《解三角形》单元测试卷

合集下载

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案

沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。

人教版八年级上《第十一章三角形》单元测试卷(含答案解析)

人教版八年级上《第十一章三角形》单元测试卷(含答案解析)

秋八年级上学期第十一章三角形单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.(4分)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.(4分)下列物品不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架 D.放缩尺4.(4分)边长为1、2、3、4、5、6的木棍各一根.随意组成三角形,共有()种取法.A.20 B.15 C.10 D.75.(4分)在△ABC中,6∠A=3∠B=2∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定6.(4分)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°7.(4分)如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°8.(4分)如图所示,设M表示平行四边形,N表示矩形,P表示菱形,Q表示正方形,则下列四个图形中,能表示它们之间关系的是()A B C D9.(4分)如图为二环四边形,它的内角和∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1度数为()A.360°B.540°C.720°D.900°10.(4分)如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为()A.115°B.110°C.105°D.100°评卷人得分二.填空题(共4小题,满分20分,每小题5分)11.(5分)三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.(5分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.13.(5分)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=.14.(5分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.评卷人得分三.解答题(共9小题,满分90分)15.(8分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.16.(8分)如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.17.(8分)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.18.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.19.(10分)已知三角形的两边a=3,b=7,第三边是c.(1)第三边c的取值范围是.(2)若第三边c的长为偶数,则c的值为.(3)若a<b<c,则c的取值范围是.20.(10分)如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.证明:∵AD⊥BC,EF⊥BC(),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥()∴∠1=()又∵∠1=∠2(已知)∴()∴DG∥AB()21.(12分)已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数①求c的长;②判断△ABC的形状.22.(12分)如图,在△ABC中,∠ABC=40°,∠ACB=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.23.(14分)如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456 (18)∠α的度数……(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.秋八年级上学期第十一章三角形单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,利用三角形的稳定性进行解答.【解答】解:放缩尺是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形. 4.【分析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:从长为1、2、3、4、5、6的木棍中,任意取3根,则有20种取法, 其中能组成三角形的有7种: 2、3、4; 2、4、5; 2、5、6; 3、4、5; 3、5、6; 3、4、6; 4、5、6; 故选:D .【点评】本题主要考查了三角形三边关系的运用,正确利用三边关系:两条较短的边的和大于最长的边是解决本题的关键. 5.【分析】设∠C=x ,则∠B=32x ,∠A=31x ,再根据三角形内角和定理列方程求出x 的值即可.【解答】解:∵在△ABC 中,6∠A=3∠B=2∠C , ∴设∠C=x ,则∠B=32x ,∠A=31x , ∵∠A +∠B +∠C=180°,即x +32x +31x=180°,解得x=90°,∴∠A=30°,∠B=60°,∠C=90°. ∴△ABC 是直角三角形, 故选:B .【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.6.【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.【点评】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.7.【分析】根据直角三角形的两个角互余即可求解.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.故选:B.【点评】本题主要考查了直角三角形的性质,两锐角互余.8.【分析】根据正方形、平行四边形、菱形和矩形的定义进行解答即可.【解答】解:∵四个边都相等的矩形是正方形,有一个角是直角的菱形是正方形,∴正方形应是N 的一部分,也是P 的一部分, ∵矩形形、正方形、菱形都属于平行四边形,∴它们之间的关系是:.故选:A .【点评】本题考查的是正方形、平行四边形、菱形和矩形的定义,熟练掌握这些多边形的定义与性质是解答此题的关键. 9.【分析】AA 1之间添加两条边,可得B 1+∠C 1+∠D 1=∠EAD +∠AEA 1+∠EA 1B 1,再根据边形的内角和公式即可求解.【解答】解:如图,AA 1之间添加两条边,可得B 1+∠C 1+∠D 1=∠EAD +∠AEA 1+∠EA 1B 1则∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1=∠EAB +∠B +∠C +∠D +∠DA 1E +∠E=720°; 故选:C .【点评】考查了多边形内角和定理:(n ﹣2)•180° (n ≥3)且n 为整数). 10.