九年级数学图形的相似PPT优秀课件

合集下载

华东师大版九年级数学上册第23章《图形的相似》PPT课件

华东师大版九年级数学上册第23章《图形的相似》PPT课件

AB AB

BC 之间的关系是什么?
BC
AB BC A' B' B'C'
归纳
两条线段的比就是它们长度的比;
像这样,对于四条线段a、b、c、d,如果其中两条线段的
长度的比等于另外两条线段的比, 如 a c (或a∶b=
bd
c∶d),那么,这四条线段叫做成比例线段,简称比例线 段.此时也称这四条线段成比例.
∴ ac bd
∴ 线段a、b、c、d是成比例线段.
• 注意:
• 1.若a:b=k , 说明a是b的k倍;
• 2.两条线段的比与所采用的长度单位无关,但求比时两 条线段的长度单位必须一致;
• 3.两条线段的比值是一个没有单位的正数;

4.除了a=b外,a:b≠b:a,
a b

b a
互为倒数.
三 比例的基本性质
k.
第23章 图形的相似
23.2 相似图形
学习目标
1.理解相似多边形的定义,并能根据定义判断两个多边形是 否相似;(重点)
2.掌握相似比的概念并会求相似比; (重点) 3.理解并且掌握相似多边形的性质与判定.(难点)
观察与思考 请观察下面几组图片,是我们前面学过的相似图形吗?
一 相似多边形的性质
a c ab cd bd b d
ab cd ab cd
等比性质:
a
c
...
n
a c ... n
a
(b+d+···+m≠0)
bd
m b d ... m b
当堂练习
1.下列各组数中一定成比例的是( B )
A.2,3,4,5

九年级数学下册272《相似三角形》PPT课件

九年级数学下册272《相似三角形》PPT课件

3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。

学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。

九年级数学《图形的相似》总复习课件-PPT

九年级数学《图形的相似》总复习课件-PPT

6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。

北师大版九年级数学上册 (相似多边形)图形的相似 课件

北师大版九年级数学上册 (相似多边形)图形的相似 课件

A
B
F
C
ED
A1 F1
E1
B1 C1
D1
图中的六边形 ABCDEF 与六边形 A1B1C1D1E1F1 是形状相同的多边形,
其中∠A 与∠A1,∠B 与∠B1,∠C 与∠C1,∠D 与∠D1,∠E 与∠E1,
∠F 与∠F1 分别相等,称为对应角;
AB 与 A1B1,BC 与 B1C1,CD 与 C1D1,DE 与 D1E1,EF 与 E1F1,FA
例2 一块长 3 m,宽 1.5 m 的矩形黑板如图所示,镶在其外围的木质边 框宽 7.5 cm . 边框的内外边缘所成的矩形相似吗?为什么?
E A 3m
1.5 m
D H
(3+0.075×2) m
F B
(1.5+0.075×2) m
C G
E A 3m
1.5 m
D H
(3+0.075×2) m
解:
(2)∵梯形ABCD与梯形A′B′C′D′相似,且由(1)知相似
比k= 2 , ∴
AB 2 , BC
2 ,
3 AB 3 BC 3
∵AB=6,B′C′=12,∴A′B′=9,BC=8.
(3)由题意知,∠D′=∠D.
∵AD∥BC,∠C=60°,
∴∠D=180°-∠C=120°.∴∠D′=120°.
归纳
A1 F1
B1 C1
AB
F
C
E1
D1
E
D
要点归纳 ◑相似多边形的定义:
相似多边形用符号“∽”表示, 读作“相似于”
各角分别相等、各边成比例的两个多边形
叫做相似多边形.
◑相似多边形的特征: 相似多边形的对应角相等,对应边成比例.

