分式 专项练习(50题练习)
分式加减法专项练习60题含答案
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
精选)分式的通分专项练习题
精选)分式的通分专项练习题分式的通分专项练(正)一、填空:1、$\frac{x+1}{5x-2}$;$\frac{-2}{2}$的最简公分母是$\boxed{10}$;2、$\frac{x+y}{x-1};\frac{2x-y}{x-y+1}$的最简公分母是$\boxed{(x-1)(x-y+1)}$;3、$\frac{4x^3+2x^2y+3xy^2}{3x}$的最简公分母是$\boxed{3x^2y}$;4、$\frac{4x^3+2x^2y+3xy^2}{3x}$中的$x$和$y$的值都扩大5倍,那么分式的值为$\boxed{\frac{20x^3+50x^2y+75xy^2}{15x}}$。
2、如果把分式$\frac{a}{b}$扩大5倍;缩小5倍;不改变;扩大25倍,分式变成$\boxed{\frac{5a}{5b}}$、$\boxed{\frac{a}{5b}}$、$\boxed{\frac{a}{b}}$、$\boxed{\frac{25a}{25b}}$。
5、将$\frac{5a}{23}$和$\frac{6a}{2b}$通分后最简公分母是$\boxed{46b}$,分别变为$\boxed{\frac{10ab}{46b}}$和$\boxed{\frac{69a}{46b}}$。
二、通分1、$\frac{x}{11}+\frac{14a}{3c};\frac{4x-1}{2x-1}+\frac{x+5}{x}$;2、$\frac{2}{3x}+\frac{4}{x+2};\frac{3}{x-1}+\frac{1}{2x+1}$;3、$\frac{2}{x+1}-\frac{1}{x-1};\frac{x}{x-3}-\frac{2}{x+2}$;4、$\frac{5}{2x-3}+\frac{5}{3x+5};\frac{2}{x-1}-\frac{3}{x}$;5、$\frac{1}{x+y}-\frac{1}{x-y};\frac{a(x-y)}{2x+y}-\frac{b(y-x)}{2x+y}$;6、$\frac{x-y}{2x+ya}-\frac{x+y}{2x-ya};\frac{a}{x-1}-\frac{b}{a^2-b^2}$;7、$\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1};\frac{2}{x}+\frac{ 3}{y}+\frac{5}{z}$;8、$\frac{1}{(x-1)^2}+\frac{1}{(x-1)(x+1)};\frac{1}{x-1}-\frac{1}{x+1}$;9、$\frac{1}{x-y}+\frac{1}{x+y};\frac{1}{x-1}-\frac{b}{a^2-b^2}$;10、$\frac{1}{a+b}+\frac{1}{a-b};\frac{x}{x-1}-\frac{y}{a^2-b^2}$;11、$\frac{1}{x^2}+\frac{1}{x(x+2)}+\frac{1}{(x+2)^2};\frac{1}{x-2}-\frac{1}{x+2}$;12、$\frac{x}{x-1}-\frac{x-2}{x+1}+\frac{2}{x^2-1};\frac{1}{x-2}+\frac{1}{x+2}-\frac{2}{x^2-4}$;13、$\frac{1}{(x-1)(x+1)}+\frac{1}{(x+1)(x+3)}+\frac{1}{(x+3)(x-1)};\frac{x}{x-1}-\frac{x}{x+1}+\frac{2}{x^2-1}$;14、$\frac{2x-4}{2x^2-2x}+\frac{3x-5}{2x^2-3x+1};\frac{2}{x}-\frac{1}{x-2}+\frac{3}{x^2-x}$;15、$\frac{a}{a^2-1}+\frac{a}{a^2-4}+\frac{a}{a^2-9};\frac{1}{a-1}+\frac{1}{a+1}+\frac{2}{a-3}$;16、$\frac{x^2-4x+3}{(x-1)^2}+\frac{x^2-1}{(x-1)(x+1)}+\frac{x^2+2x+1}{(x+1)^2};\frac{1}{x-1}+\frac{1}{x+1}$。
(05)分式加减法专项练习60题(有答案)ok
分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。
分式方程应用题专项练习50题
