精密铸造铸件工艺及浇冒口系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章铸件工艺设计
第一节概述
为了生产优质而价廉的包模铸件,做好工艺设计是十分重要的。在做工艺设计之前,首先要考虑选用包模铸造工艺生产时,在质量、工艺和经济方面的几个问题。
1.铸件质量的可靠性
对于铸件质量上的要求,一般是包括两个方面,一是保证技术要求的尺寸精度、几何精度和表面光洁度,二是保证机械性能和其它工作性能等内在质量方面的要求。
包模铸造具有少切削、无切削的突出优点。近年来,由于冶金技术、制模、制壳材料和工艺以及检测技术等方面的发展,包模铸件的外部和内在质量不断提高,所以它的应用范围愈来愈广。不少锻件、焊接件、冲压件和切削加工件,都可以用熔模铸造方法生产。
这对于节约机械加工工时和费用,节约金属材料,提高劳动生产率和降低成本都具有很大意义。
但是,熔模铸造生产的铸件,由于冶金质量、热型浇注引起的晶粒粗大、表面脱碳以及内部缩松等方面的原因,铸件的机械性能(尤其是塑性),还存在一些缺陷。对于某些受力大和气密性要求高的铸件,采用包模铸造时,应充分考虑零件在产品上的作用和性能要求,以确保其使用可靠。有些结构件改用包模铸造生产时,必须考虑原用合金的铸造性能是否能满足零件的质量要求,否则就需要更改材质。
2.生产工艺上的可能性和简易性
熔模铸造虽然可以铸造形状十分复杂的、加工量甚少甚至不加工的零件,但零件的材质、结构形状、尺寸大小和重量等,必须符合熔模铸造本身的工艺要求。如铸件最小壁厚、最大重量、最大平面面积、最小孔槽以及精度和光洁度要求等,都要考虑到工艺上的可能性和简易性。
3.经济上的合理性
采用包模铸造在经济上是否合理,要从多方面考虑。按每公斤的价格来说,包模铸件与同类型锻件相近甚至还高些,但是由于大幅度减少了加工量,因而零件最终成本还是低的。
但也有些零件,可以利用机械化程度较高的方法生产,例如用自动机床高速加工、精密锻造、冷挤压、压力铸造等等,这时,用包模铸造法生产在经济上的优越性就不一定显著,甚至成本还可能高一些,所以在这种情况下,就不一定选用这种方法了。
总之,选择包模铸造法生产时,耍从其工艺特点出发,以零件质量为中心,并兼顾生产技术和经济上的要求。
在确定用包模铸造方法生产之后,工艺设计的任务就是要确定合理的工艺方案,采取必要的工艺措施以满足零件质量的要求。
工艺设计是理论和实践相结合的产物,是技术理论和生产经验的总结性技术资料。还要力求使设计符合实践性、科学性。
做好工艺设计要搞好两个方面的调查研究。首先必须对生产任务、产品零件图、材质和技术要求等方面进行深入分析:其次,要对生产条件如原材料、设备、工艺装备加工和制造能力、工人的操作技术水平等方面进行深入的了解。只有做好这两个方面的调查研究,才能使设计符合生产实际情况。
工艺设计的好坏也要从质量、工艺和经济这三方面去衡量。一项良好的工艺设计应当能在正常的生产条件下,稳定铸件质量,简化生产工艺,效率高而成本低。
熔模铸造工艺设计通常包括下列几项内容,
(1).分析铸件结构工艺性, (2)确定工艺方案和工艺参数,(3)设计浇冒口系统, (4)绘制工艺图或铸件图。
第二节铸件结构工艺性分析
铸件结构工艺性对于零件质量,生产工艺的可能性和简易性以及生产成本等影响很大。结构工艺性不好的铸件,往往孕育着产生缺陷和废品的可能性,也会增加制造成本。所以,做工艺设计时,首先要审查零件图,审查的目的有二:一是审查零件结构设计是否符合包模铸造的生产特点,对于那些设计不合理的部分进行修改。第二个目的是根据已定的零件结构和技术要求,采取相应措施以保证质量。
根据熔模铸造生产特点,零件结构工艺性要考虑以下要求。
1)经济性在精密铸造的生产中,其
蜡型是。在包模铸造上,金属模的目的
是在在射蜡机中,利用压力将液态、糊
