高三理科数学:随机事件的概率与古典概型_知识点总结
随机事件的概率(古典概型、简单的几何概型、抽样方法)
所以该学校阅读过《西游记》的学生人数为70人, 则该学校阅读过《西游记》的学生人数与
该学校学生总数比值的估计值为:70 0.7.故选C. 100
7.(2018西安八校联考)某班对八校联考成绩进行分析,利用随机 数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号, 然后从随机数表第9行第5列的数开始向右读,则选出的第6个 个体是 ( )
(红,黄),(红,蓝),(红,绿),(红,紫),共4种,
故所求概率P 4 2. 10 5
3.(2018新课标Ⅲ卷)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支
第1节 随机事件的概率(古典概型、简单的几何概型、抽样方法)
付的概率为 ( ) 第三组取的数为(10号)36,第四组取的数为(14号)43,
A .2 3
B .3 5
C .2 5
D .1 5
【答案】 B 【解析】由题意,通过列举可知从这5只兔子中随机取出3只的 所有情况数为10, 恰有2只测量过该指标的所有情况数为6.
所以P 6 3.故选B. 10 5
9.(2019新课标Ⅲ卷,文)两位男同学和两位女同学随机排成一列,
则两位女同学相邻的概率是
表第9行第5列的数开始向右读,则选出的第6个个体是 ( )
4.取一根长度为5m的绳子,拉直后在任意位置剪断,那么所得两
段绳子的长度都不小于2m的概率是
()
A .1 5
B .1 3
C .1 4
D .1 2
【 答 案 】 A 【 解 析 】 记 两 段 绳 子 的 长 度 都 不 小 于 2m为 事 件 A, 则 只 能 在 中 间 1m的 绳 子 上 剪 断 ,所 得 两 段 绳 子 的 长 度 才 都 不 小 于 2m,
高三数学随机事件的概率与古典概型
(4)互斥事件:不同时发生的两个事件. (5)对立事件:两个事件有且只有一个 发生. 4.概率的基本性质: (1)0≤P(A)≤1. (2)如果事件A与B互斥,则 P(A∪B)=P(A)+P(B). (3)如果事件A与B对立,则 P(A)+P(B)=1.
5.基本事件的特征: (1)任何两个基本事件都是互斥的; (2)任何事件(除不可能事件)都可以表 示成基本事件的和. 6.古典概型: (1)特点:一次试验中所有可能出现的 基本事件只有有限个(有限性),且每个 基本事件出现的可能性相等(等可能性). (2)公式:P(A)=事件A所包含的基本 事件点1 求随机事件的概率
例1 在由1,2,3,4,5组成的五位数 中任取一个数,求这个数恰有4个相同数 字的概率.
例2 袋中有12个小球,分别为红球、 黑球、黄球、绿球,从中任取一球,得 1 到红球的概率为 ,得到黑球或黄球的 3 5 概率为 ,得到黄球或绿球的概率也
5 是 ,求得到黑球、黄球、绿球的概率 12 12
4.如果事件A1,A2,…,An两两互斥, 则P(A1+A2+…+An)=P(A1)+P(A2) +…+P(An). 5.基本事件是一次试验中所有可能出 现的最小事件,且这些事件彼此互斥.试 验中的事件A可以是基本事件,也可以是 有几个基本事件组合而成的.
6.如果事件A,B不互斥,则P(A+B)= P(A)+P(B)-P(AB)=1- P ( AB ) .
2.事件A发生的频率与概率:
(1)频率:在相同条件下重复n次试验, 若某一事件A出现的次数为nA,则事 nA 件A出现的频率 f n ( A) . n
(2)概率:若随机事件A在大量重复试 验中发生的频率fn(A)趋于稳定,在某个 常数附近摆动,则称这个常数为事件A发 生的概率,记作P(A).
高考数学复习考点知识专题讲解与训练53---随机事件的概率与古典概型
高考数学复习考点知识专题讲解与训练专题53 随机事件的概率与古典概型【考纲要求】1.掌握事件、事件的关系与运算,掌握互斥事件、对立事件、独立事件的概念及概率的计算.了解条件概率的概念.2.了解概率与频率概念,理解古典概型,会计算古典概型中事件的概率.【知识清单】知识点1. 随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件下,一定会发生的事件叫做相对于条件的必然事件.(2)在条件下,一定不会发生的事件叫做相对于条件的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件下可能发生也可能不发生的事件,叫做随机事件.S S S S S(5)确定事件和随机事件统称为事件,一般用大写字母表示.2.频率与概率(1)在相同的条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的次数为事件出现的频数,称事件出现的比例为事件出现的频率. (2)对于给定的随机事件,如果随着试验次数的增加,事件发生的频率稳定在某个常数上,把这个常数记作,称为事件的概率,简称为的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即为不可能事件(),则称事件与事件互斥,其含义是:事件与事件在任何一次试验中不会同时发生.一般地,如果事件中的任何两个都是互斥的,那么就说事件彼此互斥.,,,A B C S n A n A A n A A ()A n n f A n =A A A ()n f A ()p A A A AB A B φ=A B A B 12,,,n A A A 12,,,n A A A对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即为不可能事件,而为必然事件,那么事件与事件互为对立事件,其含义是:事件与事件在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 如果事件发生,则事件一定发生,这时称事件包含事件 (或称事件包含于事件)若且,那么称事件与事件相等或) )A B A B A B A B A B B A A B A B +AB互斥为不可能事件,么称事件与事件互为对立事件且5.随机事件的概率事件的概率:在大量重复进行同一试验时,事件发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.[来源:Z#xx#]由定义可知,显然必然事件的概率是,不可能事件的概率是.5.概率的几个基本性质(1)概率的取值范围:.(2)必然事件的概率:.[来源:学.科.网](3)不可能事件的概率:.B A A B φ=B =ΩA A nm A ()p A ()01p A ≤≤10()01p A ≤≤()1p A =()0p A =(4)互斥事件的概率加法公式:①(互斥),且有. ② (彼此互斥).(5)对立事件的概率:.知识点2. 古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=. 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古()()()p A B p A p B =+,A B ()()()1p A A p A p A +=+=()()()()1212n n p A A A p A p A p A =+++12,,,n A A A ()()1P A P A =-n 1n m典概型.①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.[常用结论]1.频率与概率频率是随机的,不同的试验,得到频率也可能不同,概率是频率的稳定值,反映了随机事件发生的可能性的大小.2.互斥与对立对立事件一定互斥,但互斥事件不一定对立.3.概率加法公式的注意点(1)要确定A ,B 互斥方可运用公式.(2)A ,B 为对立事件时并不一定A 与B 发生的可能性相同,即P (A )=P (B )可能不成立.【考点梳理】考点一:随机事件间的关系【典例1】(2020·云南高二月考)从装有2个红球和2个白球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球【答案】C【解析】至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;恰有1个白球,恰有2个白球,是互斥事件不是对立事件;至少有1个白球;都是红球,是互斥事件和对立事件.故选:C【典例2】(2020·云南丽江第一高级中学高二期中)抽查8件产品,设“至少抽到3件次品”为事件M,则M的对立事件是()A.至多抽到2件正品B.至多抽到2件次品C.至多抽到5件正品D.至多抽到3件正品【答案】B【解析】根据对立事件的定义,事件和它的对立事件不会同时发生,且他们的和事件为必然事件,事件“至多抽到2件正品”、“至多抽到5件正品”、“至多抽到3件正品”与“至少抽到3件次品”能同时发生,不是对立事件;只有事件“至多2件次品”与“至少抽到3件次品” 不能同时发生且他们的和事件为必然事件,是M的对立事件,故选:B.【总结提升】事件间的关系的判断方法1.判断事件间的关系时,可把所有的试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件间的关系.2.对立事件一定是互斥事件,也就是说不互斥的两个事件一定不是对立事件,在确定了两个事件互斥的情况下,就要看这两个事件的和事件是不是必然事件,这是判断两个事件是否为对立事件的基本方法.判断互斥事件、对立事件时,注意事件的发生与否都是对于同一次试验而言的,不能在多次试验中判断.3.判断互斥、对立事件的2种方法:(1)定义法: 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件(2) 集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集即:事件A,B对应的基本事件构成了集合A,B,则A,B互斥时,A∩B =∅;A,B对立时,A∩B=∅且A∪B=U(U为全集).两事件互斥是两事件对立的必要不充分条件.【变式探究】1.(2019·湖南长郡中学高二期中)从装有2个白球和3个黑球的口袋内任取两个球,那么下列事件中是互斥而不对立的事件是()A.“恰有两个白球”与“恰有一个黑球”B.“至少有一个白球”与“至少有一个黑球”C.“都是白球”与“至少有一个黑球”D.