【分析】依据四边形BCDE 的内角和,可得∠BCD +∠CBE=160°,再根据∠EBC 和∠DCB 的角平分线相交于点F ,可得∠BCF +∠CBF=21×160°=80°,进而得出△BCF 中,∠F=180°﹣80°=100°.【解答】解:∵BE ⊥AD , ∴∠BED=90°, 又∵∠ADC=110°,∴四边形BCDE 中,∠BCD +∠CBE=360°﹣90°﹣110°=160°,又∵∠EBC 和∠DCB 的角平分线相交于点F ,∴∠BCF +∠CBF=21×160°=80°, ∴△BCF 中,∠F=180°﹣80°=100°,故选:D .【点评】本题主要考查了四边形内角和以及三角形内角和定理的运用,解决问题的关键是掌握四边形内角和为360°.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a 的取值范围.【解答】解:∵三角形的三边长分别为3,2a ﹣1,4,∴4﹣3<2a ﹣1<4+3,即1<a <4.故答案为:1<a <4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.12.【分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=21AB=25;②Rt △ABC 中,AC=21BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为5+358或5+52.【解答】解:如图所示,Rt △ABC 中,CD ⊥AB ,CD=21AB=25,设BC=a ,AC=b ,则,解得a +b=52,或a +b=﹣52(舍去),∴△AB 长度周长为52+5;如图所示,Rt △ABC 中,AC=21BC ,设BC=a ,AC=b ,则解得∴△AB 长度周长为35+5;综上所述,该三角形的周长为5+35或5+52.故答案为:5+35或5+52.【点评】本题主要考查了三角形的高线以及勾股定理的运用,解决问题给的关键是利用勾股定理进行推算.13.【分析】先根据角平分线的定义得到∠OBC=21∠ABC ,∠OCB=21∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB=180°,则∠BOC=180°﹣21(∠ABC +∠ACB ),由于∠ABC +∠ACB=180°﹣∠A ,所以∠BOC=90°+21∠A ,然后把∠BOC=110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC=21∠ABC ,∠OCB=21∠ACB , 而∠BOC +∠OBC +∠OCB=180°, ∴∠BOC=180°﹣(∠OBC +∠OCB )=180°﹣21(∠ABC +∠ACB ), ∵∠A +∠ABC +∠ACB=180°,∴∠ABC +∠ACB=180°﹣∠A ,∴∠BOC=180°﹣21(180°﹣∠A )=90°+21∠A , 而∠BOC=110°, ∴90°+21∠A=110° ∴∠A=40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.14.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC=()518025⨯-=108°,△ABC 是等腰三角形, ∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n ﹣2).三.解答题(共9小题,满分90分)15.【分析】过点A 作EF ∥BC ,利用EF ∥BC ,可得∠1=∠B ,∠2=∠C ,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC +∠B +∠C=180°.【解答】证明:过点A 作EF ∥BC ,∵EF ∥BC ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.16.【分析】根据等角对等边得出∠ABD=∠A,再利用平行线的性质得出∠DBC=∠BCE,进而利用三角形的内角和解答即可.【解答】解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.【点评】此题考查三角形的内角和问题,关键是根据等角对等边得出∠ABD=∠A.17.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.18.【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【解答】解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.19.【分析】(1)根据第三边的取值范围是大于两边之差,而小于两边之和求解;(2)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,再根据c 为偶数解答即可.;(3)首先根据三角形的三边关系:第三边>两边之差4,而<两边之和10,根据a<b <c即可得c的取值范围.【解答】解:(1)根据三角形三边关系可得4<c<10,(2)根据三角形三边关系可得4<c<10,因为第三边c的长为偶数,所以c取6或8;(3)根据三角形三边关系可得4<c<10,∵a<b<c,∴7<c<10.,故答案为:4<c<10;6或8;7<c<10.【点评】此题考查了三角形的三边关系,注意第三边的条件.20.【分析】根据三角形内角和定理以及平行线的性质即可求出答案.【解答】解:证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴DG∥AB(内错角相等,两直线平行)故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;【点评】本题考查三角形的综合问题,解题的关键是熟练运用三角形内角和定理以及平行线的性质与判定,本题属于基础题型.21.【分析】(1)利用三角形三边关系进而得出c的取值范围,进而得出答案;(2)①根据偶数的定义,以及x的取值范围即可求解;②利用等腰三角形的判定方法得出即可.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.【点评】此题主要考查了等腰三角形的判定和三角形三边关系,得出c 的取值范围是解题关键.22.【分析】(1)由∠ABC 、∠ACB 的度数结合三角形内角和定理,可求出∠BAC 的度数,再根据角平分线的性质可求出∠BAE 的度数;(2)利用三角形的外角性质可求出∠AEB 的度数,结合∠ADE=90°即可求出∠DAE 的度数.【解答】解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣∠ABC ﹣∠ACB=60°.∵AE 平分∠BAC ,∴∠BAE=21∠BAC=30°. (2)∵∠CAE=∠BAE=30°,∠ACB=80°,∴∠AEB=∠CAE +∠ACB=110°,∵AD 是BC 边上的高,∴∠ADE=90°,∴∠DAE=∠AEB ﹣∠ADE=20°.【点评】本题考查了三角形的外角性质、角平分线的性质以及三角形内角和定理,解题的关键是:(1)利用三角形内角和定理求出∠BAC 的度数;(2)牢记三角形的一个外角等于和它不相邻的两个内角的和.23.【分析】(1)根据多边形内角和公式求出多边形的内角和,再根据三角形内角和定理求出即可;(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可;(3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.【解答】解:(1)填表如下: 正多边形的边数3 4 5 6 …… 18 ∠α的度数 60° 45° 36° 30° …… 10°故答案为:60°,45°,36°,30°,10°;(2)存在一个正n 边形,使其中的∠α=20°, 理由是:根据题意得:⎪⎭⎫ ⎝⎛n 180=20°, 解得:n=9,即当多边形是正九边形,能使其中的∠α=20°;(3)不存在,理由如下:假设存在正 n 边形使得∠α=21°,得⎪⎭⎫ ⎝⎛==∠n 18021α, 解得:748=n ,又 n 是正整数, 所以不存在正 n 边形使得∠α=21°.【点评】本题考查了多边形的内角与外角和等腰三角形的性质,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的内角和=(n ﹣2)×180°.。

