高中数学《球的体积和表面积 》课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学 ·必修2
解析 利用截面圆的性质先求得球的半径长. 如图,设截面圆的圆心为 O′,M 为截面圆上任一点,
则 OO′= 2,O′M=1, ∴OM= 22+1= 3,即球的半径为 3, ∴V=43π×( 3)3=4 3π.
19
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 3】 如图,有一个水平放置的透明无盖的 正方体容器,容器高 8 cm,将一个球放在容器口,再向容 器内注水,当球面恰好接触水面时测得水深为 6 cm,若不 计容器厚度,则球的体积为( )
9
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升
求球的体积与表面积的方法
(1)要求球的体积或表面积,必须知道半径 R 或者通过 条件能求出半径 R,然后代入体积或表面积公式求解.
(2)半径和球心是球的关键要素,把握住这两点,计算球 的表面积或体积的相关题目也就易如反掌了.
10
(2)求解表面积和体积时,要避免重叠和交叉.
15
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 2】 某几何体的三视图如图所示,它的体 积为( )
A.72π B.48π C.30π D.24π
16
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解析 由三视图可知该几何体是半个球体和一个倒立 圆锥体的组合体,球的半径为 3,圆锥的底面半径为 3,高 为 4,根据体积公式可得组合体的体积为12×43π×33+13 π×32×4=30π.
17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
探究 3 球的截面问题 例 3 一平面截球 O 的球面所得圆的半径为 1,球心 O 到平面 α 的距离为 2,则此球的体积为( ) A. 6π B.4 3π C.4 6π D.6 3π
18
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 1】 (1)两个球的半径相差 1,表面积之差 364π
为 28π,则它们的体积和为____3____. (2)已知球的大圆周长为 16π cm,求这个球的表面积. 答案 (2)见解析
11
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
12
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
探究 2 球的三视图 例 2 某个几何体的三视图如图所示,求该几何体的表 面积和体积.
13
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解 由三视图可知该几何体的下部是棱长为 2 的正方 体,上部是半径为 1 的半球,该几何体的表面
课后课时精练
数学 ·必修2
探究 1 球的体积与表面积 例 1 (1)已知球的直径为 6 cm,求它的表面积和体积; (2)已知球的表面积为 64π,求它的体积;
(3)已知球的体积为5300π,求它的表面积. 解 (1)∵直径为 6 cm, ∴半径 R=3 cm. ∴表面积 S 球=4πR2=36π(cm2),
4
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
2.做一做(请把正确的答案写在横线上) (1)表面积为 4π 的球的半径是____1____.
4π (2)直径为 2 的球的体积是____3____. (3)(教材改编,P28,T3)已知一个球的体积为43π,则此球 的表面积为___4_π___.
1 43πR3 .
2.球的表面积
□ 如果球的半径为 R,那么它的表面积 S= 2 4πR2 .
3
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
1.判一判(正确的打“√”,错误的打“×”) (1)决定球的大小的因素是球的半径.( √ ) (2)球面被经过球心的平面截得的圆的半径等于球的半 径.( √ ) (3)球的体积 V 与球的表面积 S 的关系为 V=R3S.( √ )
数学 ·必修2
第一章 空间几何体
1.3 空间几何体的表面积与体积 1.3.2 球的体积和表面积
1
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课前自主预习
2
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点 球的体积和表面积
□ 1.球的体积
如果球的半径为 R,那么它的体积 V=
数学 ·必修2
解析 (1)设大、小两球半径分别为 R,r,则由题意可 得
R-r=1, 4πR2-4πr2=28π,
∴Rr==34.,
∴它们的体积和为43πR3+43πr3=3634π.
(2)设球的半径为 R cm,由题意可知 2πR=16π,解得 R
=8,则 S 球=4πR2=256π(cm2).
球的截面的性质
(1)球的轴截面(过球心的截面)是将球的问题(立体几何 问题)转化为平面问题(圆的问题)的关键,因此在解决球的有 关问题时,我们必须抓住球的轴截面,并充分利用它来分析 解决问题.
(2)利用球的半径、球心到截面圆的距离、截面圆的半径 可构成直角三角形,进行相关计算.
20
课前自主预习
课堂互动探究
5
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
3.(教材改编,P27,例 4)若球的过球心的圆面圆周长是 c,
则这个球的表面积是( )
c2 A.4π
c2 B.2π
c2 C. π
D.2πc2
6
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课堂互动探究
7
课前自主预习
S=12×4π×12+6×22-π×12=24+π. 该几何体的体积为 V=23+12×43π×13=8+23π.
14
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升
(1)由三视图求球与其他几何体的简单组合体的表面积 和体积,关键要弄清组合体的结构特征和三视图中数据的含 义.
体积 V 球=43πR3=36π(cm3).
8
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
(2)∵S 球=4πR2=64π, ∴R2=16,即 R=4. ∴V 球=43πR3=43π×43=2356π. (3)∵V 球=43πR3=5030π, ∴R3=125,R=5. ∴S 球=4πR2=100π.
相关文档
最新文档