“至少有一个黑球”与“都是黑球”【答案】A【解析】对于A,事件:“恰有两个白球”与事件:“恰有一个黑球”不能同时发生,但从口袋中任取两个球时还有可能两个都是黑球,∴两个事件是互斥事件但不是对立事件,∴A正确;对于B,事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,如:一个白球一个黑球,∴这两个事件不是互斥事件,∴B不正确;对于C.“都是白球”与“至少有一个黑球”不能同时发生,且对立,故C错误;对于D,“至少有一个黑球”与“都是黑球”可以同时发生,故不互斥.故选:A.2.(多选题)不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片不全为红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色 D.2张卡片都为绿色【答案】BD【解析】6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2 张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立“2张恰有一张红色”“2张都为绿色”,其中“2张至少一张为红色”包含事件是“2张都为红色”二者并非互斥,“2张不全为红色”是对立事件.故选:BD.考点二:随机事件的频率与概率【典例3】设A、B是两个概率大于0的随机事件,则下列论述正确的是()A .事件A ⊆B ,则P (A )<P (B )B .若A 和B 互斥,则A 和B 一定相互独立C .若A 和B 相互独立,则A 和B 一定不互斥D . P (A )+P (B )≤1【答案】C【解析】若事件B 包含事件A ,则P (A )≤P (B ),故A 错误; 若事件A 、B 互斥,则P (AB )=0,若事件A 、B 相互独立,则P (AB )=P (A )P (B )>0,故B 错误,C 正确;若事件A ,B 相互独立,且P (A )12>,P (B )12>,则P (A )+P (B )>1,故D 错误.故选:C .【典例4】(2016高考新课标2文选)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求()P A 的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求()P B的估计值;【答案】(Ⅰ)0.55;(Ⅱ)0.3.【解析】(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3.【总结提升】1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的.而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.3.求解以统计图表为背景的随机事件的频率或概率问题的关键点求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表,计算出所求随机事件出现的频数.【变式探究】1.(2020·黑龙江哈尔滨三中高一开学考试)将A,B两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③【答案】B【解析】:①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的频率估计它的概率,投篮30次,次数太少,不可用于估计概率,故①推断不合理;②随着投篮次数增加,A运动员投中的频率显示出稳定性,因此可以用于估计概率,故②推断合理;③频率用于估计概率,但并不是准确的概率,因此投篮200次时,只能估计投中160次,而不能确定一定是160次,故③不合理;2.(2019·沈阳模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解析】 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.考点三:互斥事件与对立事件的概率【典例5】(2020·海南省高考真题)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%【答案】C【解析】记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A B+,“该中学学生既喜欢足球又喜欢游泳”为事件A B⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.【典例6】(多选题)中国篮球职业联赛(CBA )中,某男篮球运动员在最近几次参加的比赛中的得分情况如下表:记该运动员在一次投篮中,投中两分球为事件A ,投中三分球为事件B ,没投中为事件C ,用频率估计概率的方法,得到的下述结论中,正确的是( )A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C +=【答案】ABC【解析】由题意可知,()550.55100P A ==,()180.18100P B ==, 事件A B +与事件C 为对立事件,且事件A 、B 、C 互斥,()()()()110.27P C P A B P A P B ∴=-+=--=,()()()0.45P B C P B P C +=+=.故选:ABC.【规律方法】1. 概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.2. 判断事件关系时要注意(1)利用集合观点判断事件关系;(2)可以写出所有试验结果,看所求事件包含哪几个试验结果,从而判断所求事件的关系.3.对于互斥事件要抓住如下的特征进行理解:第一,互斥事件研究的是两个事件之间的关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是从试验的结果不能同时出现来确定的4.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,事件的对立事件记作,从集合的角度来看,事件所含结果的集合正是全集中由事件所含结果组成集合的补集,即,,对立事件一定是互斥事件,但互斥事件不一定是对立事件.事件的和记作,表示事件至少有一个发生.当为互斥事件时,事件是由“发生而不发生”以及“发生而不发生”构成的.当计算事件的概率比较困难时,有时计算它的对立事件的概率则要容易些,为此有.这不仅体现逆向思维,同时对培养思维的灵活性是非常有益的.求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥的事件的概率的和;二是先去求此A A A UA AA U =A A φ=,AB A B +,A B ,A B A B +A B B A A ()p A A ()()1P A P A =-事件的对立事件的概率.对于个互斥事件,其加法公式为.分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.【变式探究】1. (2018·全国高考真题(文))若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7【答案】B【解析】设事件A 为只用现金支付,事件B 为只用非现金支付, 则()()()()P A B P A P B P AB 1⋃=++= 因为()()P A 0.45,P AB 0.15==n 12,,,n A A A ()()()()1212n n p A A A p A p A p A =+++所以()P B 0.4=,故选B.2.(多选题)(2020·烟台市教育科学研究院高一期末)已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则( )A .事件A 发生的概率为12 B .事件A B 发生的概率为1120 C .事件A B 发生的概率为25D .从甲罐中抽到标号为2的小球的概率为15【答案】BC【解析】由题意,从甲罐、乙罐中分别随机抽取1个小球,共包含114520C C =个基本事件;“抽取的两个小球标号之和大于5”包含的基本事件有:()1,5,()1,6,()2,5,()2,6,()3,3,()3,5,()3,6,()4,2,()4,3,()4,5,()4,6,共11个基本事件;“抽取的两个小球标号之积大于8”包含的基本事件有:()2,5,()2,6,()3,3,()3,5,()3,6,()4,3,()4,5,()4,6,共8个基本事件;即事件B 是事件A 的子事件;因此事件A 发生的概率为1120,故A 错; 事件A B 包含的基本事件个数为11个,所以事件A B 发生的概率为1120;故B 正确;事件A B 包含的基本事件个数为8个,所以事件A B 发生的概率为82205=,故C 正确; 从甲罐中抽到标号为2的小球,包含的基本事件为:()2,1,()2,2,()2,3,()2,5,()2,6共5个基本事件,故从甲罐中抽到标号为2的小球的概率为15,即D 错误.故选:BC.【特别提醒】求复杂的互斥事件的概率的方法(1)直接法(2)间接法(正难则反)考点四:简单的古典概型【典例7】(2020·全国高考真题(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .45【答案】A【解析】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C{,,},{,,},{,,},{,,}O B D O C D A B C A B D{,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105.故选:A【典例8】(2017课标II,文11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.25【答案】D【总结提升】1.计算古典概型事件的概率可分三步(1)判断本次试验的结果是否是等可能的,设出所求的事件为A ;(2)分别计算基本事件的总个数n 和所求的事件A 所包含的基本事件个数m ;(3)利用古典概型的概率公式P (A )=mn求出事件A 的概率.2. 解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.【变式探究】1.