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有( )A.1个 B.2个 C.3个 D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A.15 B.16 C.18 D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为( )A.40° B.45° C.50° D.55°第3题图, 第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于( ) A.80° B.120° C.100° D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ) A.40° B.60° C.80° D.90°6.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A∶∠B∶∠C=1∶2∶3 D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )A.8 B.9 C.10 D.128.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A.180° B.720° C.1080° D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)第9题图) 第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为( )A.110 B.120 C.160 D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图) ,第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC 的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图 ,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF =90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=32∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm,AC=8 cm,BC=10 cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B 2.D 3.A 4.C 5.A 6.D 7.C 8.B 9.B 10.B 11.6 12.75;钝角13.85°14.3a-b-c 15.360°16.25°17.七18.北偏西85°19.(1)24 cm2(2)4.8 cm (3)2 cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为22 21.∵∠A+∠ACB=90°,∴∠ACB =90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC =80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵26 20÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=12∠OAB,∠EBA=12∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=12∠YBA-12∠OAB=12(∠Y BA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=12×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D )A.3 B.4 C.5 D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形 B.锐角三角形 C.直角三角形 D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF 等于( A )=2,则S△ABCA.16 B.14 C.12 D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形 B.八边形 C.九边形 D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°第9题图 ,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB =2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB =__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上) 10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________. 12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是_____ _____边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD 和BC 相交于点O ,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.21.(本题满分12分)如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________;(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B 中较短两边之和大于第三边,能组成三角形.132.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A 与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2 (3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90 满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC =°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE 的度数为______. 