案:9. 设()3,4XN ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)10. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).11. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)12. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).13. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.9751.96u=).14.为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.9751.96u=). 答案:15. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =). 答案:16. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =) 答案:五、证明题+'是对称矩阵.1.对任意方阵A,试证A A答案:+-=,试证矩阵A可逆.2.设n阶方阵A满足2A A I O答案:3.设随机事件A与B相互独立,试证A与B也相互独立.答案:4.设A B,为两个事件,且B A⊂,试证()()P A B P A+=.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类别:网教(网教/成教)专业:土木工程2019年3月
课程名称【编号】:工程数学【0931】A卷
大作业满分:100分
计算题:共5个大题(每小题20分,共100分)
一、计Байду номын сангаас行列式 .
二、求矩阵 的秩,并求它的一个最高阶非零子式,其中 .
三、求解方程组 .
四、某工厂有甲、乙、丙三个车间,生产同一种产品,每个车间的产量分别占全厂的30%、30﹪、40﹪,各车间产品的次品率分别为5%、4﹪、2﹪。求全厂产品的次品率。
五、某篮球运动员投中篮圈的概率是0.9,求他两次独立投篮投中次数 的概率分布.