(2019·全国高考真题(文))生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15【答案】B【解析】设其中做过测试的3只兔子为,,a b c,剩余的2只为,A B,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B,{,c,},{,c,},{b,,},{c,,}b A b B A B A B共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B{,c,},{,c,}b A b B共6种,所以恰有2只做过测试的概率为63105,选B.2.(2017·全国高考真题(文))从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.35C.310D.25【答案】D【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=42. 105【特别提醒】1. 古典概型中基本事件的探求方法(1)枚举法:适合给定的基本事件个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题中的基本事件的探求,注意在确定基本事件时(x,y)可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件的个数时,可利用排列或组合的知识.2.古典概型中的基本事件都是互斥的考点五:复杂的古典概型【典例9】通过手机验证码登录哈喽单车App,验证码由四位数字随机组成,如某人收到的验证码1234(,,,)a a a a 满足1234a a a a <<<,则称该验证码为递增型验证码,某人收到一个验证码,那么是首位为2的递增型验证码的概率为________【答案】16【解析】∵12a =,2342a a a <<<,∴2a 、3a 、4a 从中3~9选,只要选出3个数,让其按照从小到大的顺序排,分别对应234,,a a a 即可,7341016C P C ∴==.故答案为:16【典例10】(2020·云南省保山第九中学高三月考(文))某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰好1名女工人的概率;(Ⅲ)求抽取的3名工人中恰有2名男工人的概率.【答案】(Ⅰ)2,1;(Ⅱ)815;(Ⅲ)3175. 【解析】(Ⅰ)因为车间甲组有10名工人,乙组有5名工人,所以甲、乙两组的比例是2:1,又因为从甲、乙两组中共抽取3名工人进行技术考核,所以从甲、乙两组各抽取的人数是2,1;(Ⅱ)因为车间甲组有10名工人,其中有4名女工人,所以从甲组抽取的工人中恰好1名女工人的概率1146210815p C C C==; (Ⅲ)因为车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,所以求抽取的3名工人中恰有2名男工人的概率112166322121105105131475p C C C C C C C C C =+=. 【特别提醒】1.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.2.注意区别排列与组合,以及计数原理的正确使用.【变式探究】1.(2020·浙江高三月考)在浙江省新高考选考科目报名中,甲、乙、丙、丁四位同学均已选择物理、化学作为选考科目,现要从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有___________种(用数字作答);若每位同学选报这五门学科中的任意一门是等可能的,则这四位同学恰好同时选报了其中的两门课程的概率为____________.【答案】62528 125【解析】从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有45625种;若这四位同学恰好同时选报了其中的两门课程,其中一人独自选一科,另外三人选一科,共有不同的选报方案212 54280C C A=种,其中两人选一科,另外两人选另一科,共有不同的选报方案2225422260 C C AA=种,则这四位同学恰好同时选报了其中的两门课程的概率为806028 625125+=故答案为:28 625,1252.(浙江高考真题(文))一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是,从中任意摸出2个球,至少得到1 个白球的概率是. 求:(1)从中任意摸出2个球,得到的都是黑球的概率;(2)袋中白球的个数【答案】(1)215;(2)5个.【解析】(Ⅰ)由题意知,袋中黑球的个数为记“从袋中任意摸出两个球,得到的都是黑球”为事件A,则(Ⅱ)解:记“从袋中任意摸出两个球,至少得到一个白球”为事件B.设袋中白球的个数为x,则得到x=5故袋中白球个数为5个考点六:古典概型的交汇问题【典例11】设连续掷两次骰子得到的点数分别为m,n,令平面向量(),a m n=,()1,3b=-,则事件“a b⊥”发生的概率为__________;事件“a b≤”发生的概率为__________.【答案】11816【解析】(1)由题意知,{1,2,3,4,5,6}m ∈、{1,2,3,4,5,6}n ∈,故(m ,n )所有可能的取法共36种.当a b ⊥时,得m -3n =0,即m =3n ,满足条件共有2种:(3,1),(6,2),所以事件a b ⊥的概率213618P ==. (2)当a b ≤时,可得m 2+n 2≤10,共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种情况,其概率61366P ==. 故答案为:118;16. 【典例12】(2019·上海市建平中学高三)已知方程221x y a b+=表示的曲线为C ,任取,{1,2,3,4,5}a b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________.【答案】825【解析】所有可能的(),a b的组数为:5525⨯=,又因为焦距22c=,所以1c=,所以1a b-=±,则满足条件的有:()()()()()()()()1,2,2,3,3,4,4,5,5,4,4,3,3,2,2,1,共8组,所以概率为:825 P=.故答案为:8 25.【特别提醒】求解古典概型的交汇问题,关键是把相关的知识(平面向量、直线与圆、函数、统计等)转化为事件,然后利用古典概型的有关知识解决,其解题流程为:【变式探究】1.若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2,()34P A a P B a =-=-,则实数a的取值范围为_____.【答案】(4332,]【解析】因为随机事件A 、B 互斥,A 、B 发生的概率均不等于0,所以有:0()1021430()10341320()()102341P A a P B a a P A P B a a <<<-<⎧⎧⎪⎪<<⇒<-<⇒<≤⎨⎨⎪⎪<+≤<-+-≤⎩⎩. 故答案为:43(,]322.(2020·安徽高二期中(理))已知向量(2,1),(,)a b x y =-=.若,x y 分别表示将一枚质地均匀的正方体骰子先后抛掷两次时第一次、第二次出现的点数,求满足1a b ⋅=-的概率.【答案】112【解析】,x y 分别表示将一枚质地均匀的正方体骰子先后抛掷两次时第一次、第二次出现的点数,有序数对(),x y 可能情况有36种,。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。
例如:掷硬币的结果、抽取扑克牌的花色等。
2.概率:概率是描述随机事件发生可能性大小的数值。
概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。
3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。
例如:掷骰子的结果、抽取彩色球的颜色等。
4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。
例如:掷骰子的点数、抽取扑克牌的点数等。
5.概率分布:随机变量的概率分布描述了每个取值发生的概率。
常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。
6. 期望值:期望值是衡量随机变量取值的平均值。
对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。
7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。
方差=Var(X)=E[(X-E[X])^2]。
8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。
独立性的判定通常通过联合概率、条件概率等来进行推导。
二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。
总体是指要研究的对象的全部个体或事物的集合。
2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。
统计量是根据样本计算得到的参数估计值,用来估计总体参数。
3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。
4.统计分布:统计分布是指样本统计量的分布。
常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。
5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。
高三数学知识点总结35之34:概率