湘教版九年级数学上册课件 3.3 相似的图形(共36张PPT)

湘教版九年级数学上册课件 3.3 相似的图形(共36张PPT)

相似比
A B
2cm
D
3cm
C
E
F
已知△ABC∽△DEF,AC=2cm,DF=3cm
那么△ABC与△DEF对应边的比= ?2:3
我们将相似三角形对应边的比称之
为相似比。(用字母k表示)
问题
△ABC∽△A'B'C'
C A A' 3cm C' 6cm
△ABC与△A'B'C'的 BC 1 相似比k1 =? B' C' 2
(2)所有的正方形都是形状相同的图形;
(3)所有的等腰三角形都是形状相同的图形; (4)所有的矩形都是形状相同的图形; A.1个 B.2个 C.3个 D.4个
练一练
4.下列说法中正确的是( D ) A.所有平行四边形都是相似图形
B.所有菱形都是相似图形
C.所有等腰梯形都是相似图形 D.所有全等三角形都是相似图形
答:不一定相似。因为虽 然它们对应边是成比例的, 但它们的对应角不一定相 等。
各角对应相等 对应方法
如果两个多边形相似要满足
什么条件?
①对应角相等, ②对应边的比相等, 那么这两个多边形是 相似多边形.
A E B F C G D H
B B'
B' C' 2 △A'B'C'与△ABC的相似比k2 =? BC 1
三角形的前后次序不同, 所得相似比不同。
想一想 已知:⊿ABC∽⊿DEF, 你能得到 哪些结论? A D B C AB BC CA = = DE EF FD 相似三角形对应角相等、对应边成比例 E F
∠A=∠D,∠B=∠E,∠C=∠F ;

苏教版九年级数学下册第6章图形的相似课件

苏教版九年级数学下册第6章图形的相似课件
1.2m 2.7m
13、皮皮欲测楼房高度,他借助一长5m的标竿,当 楼房顶部、标竿顶端与他的眼睛在一条直线上时, 其他人测出AB=4cm,AC=12m。已知皮皮眼睛离地面 1.6m。请你帮他算出楼房的高度。
F
E D
A
B
C
谢谢
AD CE
∴△ADE∽△ECF
∴∠1+ ∠3=90 ° ∴∠2+ ∠3=90°
∴∠1=∠2
∴ AE⊥EF
画一画
10、在方格纸中,每个小格的顶点叫做格点,以格点 为顶点的三角形叫做格点三角形。在如图4×4的格纸 中,△ABC是一个格点三角形。
(1)在右图中,请你画一个格点三 角形,使它与△ABC类似(类似比 不为1)。
S ADE AE2 25
∴ S EFC = AC2 = 121
∵ S△ADE=25 ∴S △ABC=121
25 E
36
C
7、在平行四边形ABCD中,AE:BE=1:2。
若S△AEF=6cm2 则S△CDF = 54 cm2
S △ADF=_1_8__cm2
D
C
F
A
E
B
8、如图(6), △ABC中,DE⁄⁄FG⁄⁄BC,AD=DF= FB,则S△ADE:S四边形DFGE:S四边形FBCG =_________。
4 位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换是以原点 为位似中心,类似比为k,那么位似图形对应点 的坐标的比等于k或-k。
复习题
1、如图点P是△ABC的AB边上的一点,要使△APC∽△ACB,
则需补上哪一个条件?
A
P 2
1
B
C
∠ACP=∠B 或∠APC=∠ACB 或AP:AC=AC:AB

九下数学课件相似图形 课件(共27张PPT)

九下数学课件相似图形 课件(共27张PPT)

为 AA'BB'=BB'CC'=AA'CC'
= k′,因此k =
1 k'
.
感悟新知
要点提醒: 判断两个三角形相似的条件: (1)三角形的三组角分别对应相等; (2)三角形的三组边对应成比例. ●相似三角形的性质:相似三角形的对应角相等,对
应边成比例. ●在相似多边形中,最简单的就是相似三角形.
感悟新知
感悟新知
特别解读 : ①“形状相同”是判定相似图形的唯一条件. ②两个图形相似是指它们的形状相同,与它们的位置、
大小无关.
感悟新知
例 1
[模拟·南通] 下列图形不是相似图形的是(
C)
A. 同一底片打印出来的两张大小不同的照片
B. 用放大镜将一个细小物体图案放大过程中原图案
和放大图案
C. 某人的侧身照片和正面照片
相似多边 形的性质
相似图形 相似图形
相似三角 形的定义
相似三角 形的性质
感悟新知
新知二 相似多边形
1. 相似多边形的定义 各角分别相等,各边成比例的两个多边形,它们的形状相
同,称为相似多边形. 2. 相似比的定义 相似多边形的对应边的比叫做相似比.
感悟新知
3. 相似多边形的性质 相似多边形的对应边的比相等,对应 角相等.
(1)相似比与两个多边形的先后顺序有关. (2)相似多边形的定义可用来判断两个多边形是否相似. (3)相似多边形的性质常用来求相似多边形未知边的长度或
感悟新知
(1)求梯形ABCD与梯形A′B′C′D′ 的相似比k;
解题秘方:紧扣“相似多边形的性质及相似比的定义”
进行计算.
解:相似比k=
AD 4 2 A'D'=6=3.