14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9三、解答题(共60分)19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD 中,∠A=∠D ,∠B=∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB=AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?CBACBA25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______. (2)小明绝对不会走③,因为③路程最长,即AC+BC >AD+DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A+∠B+∠C+∠D+∠E=180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.图1图2图3DCBA(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案: (B 卷) 一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C 三、解答题 19.36011⎛⎫⎪⎝⎭20.AD BC∥21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C=150°,∠C +∠D=160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11C.3,4,8 D.4a,4a,8a(a>0)2.下列说法错误的是( )A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A.60° B.70° C.80° D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.9 B.14 C.16 D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是( )A.50° B.45° C.40° D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=12∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是( ) A.8 B.12 C.16 D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )A.3个 B.4个 C.5个 D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A.1260° B.1080°C.900° D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是( ) A.5∶4∶3 B.4∶3∶2C.3∶2∶1 D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=( )A.12° B.18° C.24° D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为 .18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S= .阴影19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A 2.D 3.C 4.B 5.A 6.A 7.B 8.C 9.C 10.A11.C 12.C 13.C 14.B15.A 解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD +∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C 解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB +BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分) (2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(6分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=x cm,BC=y cm,则AD=CD=12x cm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系.(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm , 符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分) 25.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠CAD =90°-∠C =90°-70°=20°,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(9分)(3)∵∠C -∠B =α,∴由(2)中可知∠DAE =12(∠C -∠B )=12α.(11分)26.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n ·(180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n .(12分)《第十一章 三角形》单元测试卷(六)(满分:100分 时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是( )A .1,1,2B .3,7,11C .6,8,9D .3,3,62、下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线3、下列命题中,假命题是( )A .如果|a|=a ,则a ≥0B .如果,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( )A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60°7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )A .3:2:1B .5:4:3C .3:4:5D .1:2:38、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>29、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2图9 图1010、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( )A .10°B .18°C .20°D .30°二、填空题(每小题4分,共20分)11、 已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是 .12、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .13、如图13,∠A =70°,∠B =30°,∠C =20°,则∠BOC= . F EC图13 图14 图1514、如图14,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .15、如图15,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(第16题6分,第17题8分,第18-21题每题9分,共50分)16、写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0.