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件; (2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率nm会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0. 2. 事件的关系与运算3.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D C B A O ,,,,中任选三点,则取到三点共线的概率为( ) A.51 B. 52 C. 21 D.54 例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.31 B. 21 C. 32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .答:1-1:A ;1-2:C ; 1-3: 65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥. (2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+ 推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A ,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A(4)对立事件的概率公式:).(1)(A P A P -= 注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A. 62%B. 56%C. 46%D. 42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是 .答:2-1:C ; 2-2: .36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生. (2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立. ③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算. (3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,① 则称①为随机变量X 的概率分注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)ix i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式. 7.常见离散型随机变量的概率分布 (1)两点分布(0-1分布)).1()p p -= (2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnNC C P X r C --==,0,1,2,,r m =,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnC C P X r C --==记为).,,;(N M n r H 则NX E =)(;)1()(2-=N N X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验. (2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X (3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -= 注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布; (2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布. 9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x… n xP1p 2p…n p其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望. 2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........ 3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好. (2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V = 10.正态分布 (1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴. ②曲线是单峰的,它关于直线μ=x 对称; ③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1). ②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B 的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544; ③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生. 【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
概率论与数理统计知识点总结
概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
高中概率统计知识点_高三概率知识点总结范文
《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。
本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。
一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。
必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。
2. 概率的定义概率是对随机事件发生可能性大小的度量。
对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。
当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。
3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。
(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。
二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。
三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。
(2)每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。
这里测度可以是长度、面积、体积等。
四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。
互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。
高中概率知识点总结
高中概率知识点总结概率是高中数学中的重要内容,它在现实生活中的应用非常广泛,如抽奖活动、保险行业、数据分析等。
下面就来对高中概率的知识点进行一个全面的总结。
一、随机事件和概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如抛掷一枚硬币,正面朝上或者反面朝上就是随机事件。
2、概率概率是用来描述随机事件发生可能性大小的数值。
对于一个随机事件 A,它的概率记为 P(A),取值范围在 0 到 1 之间。
如果 P(A) = 0,表示事件 A 不可能发生;如果 P(A) = 1,表示事件 A 必然发生;如果0 < P(A) < 1,则表示事件 A 有可能发生。
二、事件的关系与运算1、包含关系如果事件 A 发生必然导致事件 B 发生,那么称事件 B 包含事件 A,记作 A⊆B。
2、相等关系如果 A⊆B 且 B⊆A,那么称事件 A 与事件 B 相等,记作 A = B。
3、和事件事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的和事件,记作 A∪B。
4、积事件事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的积事件,记作A∩B。
5、互斥事件如果事件 A 与事件 B 不能同时发生,那么称事件 A 与事件 B 互斥,即A∩B =∅。
6、对立事件如果事件 A 和事件 B 满足 A∪B 为必然事件,A∩B 为不可能事件,那么称事件 A 与事件 B 互为对立事件,此时 P(B) = 1 P(A) 。
三、古典概型1、定义具有以下两个特征的随机试验的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2、古典概型的概率公式如果一次试验中可能出现的结果有 n 个,而事件 A 包含的结果有 m 个,那么事件 A 的概率 P(A) = m / n 。
四、几何概型1、定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型。
高考数学复习知识点讲解教案第61讲 随机事件与概率、古典概型
[解析] 事件,,都是随机事件,可能发生,也可能不发生,故A选项不正确;
+ + 不一定发生,故B选项不正确;
,可能同时发生,故与不是互斥事件,故C选项正确;
与既不是互斥事件也不是对立事件,故D选项不正确.故选C.
(2)
(多选题)某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比
高考数学复习知识点讲解教案
第61讲 随机事件与概率、古典概型
课基础巩固
课堂考点探究
教师备用习题
作业手册
1.结合具体实例,理解样本点和有限样本空间的含义,理解随机事件与样本点的
关系.
2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算.
3.结合具体实例,理解古典概型,能计算古典概型中简单随机事件的概率.
同时
交事件(或积事件) 事件与事件_______发生
互斥(或互不相容) 事件与事件_________________
不能同时发生
互为对立
事件和事件在任何一次试验中有且
仅有一个发生
注:事件的对立事件记为,对立事件是互斥事件的特殊情况.
符号表示
________(或
⊇
⊆ )
=
3件中至多有2件一级品
件都是一级品”为事件,则的对立事件是___________________________.
[解析] 由题可知,“3件都是一级品”为事件,
则的对立事件为“3件不都是一级品”,即“3件中至多有2件一级品”.
3.[教材改编]
从存放号码分别为1,2,3,⋯ ,10的卡片的盒子里,有放回地
(含有全部样本点)、不可能事件⌀ (不
含任何样本点)、基本事件(只包含一个样本点).