人教版数学《图形的相似》(完整版)课件

人教版数学《图形的相似》(完整版)课件

A
AD AE D E
B
对应边的比例式为 A B = A C = B C .
3. 如图,在△ABC中,EF∥BC,AE=2cm, BE=6cm,BC=4cm,EF的长为__1_c_m___.
D C
人教版数学《图形的相似》教学实用 课件(P PT优秀 课件)
人教版数学《图形的相似》教学实用 课件(P PT优秀 课件)
自主学习反馈1.已知AB∥CD,AD与B来自相交于点O.若BO OC
2 3
,AD=10,则AO= 4 .
2.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C 和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为 6 .
新知讲解
一 平行线分线段成比例(基本事实) 合作探究
如图(1),小方格的边长都是1,直线a ∥b∥c ,分别交直线m,n于 A1,A2,A3,B1,B2,B3.
(1)计算
A1 A 2 A2 A3
,
B B
1 2
BB,23 你有什么发现?
新知讲解
(2)将b向下平移到如图2的位置,直线m,n与直线b的交点分别为 A2, B2 .你在
问题(1)中发现的结论还成立吗?如果将b平移到其他位置呢?
新知讲解
典例精析
例1.如图,在△ABC中, EF∥BC. (1)如果E、F分别是AB和AC上的点, AE = BE=7, FC = 4 ,那么AF的长是多少?
(2)如果AB = 10, AE=6,AF = 5 ,那么FC的长是多少?
解:1 AE AF ,7 AF , AF 4.
BE FC 7 4
AC与BD交于点G,AB=2,CD=4,则GH
4
的长为 3 .

北师大版九年级数学上册第四章《图形的相似》单元复习课件

北师大版九年级数学上册第四章《图形的相似》单元复习课件
ab cd bd
ab cd bd
ac bd
4.若线段MN=10,点K为MN的黄金分割点,则KM的长

.
5.如图,在△ABC中,已知DE//BC,AD=3BD,S△ABC=48,
求S△ADE.
解:∵ DE∥BC,
A
3 D 1 B
∴△ADE∽△ABC.
∴S△ABC : S△ADE =
E
∵AD : BD = 1:3,
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1.2 m,
DH=CE=0.8 m,DG=CA=30 m.
因为EF和AB都垂直于地面,所以EF∥AB,
所以∠BGD=∠FHD=90°,∠GBD=∠HFD,
所以△BDG∽△FDH.
所以
FH BG
DH DG
.
由题意,知
FH=EF-EH=1.7-1.2=0.5(m). ∴ 0.5 0.8 , 解得BG=18.75(m).
DC = 31.5 千米,公路 AB 与 CD 平行吗?说出你
的理由.
解:公路 AB 与 CD 平行.

AB BD
AD BC
=
BD DC
=
2, 3
A
28
∴ △ABD∽△BDC, ∴∠ABD=∠BDC,
14 B
D
31.5 21
42
C
∴AB∥DC.
课后练习
1. 如图,△ABC 的高 AD、BE 交于点 F. 求证:AF EF . BF FD
解:∵ DE∥BC,EF∥AB,∴ △ADE ∽△ABC,
∠ADE =∠EFC,∠A =∠CEF,
D
∴△ADE ∽△EFC.

九年级数学(图形的相似)课件 4相似图形的性质

九年级数学(图形的相似)课件 4相似图形的性质

解得:x 21
2
2、如图,小明在一块一边靠墙,长为6m,宽为4m 的矩形小花园周围种植了一种蝴蝶花作装饰,这 种蝴蝶花的边框宽为20cm,边框内外边缘所围成 的两个矩形相似吗?说说你的理由.如果两个矩 形相似,则当种植蝴蝶花的一边宽AB为20cm时, 另一边宽CD应为多少合适呢?