分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进展招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;假设由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天?2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进展了技术改良,提高了生产效率,每天比原方案增产25%,结果提前10天完成了任务.原方案每天生产多少个零件3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,那么要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、 某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完 成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 假设工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间?6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间一样,水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王教师家、学校在同一条路上,小明家到王教师家的路程为3km ,王教师家到学校的路程为0.5km ,由于小明的父母战斗在抗“非典〞第一线,为了使他能按时到校,王教师每天骑自行车接小明上学.王教师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min ,问王教师的步行速度及骑自行车的速度各是多少9、一小船由A 港到B 顺流航行需6小时,由B 港到A 港逆流航行需8小时,小船从早晨6时由A 港到B 港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
分式方程专项练习50题(有答案)
分式方程专项练习50题(有答案)1.$\frac{x}{x+2}=\frac{2}{x-1}$,改写为$x(x-1)=2(x+2)$。
2.$\frac{5x-3}{x^2}=0$,当 $5x-3=0$ 时成立,即$x=\frac{3}{5}$。
3.$\frac{x}{x}+\frac{1}{x}=1$,当 $x\neq 0$ 时成立。
4.$x^2+2x=0$,当 $x=0$ 或 $x=-2$ 时成立。
5.$\frac{13}{x(x-2)}=\frac{1}{x-1}$,改写为 $13(x-1)=x(x-2)$。
6.$\frac{1}{x-1}-\frac{2}{x+1}=\frac{1}{2}$,改写为$3x^2-2x-5=0$,当 $x=\frac{1}{3}$ 或 $x=-\frac{5}{3}$ 时成立。
7.$\frac{x+1}{x-1}=\frac{x}{x+1}$,改写为 $x^2-1=0$,当 $x=1$ 或 $x=-1$ 时成立。
8.$\frac{2x-5}{3-x}=\frac{2x-2}{x+1}$,改写为 $4x^2-13x+7=0$,当 $x=1$ 或 $x=\frac{7}{4}$ 时成立。
9.$\frac{2x-5}{x-2}-\frac{1}{x+2}=x$,改写为 $3x^2-4x-3=0$,当 $x=\frac{1\pm\sqrt{13}}{3}$ 时成立。
10.$\frac{2x-1}{x+1}=1-\frac{1}{x+1}$,改写为 $x^2+3x-2=0$,当 $x=-3+\sqrt{11}$ 或 $x=-3-\sqrt{11}$ 时成立。
11.$\frac{x}{x+1}+\frac{x}{x-1}=2$,改写为 $2x^2-2x-1=0$,当 $x=\frac{1\pm\sqrt{3}}{2}$ 时成立。
12.$\frac{1}{x-1}+\frac{1}{x+1}=\frac{4}{x^2-1}$,改写为 $3x^4-8x^2-5=0$,当 $x=\pm\sqrt{\frac{5}{3}}$ 或$x=\pm\sqrt{\frac{8}{3}}$ 时成立。
初二数学分式方程练习试题(含答案)
分式方程专项练习题一.选择题(每小题3分,30分)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( )A.2,1B.1,2C.1,1D.-1,-19.如果,0,1≠≠=b ba x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式xx ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?23.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14. 212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20. ()240024008120%x x-=+; 三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32- 经检验,x=32-是原方程的根. 22.6天,23.解;5=x。