【原创】高考数学复习第五节 随机事件的概率、古典概型
第五节随机事件的概率、古典概型1.事件的相关概念2.频数、频率和概率(1)频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.事件的关系与运算4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率为1. (3)不可能事件的概率为0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件,P (A ∪B )=1,P (A )=1-P (B ).5.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 6.古典概型(1)(2)概率计算公式:P (A )=A 包含的基本事件的个数基本事件的总数.[小题体验]1.(教材习题改编)某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为____________;中10环的概率约为________.解析:中靶的频数为9,试验次数为10,所以中靶的频率为910=0.9,所以此人射击1次,中靶的概率约为0.9.同理得中10环的概率约为0.2.答案:0.9 0.22.(教材习题改编)如果从不包括大、小王的52张扑克牌中随机抽取一张,那么取到红心的概率是14,取到方块的概率是14,则取到黑色牌的概率是________.答案:123.(教材习题改编)一个口袋内装有2个白球和3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是________.解析:先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为25.答案:254.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.∴所求概率P =210=15.答案:1 51.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.3.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.[小题纠偏]1.甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件解析:选B两个事件是对立事件,则它们一定互斥,反之不一定成立.2.从一副混合后的扑克牌(除去大、小王52张)中,随机抽取1张.事件A为“抽到红桃K”,事件B为“抽到黑桃”,则P(A∪B)=________(结果用最简分数表示).解析:∵P(A)=152,P(B)=1352,∴P(A∪B)=P(A)+P(B)=152+1352=1452=726.答案:7 26考点一随机事件的关系(基础送分型考点——自主练透)[题组练透]1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:选D事件“至少有一次中靶”包括“中靶一次”和“中靶两次”两种情况.由互斥事件的定义,可知“两次都不中靶”与之互斥.2.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析:设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C =∅,B∩D=∅,故A与B,A与C,B与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.答案:A与B,A与C,B与C,B与D B与D[谨记通法]判断互斥、对立事件的2种方法(1)定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.(2)集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.考点二随机事件的频率与概率(基础送分型考点——自主练透)[题组练透]1.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为()A.49B.0.5C.0.51 D.0.49解析:选C由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51 100=0.51.2.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.[谨记通法]1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.[提醒] 概率的定义是求一个事件概率的基本方法.考点三 互斥事件与对立事件的概率(重点保分型考点——师生共研)[典例引领]某战士射击一次,问:(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?解:(1)设中靶为事件A ,则不中靶为A . 则由对立事件的概率公式可得, P (A )=1-P (A )=1-0.95=0.05.即不中靶的概率为0.05.(2)设命中10环为事件B,命中9环为事件C,命中8环为事件D,由题意知P(B)=0.27,P(C)=0.21,P(D)=0.24.记至少命中8环为事件E,则P(E)=P(B+C+D)=P(B)+P(C)+P(D)=0.27+0.21+0.24=0.72.故至少命中8环的概率为0.72.记至少命中9环为事件F,则不够9环为F,则P(F)=P(B+C)=P(B)+P(C)=0.27+0.21=0.48.则P(F)=1-P(F)=1-0.48=0.52.即不够9环的概率为0.52.[由题悟法]求复杂互斥事件概率的2种方法(1)直接法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.(2)间接法:先求此事件的对立事件,再用公式P(A)=1-P(A)求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.[提醒]应用互斥事件概率的加法公式,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件发生的概率,再求和(或差).[即时应用](2019·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:求:(2)至少3人排队等候的概率是多少?解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一:记“至少3人排队等候”为事件H ,则 H =D ∪E ∪F , 所以P (H )=P (D ∪E ∪F ) =P (D )+P (E )+P (F ) =0.3+0.1+0.04=0.44.法二:记“至少3人排队等候”为事件H , 则其对立事件为事件G , 所以P (H )=1-P (G )=0.44.考点四 古典概型的简单问题(基础送分型考点——自主练透)[题组练透]1.(2019·浙江名校联考)春节期间,记者在天安门广场随机采访了6名外国游客,并从这6人中任意选取2人进行深度采访,则不同的选择情况有________种,若这6人中有2名游客会说汉语,则选取的2人中至少有1人会说汉语的概率为________.解析:不同的选择情况有C 26=15种.法一:设“选取的2人中至少有1人会说汉语”为事件A ,由题意知,P (A -)=C 24C 26=615=25,则P (A )=1-25=35. 法二:设“选取的2人中至少有1人会说汉语”为事件A ,则P (A )=C 22+C 12C 14C 26=915=35. 答案:15352.(2019·嘉兴高三期末)从4名男生和2名女生中任选3人参加演讲比赛,则恰好选到2名男生和1名女生的概率为________,所选3人中至少有1名女生的概率为________.解析:从4名男生和2名女生中任选3人参加演讲比赛, 基本事件总数n =C 36=20,恰好选到2名男生和1名女生包含的基本事件个数m =C 24C 12=12,∴恰好选到2名男生和1名女生的概率P 1=m n =1220=35.∵所选3人中至少有1名女生的对立事件是选到的3人都是男生,∴所选3人中至少有1名女生的概率P 2=1-C 34C 36=45.答案:35 453.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.根据题意,这些基本事件的出现是等可能的.事件“A 1被选中且B 1未被选中”所包含的基本事件有: {A 1,B 2},{A 1,B 3},共2个.因此A 1被选中且B 1未被选中的概率为P =215.[谨记通法]1.求古典概型概率的步骤(1)判断本试验的结果是否为等可能事件,设出所求事件A ;(2)分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; (3)利用公式P (A )=mn ,求出事件A 的概率. 2.基本事件个数的确定方法考点五 古典概型的交汇命题(题点多变型考点——多角探明)[锁定考向]古典概型在高考中常与平面向量、解析几何等知识交汇命题,命题的角度新颖,考查知识全面,能力要求较高.常见的命题角度有:(1)古典概型与平面向量相结合; (2)古典概型与直线、圆相结合; (3)古典概型与函数相结合.[题点全练]角度一:古典概型与平面向量相结合1.设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( )A.18 B.14 C.13D.12解析:选A 有序数对(m ,n )的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a ⊥(a -b ),得m 2-2m +1-n =0,即n =(m -1)2,由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以所求的概率P (A )=216=18. 角度二:古典概型与直线、圆相结合2.(2019·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b 2≤ 2,即a ≤b ,则当a =1时,b =1,2,3,4,5,6,共有6种,当a =2时,b =2,3,4,5,6,共5种,同理当a =3时,有4种,a =4时,有3种,a =5时,有2种,a =6时,有1种,故共6+5+4+3+2+1=21种,因此所求的概率等于2136=712. 答案:712角度三:古典概型与函数相结合3.已知函数f (x )=cos ⎝⎛⎭⎫a π4x ,a 为抛掷一颗骰子所得的点数,则函数f (x )在[0,4]上零点的个数不小于4的概率为( )A.13B.12C.25D.23解析:选B 依题意,函数f (x )在[0,4]上零点的个数不小于4等价于函数f (x )的周期的74倍不大于4,即74×2πa π4≤4,解得a ≥72,故a =4,5,6,而所有a 的值共6个,所以函数f (x )在[0,4]上零点的个数不小于4的概率为12.[通法在握]解决古典概型交汇命题的方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[演练冲关]1.(2019·湘中名校联考)从集合A ={-2,-1,2}中随机选取一个数记为a ,从集合B ={-1,1,3}中随机选取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14解析:选A 从集合A ,B 中随机选取后组合成的数对有(-2,-1),(-2,1),(-2,3),(-1,-1),(-1,1),(-1,3),(2,-1),(2,1),(2,3),共9种,要使直线ax -y +b =0不经过第四象限,则需a >0,b >0,共有2种满足题意,所以所求概率P =29,故选A.2.