D A B
2.如图,小明在一块一边靠墙,长为6m,宽为4m的矩形小花园 周围种植了一种蝴蝶花作装饰,这种蝴蝶花的边框宽为20cm, 边框内外边缘所围成的两个矩形相似吗?说说你的理由.如 果两个矩形相似,则当种植蝴蝶花的一边宽AB为20cm时,另一 边宽CD应为多少合适呢? 分析:不能相似
B C B’ C’ A
Hale Waihona Puke A’或AB : BC : AC A' B': B' C ': A' C '
例2.梯形ABCD中,AD//BC,E,F分别为AB,CD 上的一点,且梯形AEFD相似于梯形EBCF,若 AD=8,BC=18,试求AE:EB的值。
A E
B
D F
C
例3.如图:这两个梯形相似吗?
• 相似多边形的定义。 • 相似多边形的性质。
作业:校本P51—P52
2.如图,点E、F分别是矩形ABCD的边AD、BC 的中点,若矩形ABCD与矩形EABF相似, AB=1, 求矩形ABCD的面积.
解:∵矩形ABCD∽矩形EABF
AB BC AE AB
A
x E
D
设AE x
1 2x x 1
6 6 .4 4 4 .2
当AB=20cm时, 设CD=x,则应有


A B

相似三角形ppt初中数学PPT课件

相似三角形ppt初中数学PPT课件
在建筑设计中,利用相似三角形原理,根据已知 条件设计出符合要求的建筑物形状和大小。
利用相似三角形进行建筑测量
在建筑测量中,利用相似三角形原理,通过测量 建筑物的角度和距离,计算出建筑物的高度、宽 度等参数。
利用相似三角形进行建筑施工
在建筑施工中,利用相似三角形原理,根据设计 图纸和比例关系,进行施工和安装。
分析法证明思路及步骤
明确目标
明确需要证明的结论,即两个三角形相似 。
逆向思维
从结论出发,逆向思考如何证明两个三角 形相似,即需要找到两个三角形对应的角
相等或对应边成比例。
寻找突破口
分析题目中的已知条件,寻找与相似三角 形相关的突破口。
验证结论
根据逆向思维找到的证明方法,验证结论 是否正确。
不同方法比较与选择
相似三角形ppt初中数学PPT 课件

CONTENCT

• 相似三角形基本概念与性质 • 相似三角形在几何图形中应用 • 相似三角形在解决实际问题中应用 • 相似三角形证明方法探讨 • 典型例题解析与练习 • 课堂小结与拓展延伸
01
相似三角形基本概念与性质
定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似 。
相似三角形的判定方法
详细讲解相似三角形的四种判定方法,包括两角对应相等 、两边对应成比例且夹角相等、三边对应成比例以及通过 中间比转化等,并通过实例加以验证。
相似三角形的应用
通过举例和解析,展示相似三角形在解决实际问题中的应 用,如测量高度、计算面积等。
拓展延伸引导学生思考更深层次问题
相似多边形的研究
解析
根据相似三角形的判定定理,结合直角三角形的 性质,当两个直角三角形的一直角边和斜边对应 成比例时,可以判定这两个直角三角形相似。

九年级数学上册23.2 相似图形课件 (共24张PPT)