(2)等角的余角相等.(3)如果一个数的平方是9,那么这个数是3.17、完成以下证明,并在括号内填写理由:已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2(),所以AB∥___(). 所以∠A=∠4().又因为∠A=∠3(),所以∠3=_ _().所以AC∥DE().18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm 的两个部分,求三角形各边的长.。

八年级数学《三角形》单元测试四(附解析)

八年级数学《三角形》单元测试四(附解析)

………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前八年级数学《三角形》单元测试(四)(附解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.已知△ABC 的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为()A.5B.6C.7D.82.某同学在用计算器计算某n 边形的内角和时,不小心多输入一个内角,得到和为2016°,则n 等于()A.11B.12C.13D.143.如图,某同学用绘画的方法,设计的一个正三角形的平面镶嵌图,其中主要利用的是正三角形和正六边形.如果整个镶嵌图ABC 的面积为75,则图中阴影部分的面积是()A.25B.26C.30D.394.如图,在ABC 中,AE 平分BAC ∠,AD BC ⊥于点D .ABD ∠的角平分线BF 所在直线与射线AE 相交于点G ,若3∠=∠ABC C ,且20G ∠=︒,则DFB ∠的度数为()………外…………○…………装…………○…………订…………○…………线…………○学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○A.50︒B.55︒C.60︒D.65︒5.若△ABC 内有一个点P 1,当P 1、A、B、C 没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC 内有两个点P 1、P 2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC 内有n 个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°6.如图,ABC 的面积为1.分别倍长(延长一倍)AB ,BC,CA 得到111A B C .再分别倍长A1B1,B1C1,C1A1得到222A B C .……按此规律,倍长2018次后得到的201820182018A B C 的面积为()A.20176B.20186C.20187D.201887.如图,∠ABC =90°,BD ⊥AC ,下列关系式中不一定成立的是()………外…………○…………装…………○…………订…………○…………线…………○学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○A.AB >AD B.AC >BC C.BD +CD >BC D.CD >BD 8.如图,在平面直角坐标系中,A.B 分别为x 轴、y 轴正半轴上两动点,∠BAO 的平分线与∠OBA 的外角平分线所在直线交于点C,则∠C 的度数随A、B 运动的变化情况正确的是A.点B 不动,在点A 向右运动的过程中,∠C 的度数逐渐减小B.点A 不动,在点B 向上运动的过程中,∠C 的度数逐渐减小C.在点A 向左运动,点B 向下运动的过程中,∠C 的度数逐渐增大D.在点A、B 运动的过程中,∠C 的度数不变第II 卷(非选择题)二、填空题9.如图,在ABC ∆中,90B ∠=︒,分别作其内角ACB ∠与外角DAC ∠的平分线,且两条角平分线所在的直线交于点E ,则E ∠=____度;分别作EAB ∠与ECB ∠的平分线,且两条角平分线交于点F ,则AFC ∠=______度.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………10.不等边△ABC 的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________11.如图,△ABC 中,AD 为BC 边上的中线,E 、F 分别是AD 、CD 的中点,连接EF 、BE ,若△BEF 的面积为6,则△ABC 的面积是_____.12.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=,连接BE ,Δ4BCE S =,则CE =__________.13.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.14.已知,//AB DE ,ABC ∠的角平分线BP 和CDE ∠的角平分线DK 的反向延长线交于点P ,且254P C ∠-∠=︒,则C ∠=____________度.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………15.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________16.如图,点C 在点B 的北偏西60︒的方向上,点C 在点A 的北偏西30°的方向上,则C ∠等于__________度.三、解答题17.如图,ABC 中,90B ∠=︒,点D 在射线BC 上运动,DE AD ⊥交射线AC 于点E .………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………(1)如图1,若60BAC ∠=︒,当AD 平分BAC ∠时,求EDC ∠的度数;(2)如图2,当点D 在线段BC 上时,①判断EDC ∠与BAD ∠的数量关系并说明理由;②作EF BC ⊥于F ,BAD ∠、DEF ∠的角平分线相交于点G ,随着点D 的运动,G ∠的度数会变化吗?如果不变,求出G ∠的度数;如果变化,说明理由;(3)如图3,当点D 在BC 的延长线上时,作EF BD ⊥于F ,BAD ∠的角平分线和DEF∠的角平分线的反向延长线相交于点G ,G ∠的度数会变化吗?如果不变,求出G ∠的度数;如果变化,说明理由.18.如图,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC .(1)若∠B =30°,∠C =70°,则∠DAE =(2)若∠C ﹣∠B =30°,则∠DAE =.(3)若∠C ﹣∠B =α(∠C >∠B ),求∠DAE 的度数(用含α的代数式表示).19.如图所示,//AB CD ,AB EF MN 、、相交于O 点,CD 与MN 相交于点P ,EF AB ⊥,OG 为POF ∠的平分线,OH 为MOG ∠的平分线.