(2019·宁海模拟)m ∈{-2,-1,0,1,2},n ∈{-1,0,1},随机抽取一个m 和一个n ,使得平面向量a =(m ,n ),满足|a |>2的概率为________.解析:当m =-2,2,n =-1,1时,满足|a |>2.所以概率为2×25×3=415. 答案:415一抓基础,多练小题做到眼疾手快1.(2019·宁波四校联考)甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A.13B.14C.15D.16解析:选A ∵甲、乙两人参加学习小组的所有事件有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9个,其中两人参加同一个小组的事件有(A ,A ),(B ,B ),(C ,C ),共3个,∴两人参加同一个小组的概率为39=13. 2.一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红球、黑球各一个解析:选D 红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件.3.(2019·绍兴质检)5个车位分别停放了A ,B ,C ,D ,E 5辆不同的车,现将所有车开出后再按A ,B ,C ,D ,E 的次序停入这5个车位,则在A 车停入了B 车原来的位置的条件下,停放结束后恰有1辆车停在原来位置上的概率是( )A.38B.340C.16D.112解析:选A 若C 停在原来位置上,则剩下三辆车都不停在原来位置上,共有9种方法,故所求概率为9A 44=38. 4.(2019·杭州高级中学联考)甲、乙两人从4门课程中各选修2门.则不同的选法共有________种,2人所选课程至少有一门相同的概率为________.解析:甲、乙两人从4门课程中各选修2门,则不同的选法共有C 24C 24=36种.2人所选课程至少有一门相同,有36-C 24=30种,∴2人所选课程至少有一门相同的概率为3036=56. 答案:36 56 5.如果事件A 与B 是互斥事件,且事件A ∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为________;事件B 发生的概率为________.解析:设P (A )=x ,P (B )=3x ,∴P (A ∪B )=P (A )+P (B )=x +3x =0.64.∴P (A )=x =0.16,P (B )=3x =0.48.答案:0.16 0.48二保高考,全练题型做到高考达标1.(2019·宁波模拟)一个质地均匀的正四面体玩具的四个面上分别标有1,2,3,4这四个数字,若连续两次抛掷这个玩具,则两次向下的面上的数字之积为偶数的概率是( )A.12B.13C.23D.34解析:选D 抛掷两次该玩具共有16种情况:(1,1),(1,2),(1,3),(1,4),(2,1),…,(4,4).其中乘积是偶数的有12种情况:(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4).所以两次向下的面上的数字之积为偶数的概率是P =1216=34. 2.袋中装有3个白球,4个黑球,从中任取3个球,则下面事件是互斥事件但不是对立事件的为( )A .恰有1个白球和全是白球;B .至少有1个白球和全是黑球;C .至少有1个白球和至少有2个白球;D .至少有1个白球和至少有1个黑球.解析:选A 由题意可知,事件C 、D 均不是互斥事件;A 、B 为互斥事件,但B 又是对立事件,满足题意只有A ,故选A.3.(2019·安徽淮北一模)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.516B.1132C.1532D.12解析:选B 由题意知共有25种基本事件,其中没有相邻的两个人站起来包括如下情况:没有人站起来,有1种基本事件;只有一个人站起来,有C 15=5种基本事件;有两个人站起来,只有13,14,24,25,35这5种基本事件,因此所求概率为1+5+525=1132. 4.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A.15B.25C.16D.18解析:选B 如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 5.已知集合M ={}1,2,3,4,N ={}(a ,b )|a ∈M ,b ∈M ,A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A.12B.13C.14D.18解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使直线OA 的斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率是416=14. 6.(2018·诸暨质检)用1,2,3,4,5这五个数字组成各位上数字不同的四位数,则千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1 524)的概率为________.解析:用1,2,3,4,5这五个数字组成各位上数字不同的四位数,基本事件总数n =A 45=120,其中千位上是奇数,且相邻两位上的数之差的绝对值都不小于2包含的基本事件有: 1 352,1 425,1 524,3 142,3 152,3 524,3 514,5 241,5 314,5 142,共10个∴千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1 524)的概率为10120=112. 答案:1127.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815. 由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14158.现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.解析:从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N 表示“A 1和B 1全被选中”,由于N ={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N )=212=16,由对立事件的概率计算公式得P (N )=1-P (N )=1-16=56. 答案:569.在某项大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)求五名志愿者中仅有一人参加A 岗位服务的概率.解:(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140. (2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910. (3)有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34. 10.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.从袋中取出的球的编号之和不大于4的事件共有(1,2),(1,3),共两个.因此所求事件的概率P =26=13. (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,对一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件为(1,3),(1,4),(2,4),共3个,所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316. 三上台阶,自主选做志在冲刺名校1.(2019·宜春中学、新余一中联考)已知集合M ={1,2,3},N ={1,2,3,4}.定义映射f :M →N ,则从中任取一个映射满足由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的概率为( )A.332B.532C.316D.14解析:选C ∵集合M ={1,2,3},N ={1,2,3,4},∴映射f :M →N 有43=64种,∵由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC ,∴f (1)=f (3)≠f (2),∵f (1)=f (3)有4种选择,f (2)有3种选择,∴从中任取一个映射满足由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的事件有4×3=12种,∴所求概率为1264=316. 2.(2019·宁波调研)小明和小华进行有放回地摸小球游戏,规则如下:共有7个小球(除编号不同外,其他完全相同),编号分别为1,2,3,4,5,6,7,并置于一个盒子内.小明和小华每次摸球一个,每个小球被摸到的概率相等.则取到的两个小球的编号之和为偶数的概率为______;小明取到的小球的编号大于小华取到的小球的编号的概率是________.解析:所有的摸球方法有7×7=49种,其中取到的两个小球的编号之和为偶数的摸球方法有4×4+3×3=25种.所以取到的两个小球的编号之和为偶数的概率为P 1=2549.小明取到的小球的编号大于小华取到的小球的编号的摸球方法有6+5+4+3+2+1=21种,所以其概率是P 2=2149=37. 答案:2549 373.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解:(1)由题意,(a ,b ,c )所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19, 因此,“抽取的卡片上的数字满足a +b =c ”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P (B )=1-P (B )=1-327=89,因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.。
高三总复习数学课件 随机事件的概率、古典概型
5.(人教 A 版必修第二册 P236·例 9 改编)袋中装有 6 个白球, 5 个黄球,4 个 红球.从中任取一球,则取到白球的概率为________. 解析:从袋中任取一球,有 15 种取法,其中取到白球的取法有 6 种,则所 求概率为 P=165=25. 答案:25
层级一/ 基础点——自练通关(省时间)
基础点(一) 随机事件的关系及运算
[题点全训]
1.(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中 任意抽取5件,现给出以下四个事件:
随机事件的概率、古典概型
1.理解样本点和有限样本空间的含义,理解随机事件与样本点的关系. 2.了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交
运算. 3.理解古典概型,能计算古典概型中简单随机事件的概率. 4.理解概率的性质,掌握随机事件概率的运算法则. 5.会用频率估计概率.