九年级数学上册23.2 相似图形课件 (共24张PPT)
且 EF∥AB . (1)若直线 l 是矩形 ABCD 的对称轴,
且沿着直线 l 剪开后得到的矩形 EFCD 与原
矩形 ABCD 相似,试求 AD 的长;
AD AB 解: . 1 矩形EFCD∽矩形CBAD, CD CF 设AD 2CF 2 x , 又 CD AB 2. 2x 2 .解得:x 2, AD 2 2. 2 x
F l E
D
DC 2 4 ED 5 1, B AD 5 1 AE AD ED 2. AE 2 5 1 ED,
C
依据对称性考虑,必定存在当AE 5 1时, 使矩形EFBA与矩形ABCD相似的情形. 综上所述:当AE 5 1或2时,在剪开所 得到的小矩形纸片中必存在与原矩形相似. 这两种情形中,E点刚好是边AD的两个黄金 分割点.
解: 四边形ABCD与四边形A BC D相似, x 18 , 从而可得:x 27. 18 12 四边形ABCD与四边形A BC D相似, C C 83 , 360 77 116 83 84 .
讨论
两个三角形一定是相似图形吗? 不一定 两个等腰三角形呢? 不一定
两个等边三角形呢?
一定
思维变式
两个长方形相似吗?两个正方形呢? 两个长方形不一定相似. 两个正方形一定相似.
小结
相似多边形的判定方法:对于两个边 数相同的多边形,如果它们的对应边成比 例并且对应角也分别相等,那么这两个多 边形相似.
例2.矩形 ABCD 纸片的边 AB长为 2cm,
动直线 l 分别交 AD、BC 于E、F 两点,
(2)若使 AD ( 5 1)cm ,试探究,在 AD 边上是否存在点 E ,使剪刀沿着直线 l 剪开 后,所得到的小矩形纸片中存在与原矩形 ABCD 相似的情况.若存在,请求出 AE 的值,并判 断 E 点在边 AD 上位置的特殊性;若不存在, 请说明理由.

华东师大版数学九年级上第23章图形的相似 23.3.2相似三角形的判定 课件 (21张PPT)

华东师大版数学九年级上第23章图形的相似  23.3.2相似三角形的判定 课件 (21张PPT)

D 1
E
4C O
3
A
F
2 B
证明: ∵OA=OB ∴∠3=∠2 ∵DF=FB ∴∠1=∠2 ∵DC∥AB ∴∠3=∠4 ∴∠1=∠4 又∵∠DEO=∠DEC ∴△DEO∽ △CED
课堂总结
相似三角形4种判定方法的综合应用。 (1)先看题中是否有平行条件,如果有平行,就去找“A”型
或“X”型相似。 (2)找是否有两角对应相等。 (3)若没有一组角对应相等,就看三边是否对应成比例。 (4)识别掌握常见的基本图形是寻找和发现相似的有效途径。
证明:∵
AB 6 1 , BC 8 1 , AC 10 1 , AB 18 3 BC 24 3 AC 30 3
∴ AB BC AC AB BC AC
∴△ABC∽△A'B'C'(三边对应成比例的两个三角形相似)
新知讲解
识别相似
看已知条件
选方法
找出识别方法中所 需的条件
相似三角形的判定定理2: 两边成比例,且夹角相等的两个三角形相似。
如果相等的角不 是成比例的两边 的夹角,那么这 两个三角形还相 似吗?画画看, 看看是不是不一
定相似?
新知讲解
A
D
A'
B
C
B'
C'
已知:△A’B’C’ ∽△ABC 在△ABC中,以B为圆心,BA长为半径画弧,交AC于D, 连结BD,则BD=BA.求证△A’B’C’ 和△BCD是否相似
那么,除此之外,是否还有其他的办法来判定 两个三角形相似呢?
新知讲解
观察,如果有一点E在边AC上移动,那么点E在什么位置时能使△ADE与
△ABC相似呢?
C

九年级数学上册第四章图形的相似-图形的位似课件

九年级数学上册第四章图形的相似-图形的位似课件

第四章 图形的相似
考场对接
题型五 以原点为位似中心的位似变换
例题5 如图4-8-14 , 在Rt△ OAB 中 ,
∠OAB=90°, 且点B的坐标为(4, 2).
(1) 画出△OAB 绕点 O 逆时针旋转 90 °
后的