(1)若:2:1OPD POG ∠∠=,求MOF ∠的大小;(2)若:2:5OPD MOH ∠∠=,求POH ∠的大小.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………20.线段AB 与线段CD 互相平行,P 是平面内的一点,且点P 不在直线AB ,CD 上,连接PA ,PD ,射线AM ,DN 分别是∠BAP 和∠CDP 的平分线.(1)若点P 在线段AD 上,如图1,①依题意补全图1;②判断AM 与DN 的位置关系,并证明;(2)是否存在点P ,使AM ⊥DN ?若存在,直接写出点P 的位置;若不存在,说明理由.21.如图①,在平面直角坐标系中,A(0,1),B(4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P 的大小;(3)如图③,在(2)中,若射线OP、CP 满足∠POC=1n ∠AOC,∠PCE=1n ∠ACE,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示).………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………参考答案1.B 【详解】设△ABC 的面积为S ,所求的第三条高线的长为h ,则三边长分别为25S ,220S ,2S h ,根据三角形的三边关系为222205{22220S S S h S S S h h ++,解得2043h ,所以h 的最大整数值为6,即第三条高线的长的最大值为6.故选B .点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC 三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.2.C 【详解】根据多边形的内角和公式(n-2)×180°,可以求得n=13.2,由于多加的是内角,所以多加的角为小于180°的角,所以去掉小数部分就是n 边形的边数.故选C 3.B 【分析】正ABC ∆中有多种图形,将不规则图形拆分后,可归结为四种图形,每种图形都可划分为面积最小的正三角形的组合,最后正ABC ∆全部由小正三角形组成,根据阴影部分小正三角形的个数所占全部小正三角形个数比例与面积相乘即可得出答案.【详解】如图所示,将不规则部分进行拆分,共有四种图形:正六边形、较大正三角形、平行四边形、小正三角形;其中一个正六边形可以分成6个小正三角形,较大正三角形可以分成4个小正三角形,平行四边形可以分成6个小正三角形,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………由图可得:正六边形有13个,可分成小正三角形个数为:13678⨯=(个);较大正三角形有26个,可分成小正三角形个数为:264104⨯=(个);平行四边形有5个,可分成小正三角形个数为:5630⨯=(个);小正三角形个数为13个;∴一共有小正三角形个数为:781043013225+++=(个),∴图中阴影部分面积为:787526225⨯=,故选:B .4.C 【分析】由角平分线的定义可以得到CAE BAE ∠=∠,ABF DBF ∠=∠,设CAE BAE x ==∠∠,假设y C =∠,3ABC y =∠,通过角的等量代换可得到3DFB G =∠∠,代入G ∠的值即可.【详解】∵AE 平分BAC ∠,BF 平分ABD ∠∴CAE BAE ∠=∠,ABF DBF ∠=∠设CAE BAE x ==∠∠∵3∠=∠ABC C ∴可以假设y C =∠,3ABC y =∠∴13(1803)9022ABF DBF CBG y y ===︒-=︒-∠∠∠∵AD CD ⊥∴90D ∠=︒∴3902DFB DBF y =︒-=∠∠设ABF DBF CBG z ===∠∠∠,则z x G z G x y =+∠⎧⎨+∠=+⎩∴12G y =∠∴3DFB G =∠∠∵20G ∠=︒∴60DFB ∠=︒故答案选:C………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………5.D 【分析】当△ABC 内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC 内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC 内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.6.C 【详解】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此类推写出即可.详解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1=72S △ABC ,依此类推,S △AnBnCn =7nS △ABC .∵△ABC 的面积为1,∴S △AnBnCn =7n ,∴S △A 2018B 2018C 2018=72018.故选C .7.D 【分析】根据直角三角形斜边大于直角边判断A 、B 、D 选项,根据三角形的三边关系判断C 选项.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………【详解】解:∵BD ⊥AC ,∴∠ADB =90°,∴AB >AD ,∵∠ABC =90°,∴AC >BC ,∵BD +CD >BC ,∴选项A ,B ,C 正确;∵∠BDC =90°,∴CD 不一定大于BD ,∴选项D 不一定成立,故选:D .8.D 【详解】根据三角形外角的性质可得∠ABE=90°+∠OAB ,根据角平分线的性质可得:∠ABD=45°+12∠OAB ,根据外角的性质可得:∠ABD=∠C+∠BAC ,则45°+12∠OAB=∠C+12∠OAB ,则∠C=45°,角度永远不会变.9.4567.5【分析】①由角平分线的性质可得12DAP PAC DAC ∠=∠=∠,12ACH HCB ACB ∠=∠=∠,由外角的性质可得出DAP ∠与ACH ∠的关系,由三角形的内角和定理写出E ∠的表达式,将DAP ∠代入求解即可;②由角平分线的性质可得:12EAF FAB EAB ∠=∠=∠,12ECF FCB ECB ∠=∠=∠,由三角形的外角的性质分别得出:E EAF F ECF ∠+∠=∠+∠,E EAB B ECB ∠+∠=∠+∠,将对应………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………角的度数代入求解即可.【详解】①由角平分线的性质可得:12DAP PAC DAC ∠=∠=∠,12ACH HCB ACB ∠=∠=∠,由外角的性质可得:DAC B ACB ∠=∠+∠,2902DAP ACH ∴∠=︒+∠,45DAP ACH ∴∠=︒+∠,∴180()E EAH EHA ∠=︒-∠+∠=180()DAP HAC ACH ︒-∠+∠+∠=180(45)ACH HAC ACH ︒-︒+∠+∠+∠=180(4590)︒-︒+︒=45︒;②由角平分线的性质可得:12EAF FAB EAB ∠=∠=∠,12ECF FCB ECB ∠=∠=∠,由三角形的外角的性质可得:E EAF F ECF ∠+∠=∠+∠45EAF F ECF ∴︒+∠=∠+∠,45F EAF ECF ∴∠=︒+∠-∠,同理可得:E EAB B ECB ∠+∠=∠+∠,452902EAF ECF ∴︒+∠=︒+∠,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………22.5EAF ECF ∴∠-∠=︒,4522.567.5F ∴∠=︒+︒=︒.