1.样本空间和随机事件
事件 B 为“向上的点数不超过 3”,则概率 P(A∪B)=
()
A.12 B.13 C.23 D.56 解析:易知事件 A,B 不是互斥事件,由题意可得 A={1,3,5},B={1,2,3},
所以 P(A)=36=12,P(B)=36=12,P(AB)=26=13,所以 P(A∪B)=P(A)+P(B)
6.概率的性质 性质1:对任意的事件A,都有0≤P(A)≤1; 性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=__1_,P(∅) =_0__; 性质3:如果事件A与事件B互斥,那么P(A∪B)= P(A)+P(B) ; 性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)= _1_-__P_(_B_)_; 性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因 为∅⊆A⊆Ω,所以0≤P(A)≤1. 性 质 6 : 设 A , B 是 一 个 随 机 试 验 中 的 两 个 事 件 , 有 P(A ∪ B) = _P_(_A_)_+__P_(B__)-__P__(A__∩__B_)_.
随机事件的概率 古典概型-高考数学复习
相等 若B⊇A,且____A_⊇__B_____,则称事件A与 关系 事件B相等
___A_∪__B____
并事件 (和事件)
若某事件发生_当__且__仅__当__事__件__A_与__事__件__B____ _至__少__有__一__个__发__生____,则称此事件为事件A 与事件B的并事件(或和事件)
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
3.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满 足P(A)+P(B)=1”,则甲是乙的( A )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
第十章 计数原理、概率、随机变量及其分布
___A__∪__B_____ __(_或__A_+__B_)___
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
返回导航
定义
交事件 若某事件发生_当__且__仅__当__事__件__A_与__事__件__B__同__时_ _发__生___,则称此事件为事件A与事件B的交
(积事件) 事件(或积事件)
高考一轮总复习 • 数学 是对立事件,则 A∪B 为必然事件,再 由概率的加法公式得 P(A)+P(B)=1;投掷一枚硬币 3 次,满足 P(A)+ P(B)=1,但 A,B 不一定是对立事件,如:事件 A:“至少出现一次正 面”,事件 B:“出现 3 次正面”,则 P(A)=78,P(B)=18,满足 P(A)+ P(B)=1,但 A,B 不是对立事件,故甲是乙的充分不必要条件.
中的 k 个样本点,则事件 A 的概率 P(A)=nk.
第十章 计数原理、概率、随机变量及其分布
随机事件的概率及古典概型完美版
§9.4 随机事件的概率及古典概型一、知识导学1.必然事件:在一定的条件下必然要发生的事件.不可能事件:在一定的条件下不可能发生的事件.随机事件:在一定的条件下可能发生也可能不发生的事件.2. 概率:实际生活中所遇到的事件包括必然事件、不可能事件和随机事件.随机事件在现实世界中是广泛存在的.在一次试验中,事件A 是否发生虽然带有偶然性,但在大量重复试验下,它的发生呈现出一定的规律性,即事件A 发生的频率nm 总是接近于某个常数,在它附近摆动,这个常数就叫做事件A 的概率.记着P (A ).0≤P (A )≤13.若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件.4.具有以下两个特点:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.我们将满足上述条件的 随 机 试 验 的 概 率 模 型 称 为 古 典 概 型5.等可能事件的概率:如果一次试验中共有n种等可能出现的结果,其中事件A 包含的结果有m种,那么事件A 的概率P (A )=nm . 二、疑难知识导析1.必然事件、不可能事件、随机事件的区别与联系:必然事件是指在一定条件下必然发生的事件;不可能事件是指在一定的条件下不可能发生的事件;随机事件是指在一定的条件下可能发生也可能不发生的事件.要辨析清事件的条件和结果,理解事件的结果是相应于“一定条件”而言的,必须明确什么是事件发生的条件,什么是在此条件下产生的结果.上述三种事件都是在一定条件下的结果.2.频率与概率:随机事件A 的频率指此事件发生的次数m与试验总次数n的比值,它是随着试验次数的改变而变化的,它具有一定的稳定性,即总在某个常数p附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,于是,我们给这个常数取个名字,叫随机事件的概率.因此,概率从数量上反映了随机事件发生的可能性的大小;而频率在大量重复试验的前提下,可近似地作为这个事件的概率.即概率是频率的稳定值,频率是概率的近似值.3.必然事件的概率为1,不可能事件的概率为0,随机事件的概率:0<P (A )<1,这里要辩证地理解它们的概率:必然事件和不可能事件可以看作随机事件的两个极端,它们虽是两类不同的事件,但在一定的情况下又可以统一起来,即任意事件A 的概率满足:0≤P (A )≤14.等可能事件的理解:一次试验中所有可能的n个基本结果出现的可能性都相等,这n个结果对应着n个基本事件.对等可能事件的理解,其实质在于对等可能性的理解.“等可能性”指的是结果,而不是事件.例如抛掷两枚均匀的硬币,可能出现“两个正面”“两个反面”“一正一反”“一反一正”这四种结果,每一种结果的可能性相等,都是0.25;而出现“两个正面”“两个反面”“一正一反”这三种结果就不是等可能的.5.注意用集合的观点来看概率,运用图式法来弄清各事件之间的关系.对古典概率来说,一次试验中等可能出现的几个结果组成一个集合I ,其中各基本事件均为集合I 的含有一个元素的子集,包括m个基本事件的子集A ,从而从集合的角度来看:事件A 的概率是子集A 的元素的个数与集合I 的元素个数的比值,即P (A )=nm .因此,可以借助集合的表示法来研究事件,运用图示法弄清各事件的关系,从而做到较深刻的理解.三、经典例题导讲[例1] 某人有5把钥匙,但忘记了开房门的是哪一把,于是,他逐把不重复地试开,问恰好第三次打开房门锁的概率是多少?错解:有5把钥匙,每次打开房门的概率都是51,不能打开房门的概率是54,因而恰好第三次打开房门的概率是54×54×51=12516. 错因:上述解法忽略了条件“逐把不重复地试开”.正解:我们知道最多开5次门,且其中有且仅有一次可以打开房门,故每一次打开门的概率是相同的,都是51.开三次门的所有可能性有35A 种.第三次打开房门,则房门钥匙放在第3号位置上,前两次没能打开门,则前2个位置是用另4把钥匙安排的,故有24A 种可能.从而恰好第三次打开房门锁的概率是P (A )=513524=A A . [例2] 某组有16名学生,其中男、女生各占一半,把全组学生分成人数相等的两小组,求每小组里男、女生人数相同的概率.错解:把全组学生分成人数相等的两小组,有88816C C 种分法,事件A 为组里男、女生各半的情形,它有24848)(C C 种,所以P (A )=81624848)(C C C . 错因:这里没注意到均匀分成两组与分成A 、B 两组的区别.正解:基本事件有8881621C C ,事件A 为组里男、女生各半的情形,它有24848)(21C C 种,所以 P (A )=128749021))(21(81648484848=C C C C C . [例3] 把一枚硬币向上连抛10次,则正、反两面交替出现的概率是 .