(2)以坐标原点O为位似中心, 按1∶2的位似
比 在y轴的右侧画出
缩小后的 .
课后作业 1.完成导学案剩余练习 2.完成数学作业本相应练习。
第四章 图形的相似
8 图形的位似
第四章 图形的相似
考场对接
题型一 确定位似中心
例题1 如图4-8-9所示 , 将 △ ABC 的三 边分别扩大为原来的 2 倍得到 ( 顶点均在格点上 ) , 它们是以点P为位 似 中心的位似图形, 则点P的坐标是( A
考场对接
题型二 应用位似图形的性质进行计算
例题2 如图4-8-10, 已知△ADE与△ABC是 位似 图形, 且DE垂直平分AC. (1)求∠C的度数; (2)求△ A DE 与 梯 形 DECB的面积比.
第四章 图形的相似
考场对接
分析 抓住位似图形与相似图形的关系, 再利用相似三角形的性质 计算.
2.位似的三要素即是判定位似 的依据,也是位似图形的性质.
目标检测
1.如图,△OAB和△OCD是位似图形, AB与CD平行吗?为什么?
答案:平行.位似图形的
目标检测
2.如图,△ABC与△A′B′C′是位似图 形,点O是位似中心,若OA=2AA′,S△AB C=8,则S△A′B′C′=?
独学:3分钟
对学:1分钟
新知探索
位似图形的性质:
如图所示,△ABC与△A′B′C′关于点O位似,BO= 3,B′O=6. (1)若AC=5,求A′C′的长; (2)若△ABC的面积为7,求△A′B′C′的面积.

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

练一练
2.下列说法正确的是
( C)
A.相似形是全等形;
B.不相似的图形可能是全等形;C.全等形是相似形;D.不全等的图形不是相似形.
练一练
(1) (2)
(3)
下列各组图形 相似吗?
什么样的两个多边形是相似的?
二、相似多边形
1、定义:两个边数相同的多边形,如果它们的角分 别相等,对应边的比相等,那么这两个多边形叫做相 似多边形 2、相似比:相似多边形对应边的比叫做相似比
读着△ABC相似于△ A'B’C’
∽读作“相似于”通常把对应顶点写在对应位置上
ABC 和 DEF相似
4 CD E
7
12 14
6
AB DE
BC DF
AC EF
2 A BF
∠A =∠_E____, ∠B =∠_D____, ∠C =∠_F____;
△ABC的三条边的长分别为6、8、 10,与△ABC相似的△A/B/C/的最长 边为30。则△A/B/C/的最短边的长 为___1_8___。
ABC 和 EDF 相似
AB BC AC K ED DF EF
C DE
K表示这两个相似三角形
的相似比
F
相似比就是它们的对应边的比
AB
☺ 它有顺序关系
ABC ∽ EDF 它的相似比为
AB K ED
EDF∽ ABC 它的相似比为
ED 1 AB K
判断下列两个三角形是否相似?简单说明理由, 如果相似,写出对应边的比例
探索
请观察下面展示的图片的大 小和形状有什么关系?
观察
探索
日归常纳生活中我们会碰到很多这样形状 相同、大小不一定相同的图形,在数 学上,我们把具有相同形状的图形称 为相似形

4.3 相似三角形 课件(共25张PPT)2023-2024学年浙教版九年级上册数学

4.3 相似三角形 课件(共25张PPT)2023-2024学年浙教版九年级上册数学
AD∶AC=2∶3,∠ADC=65°,∠B=37°.
(1)求∠ACB,∠ACD的度数.
(2)写出△ABC与△ACD的对应边成比例的比例式,并说出
相似比.
A
D
C
B
如图,D是AB上的一点,△ABC∽△ACD,且
AD∶AC=2∶3,∠ADC=65°,∠B=37°.
A
(1)求∠ACB,∠ACD的度数.
D
解:∵△ABC∽△ACD,
A
D
B
E
C
证明:∵D,E分别是AB,AC的中点,

∴DE∥BC,DE= BC.

A
∴∠ADE=∠B,∠AED=∠C.
D
在△ADE和△ABC中,
∠ADE=∠B,∠AED=∠C,∠A=∠A





=
=
=




⇒△ADE∽△ABC(相似三角形的定义).
B
E
C
例2 如图,D,E分别是△ABC的AB,AC边上的点,
B
例3 如果两个三角形都与第三个三角形相似,那么这两个三角
形相似吗?为什么?
解:相似. 理由如下:
设△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2.
由△ABC∽△A1B1C1,得∠A=∠A1,∠B=∠B1,

∠C=∠C1,

=


=

.

由△A1B1C1∽△A2B2C2,得∠A1=∠A2,
边是对应边;
④相似三角形对应边所对的角是对应角,两条对应边所夹的
角是对应角.
两个全等三角形是不是相似三角形?如果是,那么它
们的相似比是多少?