故答案为:①45;②67.510.5【分析】根据三角形三边关系及三角形面积相等即可求出要求高的整数值.【详解】解:因为不等边△ABC 的两条高的长度分别为4和12,根据面积相等可设△ABC 的两边长为3x ,x ;因为3x ×4=12×x (2倍的面积),面积S =6x ,因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x <第三边长度<4x ,因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,S =12×第三边的长×高,6x >12×2x ×高,6x <12×4x ×高,∴6>高>3,∵是不等边三角形,且高为整数,∴高的最大值为5,故答案为:5.11.16.【分析】连接EC ,根据三角形的一条中线把这个三角形分为面积相等的两部分计算即可.【详解】………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………解:连接EC ,∵点D 是BC 的中点,∴△BED 的面积=△CED 的面积,∵点F 是CD 的中点,∴△DEF 的面积=△FEC 的面积,∴△BED 的面积=2×△DEF 的面积,∵△BEF 的面积为6,∴△BDE 的面积为4,∵点E 是AD 的中点,∴△BEA 的面积=△BDE 的面积=4,∴△BDA 的面积为8,∵点D 是BC 的中点,∴△ABC 的面积=2△ABD 的面积=16,故答案为:16.12.4【分析】根据∠DEC 的度数以及角平分线的定义算出∠A+∠ABC=230°,再结合AD ∥BF ,得出∠CBF=50°,利用54CBF BCE ∠=∠算出∠BFC=90°,最后根据2CE BF =和Δ4BCE S =算出结果.【详解】∵115DEC ∠=︒,∴∠EDC+∠ECD=180°-115°=65°,又∵ADC ∠与BCD ∠的角平分线交于点E ,∴∠ADC+∠BCD=65°×2=130°,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∴∠A+∠ABC=360°-130°=230°,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠CBF=230°-180°=50°,∵54CBF BCE ∠=∠,∴∠BCE=40°,∴∠BFC=90°,∵2CE BF =,BF >0,∴1242BCE S BF BF =⨯⨯=△,解得:x=2,即CE=2×2=4.故答案为:4.13.10【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.14.24【分析】延长KP 交AB 于F ,设∠C=α,则∠BPG=2α+54°,利用三角形的外角性质,即可得到2α+54°-∠ABP=α+180°-(2α+54°)-∠CBP ,再根据∠ABP=∠CBP ,即可得出2α+54°=α+180°-(2α+54°),进而得到∠C 的度数.【详解】如图,延长KP 交AB 于F ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∵AB ∥DE ,DK 平分∠CDE ,∴∠BFP=∠EDK=∠CDK ,设∠C=α,则∠BPG=2α+54°,∵∠BPG 是△BPF 的外角,∠CDK 是△CDG 的外角,∴∠BFP=∠BPG-∠ABP=2α+54°-∠ABP ,∠CDK=∠C+∠CGD=α+∠BGP=α+(180°-∠BPG-∠CBP ),∴2α+54°-∠ABP=α+180°-(2α+54°)-∠CBP ,∵PB 平分∠ABC ,∴∠ABP=∠CBP ,∴2α+54°=α+180°-(2α+54°),解得α=24°.15.20172 【分析】根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解.【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,又∵∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1,∴∠A 1=12∠A ,∵∠A 1=α.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α,……,∴∠A 2018=20172α,故答案为20172α.16.30【分析】如图(见解析),先根据方位角的定义可得60,30CBE CAD ∠=︒∠=︒,再根据平行线的性质可得60AFB CBE ∠=∠=︒,然后根据三角形的外角性质即可得.【详解】如图,延长AD 交BC 于点F ,由题意得:60,30,//CBE CAD AD BE ∠=︒∠=︒,//AF BE ∴,60AFB CBE ∴∠=∠=︒,由三角形的外角性质得:AFB CAD C ∠=∠+∠,即6030C ︒=︒+∠,解得30C ∠=︒,故答案为:30.17.(1)30°;(2)①∠EDC =∠BAD ,理由见解析;②∠G 的度数不变,理由见解析;(3)不变,45°.【分析】(1)先求出∠ACB =30°,再利用角平分线得出∠DAC =30°,即可得出∠ADC =120°即可得出结论;(2)①利用直角三角形的两锐角互余和等角的余角相等即可得出结论;②先利用①的结论得出∠BAD +∠DEF =90°,进而得出∠DAG +∠DEG =45°,最后利用三角形的内角和即可得出………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………结论;(3)利用三角形的外角和三角形的内角和即可得出结论.【详解】解:(1)在Rt △ABC 中,∠BAC =60°,∴∠ACB =30°,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =30°,∴∠ADC =120°,∵DE ⊥AD ,∴∠ADE =90°,∴∠EDC =∠ADC -∠ADE =30°;(2)①相等,在Rt △ABD 中,∠BAD +∠ADB =90°,∵∠ADE =90°,∴∠EDC +∠ADB =90°,∴∠EDC =∠BAD ;②∠G 的度数不变,理由:∵EF ⊥BC ,∴∠EDF +∠DEF =90°,∵∠ADB +∠EDF =90°,∴∠ADB =∠DEF ,∵∠BAD +∠ADB =90°,∴∠BAD +∠DEF =90°,∵∠BAD 、∠DEF 的角平分线相交于点G ,∴∠DAG =12∠BAD ,∠DEG =12∠DEF ,∴∠DAG +∠DEG =12(∠BAD +∠DEF )=45°,∵∠DAE +∠DEA =90°,∴∠GAE +∠GEA =90°+45°=135°,∴∠G =45°;(3)∠G 的度数不变化,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………理由:如图3,∵AD ⊥DE ,∴∠ADB +∠BDE =90°,∵EF ⊥BD ,∴∠DEF +∠BDE =90°,∴∠ADB =∠DEF ,∵EM 是∠DEF 的角平分线,∴∠DEM =12∠DEF =12∠ADB ,∵AG 平分∠BAD ,∴∠DAG =12∠BAD ,延长DE 交AG 于N ,∴∠AEN =∠ADE +∠DAE =90°+∠DAE ,∴∠ENG =∠AEN +∠EAG =90°+∠DAE +∠EAG =90°+∠DAG =90°+12∠BAD ,∴∠G =180°-(∠ENG +∠GEN )=180°-(∠ENG +∠DEM ),=180°-(90°+12∠BAD +12∠ADB ),=90°-12(∠BAD +∠ADB )=45°.18.