分式混合运算专项练习158题(有答案)26页
分式混合运算专项练习158题(有答案)(1)(2)+﹣(3)(4)(5)(﹣)•÷(+)(6).(7)(8)(9)(10).(11)(12).(13)•÷(14)(﹣)÷.(15)(16)(17)(1+)÷(18)(19)(20)()2•+÷(21)(22)(23)(24)(25)(26)(27)(28).(29)(30).(31)(32)÷•.(33)()÷.(34)(35)(36)(37)(38)(39)(40).(41)(42)(43)(44)(﹣)÷(45)(46)(47)+(48)(49)(50).(51)(52).(53)(54).(55)÷•(56)1﹣÷.(57)(58)(59)÷(60)(61).(62)(63).(64)(+1)÷(1﹣)(65)(66)•﹣÷(67)(68).(69)(70)[﹣(﹣x﹣y)]÷(71)﹣÷x.(72)(73)(74)÷(x+3)•(75)(a ﹣)÷•(76)()÷•(2﹣x)2(77)•(﹣)2(78)(79)(80)(81)(82)(83)(84)(85)(86)(87)(88).(89)(90).(91)(92).(93)[+÷(+)2]•(94)(95)(96)(97)(98)(99)x﹣(100)(101)(102).(103).(104)(105).(106)(x2﹣y2)•÷(107)+﹣(108).(109)÷﹣.(110)(111).(112).(113)(114).(115).(116)(117)(118)(119)(120)(x2y﹣1)﹣3•(﹣x﹣2)﹣3÷(xy)﹣1.(121)(122)(﹣)•.(123)(124).(125).(126).(127).(128).(129)﹣(130)(131)1﹣÷.(132)(﹣)3÷•(﹣)2(133).(134)(135).(136).(137)(138).(139)(140).(141).(142)(143).(144).(145).(146).(147)(148)(149).(150)(151)(152)(153).(154)(155)(156).(157)(158).分式混合运算158题参考答案:(1)=﹣=(2)+﹣=++==(3)=﹣=2x+6﹣x+3=x+9 (4)=÷(﹣)=•(﹣)=﹣.(5)原式===.(6)原式===(7)原式==x+y(8)原式==a﹣1(9)原式==y﹣3(10)==3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.(11)原式==(12)原式==(﹣1)==(13)解:原式==(14)解:原式==(15)原式=÷•=••=.(16)原式=•=﹣=﹣=.(17)原式===.(18)===﹣y.(19)原式==1﹣==(20)原式===.(21)原式=××=.(22)原式==(23)原式==﹣1(24)原式===(25)=+﹣=,===(26)=﹣••=﹣(27)=﹣•,=﹣==﹣(28),=(﹣)•,=﹣,=,=,=﹣.(29)原式==(a+1)﹣(a﹣1)=2(30)原式=(31)原式==(32)原式==.(33)()÷=•=(34)原式===.(35)原式=•(a﹣1)2=a﹣1.(36)原式=×=(37)原式=×=(38)原式=×==(39)原式==a4b(40)原式==(41)=×=2(m﹣3)﹣(m+3)=m﹣9.(42)原式==﹣.(43)原式=﹣+=1﹣x+x2=x2﹣x+1.(44)原式=(﹣)×=×=.(45)原式===3(1+x)(46)原式==.(47)原式=×+=+=.(48)原式=﹣==(49)原式=••=.(50)原式=====.(51)原式=====(52)原式===.(53)原式==(54)原式=×=(55)原式=•=(56)原式=1﹣=1﹣==.(57)原式=﹣÷(58)原式=×=.(59)原式=÷(﹣)=÷=×=.(60)原式=﹣===﹣(61)原式=﹣•=﹣==.(62)原式=(63)原式=××(m+n)(m﹣n)=(m+n)2.(64)原式=÷=×=.(65)原式=﹣×=﹣=.(66)原式=×﹣×=﹣==.(67)原式==0(68)原式=+=(69)原式=(×=.(70)=.(71)===.(72)原式===(73)原式=﹣+====(74)原式=××=(75)原式=××=(76)原式=[﹣]ו(2﹣x)2=ו(2﹣x)2=(77)原式=××=(78)原式===.(79)=﹣+,==(80),=÷=•=﹣(81)原式==(82)原式==(83)原式=×= (84)原式=+﹣==. (85)原式=(x+1)(x ﹣1)(﹣﹣), =x+1﹣x+1﹣(x+1)(x ﹣1)=﹣x 2+3.