27.1 图形的相似 课件 2024-2025学年人教版(2012)九年级下册数学

27.1 图形的相似  课件 2024-2025学年人教版(2012)九年级下册数学
比为 35, 则ABEE(AE<BE)的值为___12____.
课堂小结
图形的相似
相似多边形的定义 相似多边形的性质
相似 图形
四条线段成比例 相似比
综合应用创新
题型 1 利用比例的性质解决比例尺问题
例 7 某市的两个旅游景区之间的距离为105 km,则在一 张比例尺为1∶2 000 000 的交通旅游图上,它们之间 的距离大约相当于( ) A. 一根火柴的长度 B. 一支体温计的长度 C. 一支铅笔的长度 D. 一根筷子的长度
知2-讲
感悟新知
3. 比例的性质:若ab=dc,则ad=bc.
知2-讲
感悟新知
知2-讲
温馨提示 成比例线段是有顺序的,即若线段a,b,c,d成比例,
则有a∶b=c∶d或ab=dc,不能随意更改位置.
感悟新知
拓展 1. 合比性质:
知2-讲
若ab=dc, 则a±b b=c±d d. 2. 等比性质:
感悟新知
解:不相似. 理由如下:
知3-练
∵在矩形ABCD 中,AB=1.5 m,AD=3 m,镶在其外围的
木质边框宽7 .5 cm=0.075 m,∴EF=1.5+2×0.075=
1.65(m),EH=3+2×0.075=3.15(m).∴AEFB=11..655=1101,AEHD

3 3.15
综合应用创新
题型 2 利用比例的性质求值
例 8 如图27.1-3,在线段AB上取C,D两点,已知AB= 6 cm,AC=1 cm,且线段AC,CD,DB,AB 是成比 例线段,求线段CD的长.
综合应用创新
思路引导:
解:设CD=x cm,则DB=AB-AC-CD=6-1-x=(5- x) cm. ∵线段AC,CD,DB,AB 是成比例线段, ∴CACD=DABB. ∴1x=5-6 x.∴ x(5-x)=6,解得x=2 或x=3. 经检验,x=2 或x=3 均是原方程的解. 故线段CD的长为2 cm或3 cm.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、6 B、8 C、10 D、12
2、已知相似的两个矩形中,一个矩形的长和 面积分别是4和12,另一个矩形的宽为6, 求这两个矩形的面积比。
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
2007年1月
–相似多边形的性质:
• 相似多边形对应角相等,对应边的 比相等.
相似多边形 对应边的比 称为相似比
• 例题 如图,四边形ABCD和EFGH相似,求 ∠α、∠ β的大小和EH的长度x.
练习四
• 如图矩形草坪长20m,宽10m,沿 草坪四周有1m宽的环形小路,小路 内外边缘所成的矩形是否相似?
• 变式训练:如图,小明在一块一边靠墙,长为 6m,宽为4m的矩形小花园周围种植了一 种蝴蝶花作装饰,这种蝴蝶花的边框宽为 20cm,边框内外边缘所围成的两个矩 形相似吗?说说你的理由.如果两个矩形 相似,则当种植蝴蝶花的一边宽AB为2 0cm时,另一边宽CD应 000的地图上,量 得甲,乙两地的距离是30cm,求两地的实际 距离。
2、如图所示的两个三角形相似吗?为什么?
3、如图,△ABC与△DEF相似,求未知 边x,y的长度。
• 如图所示的两个五边形相似,求未知 边a、b、c、d的长度。
1、两地的实际距离是2000m,在地图上 量得这两地的距离为2cm,这个地图的 比例尺为多少?
2、任意两个正方形相似吗?任意两个 矩形呢?证明你的结论。
利用相似求多边形的周长
例题:在两个相似的五边形中,一个各边 长分别为1,2,3,4,5,另一个最大边 为8,则后一个五边形的周长是( B )
A、27 B、24 C、21 D、18
变式训练
1、一个多边形的边长为2、3、4、5、6,另 一个和它相似的多边形的最长边为24,则 这个多边形的最短边是:( B )
相关文档
最新文档