态或半固态的蜡‧挤射入金属模内,生
产蜡型或塑料型,这些型是用来生产陶
瓷模的,不论是实体模或型壳模。所有
的模型都是可逝性的。在制模的关键性问题上,是如何将蜡型或塑料型从模具中取出,以及如何将芯子从模型中取出等。至于其它的制模问题,用于砂模铸造的原理同样适用于包模铸造
图2 铸件内角的重设计(2)
在图1中,一个包模铸件因为内
图1 铸件内角的重设计(1) 部有一圆角,而且需要用两个抽芯,A及B两个芯子进出的方向如图1(a) 所示,要想将有倒钩的芯子抽出而又不伤损工件是根本不可能。于是,重新设计工件,如图1(b),将内圆角取消,以避开这种芯子有倒钩无法抽出的困绕。倘若要生产原设计有内圆角的工件,惟有舍弃
金属抽芯,而用成本较高的水溶性芯子,随同
蜡型一起自模中取出,再用酸蚀及水溶法将芯
子自蜡型中除去,如此可保持工件的内圆角而
又不会损伤蜡型。
图2系一个有弧形通道的工件,同样如图
2(a) 的设计也无法用金属抽芯来制模,若改为
图2(b) 的设计,将内圆角改为尖角,则可以用两支抽芯做出弧形通道的内孔。图3刀具余隙的再设计为了后继的加工,往往在工件设
计时,一般为避免撞机的困绕,预先
留有一个让出刀具到位时的间隙,如
图3(a) 所示,但无法抽出金属芯子,
若改为图3(b) 的设计,就可以用金
属抽芯直接做出刀具余隙。
另外如图4(a)之原始设计虽
然内孔通道很圆滑,但必须要用较昂贵的水溶性芯子或陶瓷芯子,而且,在铸造后,清除孔道中陶瓷材料非常困难,若改为(b )的设计,可直接由六个金属抽芯来射制蜡型,另在一 图4内孔通道的再设计 个多出的孔洞则可在铸件完成后再设法塞上或焊死。可大幅度提高生产效率及降低成本。
2).现实性 精密铸造与其它的制造方法一样,有其一定的极限,因此,在铸件精度的考虑上,应面对现实,设计可以达得到的标准,否则,良品率太低,就丧失了用精密铸造降低生产成本,提高生产效率的目的了。
当铸件芯子部位因受炽热的金属围绕,内外部份的散热状况不一致,内部陶瓷受高温而膨胀,但外部因有金属包覆又无法自由伸展,陶瓷材料因而有强烈的弯曲变形的应力,此时,外部热的不均匀
分布,芯部自然向高温部分扭曲变形,便
使铸件的壁厚产生了不均匀的结果。其变其设计通则:
3)铸造性
a) 壁薄的包模铸件
包模铸造工艺几乎制造任何金属的复杂铸件,也可以在小零件的设计及生产上,有助于达到轻薄短小的目的,获得最大的强度重量比值。在设计最小壁厚时,金属熔液的流动性是一个非常重要的考虑因素,因为它直接影响到金属液对模穴充填的能力。几乎同等重要的另一要素,是熔液在充填模穴时,金属液的浇注补充距离,以及铸件表面积之大小,金属的凝固状况,固、液相线的差异度,都归纳于铸造性中,尤其对薄壁铸件特别重要。
可铸出的最小壁厚与合金种类、浇注工艺
方法、以及铸件的轮廓尺寸等因素有关。表 2
列举的是12
1in.长管件对各种金属包模铸件之最小壁厚。其实这些数值并不是真正的最小壁
厚,诚如前述,金属液的浇注过热温度、浇注
速率、壳模预热温度、铸件的形状及薄壁部分
的表面积等都会影响最小壁厚的尺寸,这个表
中之建议值为工业生产上的经验值。在这个标
准下生产,良品率最好,亦即浇不足及微缩孔的现象最少。 在Fig. 7 的上图表显示一个在最小厚度与最大长度的相互关系,而下图表则显示在铸件有通孔或盲孔时,孔径与孔深的关系。因为铸造过程尚有许多参数会影响其最大值与最小值,但此数值仍有其参考价值。 内孔的长度 in. 壁厚的公差 in.
<2
2~4 >4
±0.005 ±0.010 ±0.012 金属 最小壁厚 in. 碳钢 0.060 300系不锈钢 0.050 400系不锈钢 0.065 铝合金 0.050 镁合金 0.050 铝青铜(10%Al) 0.060 铍铜 0.040 钴-铬合金 0.050
表2 121in.长管件对各种金属之最小壁厚