(86)原式=﹣×=﹣=0.(87)原式=÷(﹣)=.(88)原式=(﹣)÷=×=.(89)原式=﹣×(m ﹣1)=﹣=﹣2m . (90)===(91)原式= (92)原式=.(93)原式=[+×]×=[+]×=(94) 原式==.(95)原式=(x+y )•﹣==x+y(96)原式==(97)原式=••=(98)原式=•+•=+==(99)原式==(100)原式===.(101)原式=﹣===(102)原式=•=•=.(103)原式=1﹣×=1﹣=﹣.(104)=×=(105)=××=x.(106)原式=(x+y)(x﹣y)××=y(107)原式=﹣﹣=﹣﹣==(108)=••==.(109)原式=•﹣=﹣==(110)=+=+﹣==(111)=﹣+=﹣+1=1.(112)原式=+•=+==1.(113)原式=﹣==(114)原式=•=•=•=y+9 (115)原式=1﹣•=1﹣===﹣(116)原式==x﹣y.(117)原式==(118)原式===(119)原式====﹣(120)原式=x﹣6y3•(﹣x6)÷x﹣1y﹣1=﹣y3÷x﹣1y﹣1=﹣xy4(121)原式=++==﹣(122)原式=(﹣)•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8(123)原式=•=•=x﹣2(124)原式=1﹣÷[﹣]=1﹣÷=1﹣•=1﹣==﹣.(125)原式=﹣×=﹣==.(126)原式=[﹣]÷=[﹣]×x=×x=﹣.(127)原式=[]÷=[﹣]÷=×=(128)原式=[]•=•=y+9.(129)原式==(130)原式==0(131)原式=1﹣=.(132)原式=﹣••=﹣(133)原式=•﹣=﹣=原式=••=(134)(135)原式=[﹣]•=[﹣]•=•=(136)原式==﹣=(137)=(138)=,==.(139)=•=(x+y)(x﹣y)=x2﹣y2(140)=++===(141)原式=====(142)原式====2(143)原式=÷=•=.(144)原式=÷=•=.(145)原式=4a﹣1﹣+=﹣==(146)原式=×+=+==1.(147)==﹣(148)原式=+•=+=﹣=﹣(149)原式===0(150)原式=•=(151)原式=•=(152)原式=﹣===﹣(153)原式=[﹣]•=•=•=(154)原式===(155)原式=•=(156)原式=﹣a2b6••=﹣b5(157)原式===﹣(x+y)=﹣x﹣y(158)原式=÷=•=。
分式的基本性质专项练习30题(有答案)ok
分式的基本性质专项练习30题(有答案)ok1.如果将分式中的x、y都扩大到原来的10倍,分式的值会扩大10倍。
2.如果将分式中的x和y都扩大3倍,分式的值不变。
3.将分子、分母中各项系数化为整数不改变分式的值。
4.正确的是A。
5.正确的是B。
6.与分式的值相等的是B。
7.与分式的值相等的是D。
8.化简为9.化简为10.若x在(0,2)之间,化简后的结果为B。
11.正确的是C。
12.不改变分式13.正确的个数为B。
14.分子和分母的系数化为整数后,正确的变形有A、C、D。
15.不改变分式的值,使分子和分母的最高次项的系数为正数。
16.略17.不改变分式的值,将分式化简为18.若,则x的取值范围是19.分子与分母的各项系数化为整数为20.(1) 分式的乘法法则,(a≠)。
(2) 分式的除法法则,(1)除以一个数等于乘以它的倒数,(2)21.设22.略23.依次填入。
24.若x:y:z=1:2:1,则25.若 $a=b$,则 $a^2=ab$。
解析:对 $a^2=ab$ 两边同时减去 $b^2$,得到 $a^2-b^2=ab-b^2$,即 $(a-b)(a+b)=b(a-b)$,由于 $a=b$,所以 $a-b=0$,分母不能为 $0$,因此原等式不成立。
26.不改变分式的值,使分子、分母都不含负号:$\frac{-3x}{2y}$。
解析:将分子、分母同时乘以 $-1$,即可得到$\frac{3x}{-2y}$,化简后为 $\frac{-3x}{2y}$。
27.已知 $\frac{a}{b}=\frac{c}{d}$,则$\frac{a+b}{b}=\frac{c+d}{d}$。
解析:将 $\frac{a+b}{b}$ 和 $\frac{c+d}{d}$ 分别化简,可得到 $\frac{a}{b}+1=\frac{c}{d}+1$,即$\frac{a}{b}=\frac{c}{d}$,由已知条件可知其成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式计算专题(填空题)
1.若分式33
x x --的值为零,则x = ; 2.若2121+=+
x x ,则x = 或 。
3.如果7
5)13(7)13(5=++a a 成立,则a 的取值范围是__________; 4.若)0(54≠=y y x ,则22
2y
y x -的值等于________; 5.当分式44