错解:抛掷一枚硬币出现正、反两面的可能性都相等,因而正、反两面交替出现的概率是21. 错因:没审清题意.事实上,把一枚硬币向上连抛10次,出现正面5次的概率同样也不等于21. 正解:连抛10次得正、反面的所有可能的情况共有102种,而题设中的正、反两面交替出现的情况只有2种,故所求的概率为51212210=. [例4](2003.上海卷)某科研合作项目成员由11个美国人、4个法国人和5个中国人组成,现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).解:设“从20名成员中随机选出的2人来自不同国家”为事件A ,则A 所包含的基本事件数为11915141511114111=++C C C C C C ,又基本事件数为220C .故P (A )=190119119220=C . [例5] 将4个编号的球放入3个编号的盒中,对于每一个盒来说,所放的球数k满足0≤k≤4.在各种放法的可能性相等的条件下,求:(1)第一个盒没有球的概率;(2)第一个盒恰有1个球的概率;(3)第一个盒恰有2个球的概率;(4)第一个盒有1个球,第二个盒恰有2个球的概率.解:4个不同的球放入3个不同的盒中的放法共有43种.(1)第一个盒中没有球的放法有42种,所以第一个盒中没有球的概率为: P 1=81163244=. (2)第一个盒中恰有1个球的放法有3142⋅C 种,所以第一个盒中恰有1个球的概率为:P 2=8132324314=⋅C . (3)第一个盒中恰有2个球的放法有2242⋅C 种,所以第一个盒中恰有2个球的概率为:P 3=278324224=⋅C . (4)第一个盒中恰有1个球,第二个盒中恰有2个球的放法有2314C C 种,所以所求的概率为:P 4=274342314=C C . [例6] 一个口袋内有7个白球和3个黑球,分别求下列事件的的概率:(1)事件A :从中摸出一个放回后再摸一个,两回摸出的球是一白一黑;(2)事件B :从袋中摸出一个黑球,放回后再摸出一个是白球;(3)事件C :从袋中摸出两个球,一个黑球,一个白球;(4)事件D :从从袋中摸出两个球,先摸出的是黑球,后摸出的是白球.解:(1)基本事件总数是10×10.事件A 包括“先摸出黑球后摸出白球”及“先摸出白球后摸出黑球”,摸出白球及黑球分别有7种和3种可能.所以A 发生共有2×7×3种可能. ∴P (A )=1010372⨯⨯⨯=0.42. 2)事件B 与事件A 不同,它确定了先摸黑球再摸白球的顺序. P (B )=101037⨯⨯=0.21(3)事件C 说明摸出两个球不放回,且不考虑次序,因此基本事件总数是210C ,事件C 包含的基本事件个数是1317C C .P (C )=1572101317=C C C ≈0.47. (4)与事件A 相比,D 要考虑摸出两球的先后次序.P (D )=307191101317=C C C C ≈0.23 评注:注意“放回抽样”与“不放回抽样”的区别.本例(1)(2)是放回抽样,(3)(4)是不放回抽样.四、典型习题导练1(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?2.先后抛掷三枚均匀的硬币,至少出现一次正面的概率是 ( )A 、81B 、83C 、87D 、85 3.停车场可把12辆车停放一排,当有8辆车已停放后,则所剩4个空位恰连在一起的概率为 ( )A 、8127CB 、8128C C 、8129CD 、81210C 4.有5条线段,其长度分别为1、3、5、7、9,现从中任取3条线段,求3条线段构成三角形的概率.5.把10个运动队平均分成两组进行预赛,求最强的两队被分在(1)不同组内;(2)同一组内的概率.6.甲、乙两人参加普法知识问答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙两人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙两人至少有一人抽到选择题的概率是多少?。
高中数学概率知识点总结
高中数学概率知识点总结一、概率的基础概念1. 随机事件:在一定条件下可能发生,也可能不发生的事件。
2. 必然事件:在一定条件下一定会发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 样本空间:随机试验所有可能出现的结果的集合。
5. 事件的关系:包括并事件、交事件、补事件、互斥事件等。
二、概率的计算1. 古典概型:当样本空间是有限的、等可能的,可以使用古典概型计算概率。
- 计算公式:P(A) = A的样本点数 / 样本空间的总样本点数2. 几何概型:当样本空间是无限的或样本点出现的可能性不等时,使用几何概型。
- 计算公式:P(A) = A所占的几何度量(长度、面积、体积等) / 全部样本空间的几何度量3. 条件概率:在事件B已发生的条件下,事件A发生的概率。
- 计算公式:P(A|B) = P(A∩B) / P(B)4. 全概率公式:如果事件B1, B2, ..., Bn构成样本空间的一个划分,即它们两两互斥且并集为全集,那么任意事件A的概率可以表示为:- 计算公式:P(A) = ΣP(A|Bi) * P(Bi),其中i从1到n三、概率的性质1. 非负性:对于任何事件A,有0 ≤ P(A) ≤ 12. 规范性:必然事件的概率为1,即P(S) = 13. 可加性:对于两两互斥的事件A1, A2, ..., An,有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)四、概率的独立性1. 事件的独立性:如果两个事件A和B的发生互不影响,则称A和B 是相互独立的。
2. 独立事件的概率:两个独立事件A和B同时发生的概率等于各自概率的乘积,即P(A∩B) = P(A) * P(B)。
五、贝叶斯定理1. 贝叶斯公式:描述了在已知某事件发生的条件下,另一个事件发生概率的计算方法。
- 计算公式:P(A|B) = [P(B|A) * P(A)] / P(B)六、随机变量及其分布1. 随机变量:将随机试验的结果映射到实数上的函数。
随机事件的概率与古典概型
进货量为 450 瓶时,写出 Y 的所有可能值,并估计 Y 大于零的概率.
解:(1)这种酸奶一天的需求量不超过 300 瓶,当且仅当最高气温低于 25,由表格 数据知,最高气温低于 25 的频率为2+1960+36=0.6,所以这种酸奶一天的需求量 不超过 300 瓶的概率的估计值为 0.6. (2)当这种酸奶一天的进货量为 450 瓶时, 若最高气温不低于 25,则 Y=6×450-4×450=900; 若最高气温位于区间[20,25),
方法二 (利用对立事件求概率) (1)由方法一知,取出 1 球为红球或黑球的对立事件为取出 1 球为白球或绿球,即 A1∪A2 的对立事件为 A3∪A4,所以取出 1 球为红球或黑球的概率为 P(A1∪A2)=1 -P(A3∪A4)=1-P(A3)-P(A4)=1-16-112=34. (2)因为 A1∪A2∪A3 的对立事件为 A4, 所以 P(A1∪A2∪A3)=1-P(A4)=1-112=1112.
跟踪训练 1 (1)某保险公司利用简单随机抽样的方法对投保车辆进行抽样,样本 车辆中每辆车的赔付结果统计如下:
赔付金额(元) 0 1 000 2 000 3 000 4 000 车辆数(辆) 500 130 100 150 120 ①若每辆车的投保金额均为 2 800 元,估计赔付金额大于投保金额的概率;
(3)概率与频率的关系 频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的 值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事 件概率的估计值. (4)随机事件概率的求法 利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会 逐渐趋近于某一个常数,这个常数就是概率.