x x --=-1时,则x__________; 6.化简分式x
x ---112的结果是________. 7.将分式的分子与分母中各项系数化为整数,则b a b a 2
13231++=__________. 8..化简x x
x x 2-+的结果为 ; 9.约分:222
22b
a b ab a -+-= 。
10.计算:(1)b a ÷22b a
=_______;(2)3252a b c ·53410c a b =________; (3)23x x ÷23x x =________;(4)x ÷1y ×1y =________; (5)21a a -÷22a a a
-=_______;(6)=÷-ab 3b a 2123 ; (7)432a )a 2
1(÷= (8)÷m 2a =n m a +; (9)=-+-x y y y x x ;(10)b
1b a ⋅÷= ; 11.(1)已知115x y +=,则分式2322x xy y x xy y
-+++的值为_______ ;
(2)已知113x y -=,则分式2322x xy y x xy y
+---的值为 ; (3)已知b
ab 2a b ab 3a ,2b 1a 1+++-=+则=____________. (4)已知x-y=4xy ,则2322x xy y x xy y
+---的值为 12.若
-1,则x+x -1
=__________. 13.(1)已知31=+
x x ,则_________122=+x x (2)已知=+=+22a 1a ,3a 1a
则_______________; (3)若=+=-22121x
x x x 则 14.已知222222M xy y x y x y x y x y
--=+--+,则M= . 15.已知02322=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 2
2+--的值_______________;
16.已知
11x -有意义,且2111
A x x =--成立,则x 的值不等于 . 17.方程51
3=-x 的根是 . 18.当m=______时,方程233
x m x x =---会产生增根. 19.若分式方程03
231=+-+x x x 无解,则x 的值一定为 。
20.若方程k
x x +=+233有负数根,则k 的取值范围是__________. 21.若分式231-+x x 的值为负数,则x 的取值范围是__________。
22.计算:=+-+3
932a a a __________。
23.要使
2
415--x x 与的值相等,则x =__________。
24.当x_______时,分式x
x ++51的值等于21. 25.若使23--x x 与232+-x x 互为倒数,则x 的值是________. 26.已知方程531)1()(2-=-+x a a x 的解为5
1-=x ,则a =_________.
27.计算
22142
a a a -=-- . 28.方程x x 527=-的解是 。
29.计算:3622)y x ()y x (-÷-= ;
30.使分式9
x 1x 2-+有意义的x 的取值范围是 ; 31.计算:
a
b b b a a -+-= . 32.已知a+1a =3,则a 2+21a =_______. 33.已知11x y -,则分式2322x xy y x xy y
+---的值为________. 34.若ab=2,a+b=-1,则b
a 11+ 的值为 35.已知:2
2)2(2)2(3-+-=-+x B x A x x ,则A= 、B = 36.已知a=2005,b=2005
1,求ab b a a b b b a a +÷-+-)(22的值为________. 37.如果把分式y
x x +中的x 、y 都扩大为原来的3倍,那么分式的值_________. 38.已知++4a 9-b =0,则=--⋅+2
2222b a ab a b ab a _________. 39、已知4
32z y x ==,则=+--+z y x z y x 232 。
40.若12
a b b -=,则2222352235a ab b a ab b -++-= 41.化简:
=-++-+a
b b b a b a 12 ; 42.当23+=x 时,=+--÷--4432622x x x x x 43.化简:=-++++-)
6)(()34)(2(2222x x x x x x x x 44. 化简x x
x x -----2222
的结果是
45.化简2
4().22a a a a a a
---+的结果是
46.化简3222121()11
x x x x x x x x --+-÷+++的结果为
48.分式方程
1212x x =--
49.把分式方程
11122x x x --=--的两边同时乘以(x-2),约去分母得
50.方程9
231312-=-++x x x 的解是。