(1)20°;(2)15°;(3)∠DAE =12α.【分析】(1)根据垂直定义由AD ⊥BC 得∠ADC =90°,再利用角平分线定义得∠EAC =12∠BAC ,然后根据三角形内角和定理得∠BAC =180°﹣∠B ﹣∠C ,∠DAC =90°﹣∠C ,则∠DAE =12(∠C ﹣∠B ),代入计算即可.(2)利用(1)中结论代入计算即可.(3)利用(1)中结论代入计算即可.………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………【详解】解:(1)∵AD ⊥BC 于D ,∴∠ADC =90°,∵AE 平分∠BAC ,∴∠EAC =12∠BAC ,而∠BAC =180°﹣∠B ﹣∠C ,∴∠EAC =90°﹣12∠B ﹣12∠C ,∵∠DAC =90°﹣∠C ,∴∠DAE =∠EAC ﹣DAC =90°﹣12∠B ﹣12∠C ﹣(90°﹣∠C )=12(∠C ﹣∠B ),若∠B =30°,∠C =70°,则∠DAE =12(70°﹣30°)=20°;(2)若∠C ﹣∠B =30°,则∠DAE =12×34°=15°.(3)若∠C ﹣∠B =α(∠C >∠B ),则∠DAE =12α.故答案为20°,15°.19.(1)0135MOF ∠=;(2)0105POH ∠=.【分析】(1)根据OG 平分∠POF ,得出∠POG=12∠POF ,再由:2:1∠∠=OPD POG ,则得到∠OPD=∠FOP ,再根据//,⊥AB CD EF AB ,即可得到∠MOF 的度数.(2)根据:2:5∠∠=OPD MOH ,OH 平分∠MOG ,即可得到∠MOG=2∠MOH=5∠OPD ,再由邻补角定义,得到∠POG 的关系;在三角形OPF 中,由三角形内角和定理计算出∠OPD 的度数,进而得到∠POH 的度数.【详解】解:(1)∵OG 平分∠POF ,∴∠POG=12∠POF ∵:2:1∠∠=OPD POG ,∴∠+∠=∠=∠POG FOG OPD FOP ,………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○…………∵//,⊥AB CD EF AB ,∴045∠=∠=OPD FOP ,∴000018018045135∠=-∠=-=MOF FOP (2)∵:2:5∠∠=OPD MOH ,OH 为∠MOG 的平分线∴∠MOG=2∠MOH=5∠OPD.∵∠MOG+∠POG=180°,∴05180∠+∠=OPD POG ,∵OG 为∠POF 的平分线,EF ⊥CD ∴()0902∠=-∠÷POG OPD ,∴()005902180∠+-∠÷=OPD OPD ,∴030∠=OPD ,∴0018052105∠=-∠⨯÷=POH OPD .20.(1)①图见解析;②//AM DN ,证明见解析;(2)当P 点直线AD 上,且位于AB 与CD 两平行线之外时,AM DN ⊥.【分析】(1)①先连接AD ,再在AD 上取一点P ,然后分别作BAP ∠和CDP ∠的平分线即可;②先根据角平分线的定义可得12DAM BAP ∠=∠,12ADN CDP ∠=∠,再根据平行线的性质可得BAP CDP ∠=∠,从而可得DAM ADN ∠=∠,然后根据平行线的判定即可得;(2)当P 点直线AD 上,且位于AB 与CD 两平行线之外时,AM DN ⊥.理由:先根据平行线的性质可得PAF CDP ∠=∠,从而可得180CDP BAP ∠+∠=︒,再根据角平分线的定义可得12PAM BAP ∠=∠,12ADE CDP ∠=∠,从而可得90PAM ADE ∠+∠=︒,然后根据对顶角相等可得PAM DAE ∠=∠,从而可得90DAE ADE ∠+∠=︒,最后根据三角形的内角和定理即可得证.【详解】(1)①先连接AD ,再在AD 上取一点P ,然后分别作BAP ∠和CDP ∠的平分线,如图1所示:………外…………○…………装…………○…………订…………○…………线…………○学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○②//AM DN ,证明如下:∵AM 平分BAP ∠,DN 平分CDP ∠,∴12DAM BAP ∠=∠,12ADN CDP ∠=∠,∵//AB CD ,∴BAP CDP ∠=∠,∴DAM ADN ∠=∠,∴//AM DN ;(2)当P 点直线AD 上,且位于AB 与CD 两平行线之外时,AM DN ⊥,证明如下:如图2,设DN 交BA 延长线于点F ,延长MA 交DN 于点E ,∵//AB CD ,∴PAF CDP ∠=∠,∵180PAF BAP ∠+∠=︒,∴180CDP BAP ∠+∠=︒,∵AM 平分BAP ∠,DN 平分CDP ∠,∴12PAM BAP ∠=∠,12ADE CDP ∠=∠,∴111()90222PAM ADE BAP CDP BAP CDP ∠+∠=∠+∠=∠+∠=︒,∵PAM DAE ∠=∠(对顶角相等),∴90DAE ADE ∠+∠=︒,∴180()90AED DAE ADE ∠=︒-∠+∠=︒,∴AM DN ⊥.………外…………○…………装…………○…………订…………○…………线…………○学校:___________姓名:___________班级:___________考号:___________………内…………○…………装…………○…………订…………○…………线…………○21.(1)证明见解析(2)15°(3)45n 【分析】(1)根据AB 坐标可以求得∠OAB 大小,根据角平分线性质可求得∠OAC 大小,即可解题;(2)根据题干中给出的∠POC=13∠AOC 、∠PCE=13∠ACE 可以求得∠PCE 和∠POC 的大小,再根据三角形外角等于不相邻两内角和即可解题;(3)解法和(2)相同,根据题干中给出的∠POC=1n ∠AOC 、∠PCE=1n ∠ACE 可以求得∠PCE 和∠POC 的大小,再根据三角形外角等于不相邻两内角和即可解题.【详解】(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE =13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(3)解:∠OPC =45n ︒.证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ×90°=90n ︒.∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135n ︒.∵∠OPC +∠POC =∠PCE ,∴∠OPC =∠PCE -∠POC =45n ︒.。

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

三角函数与解三角形测试卷(二)

三角函数与解三角形测试卷(二)

三角函数与解三角形测试卷(二)一、单选题1.在△ABC 中,60A ∠=︒,6a =,4b =,则满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定2.下列四个函数中,以π为最小正周期,且在区间π,π2⎛⎫⎪⎝⎭上单调递减的是( )A .cos y x =B .sin y x =C .cos 2xy =D .tan y x =3.函数2sin ()||2xf x x =+的部分图象大致为( ) A . B .C .D .4.圣·索菲亚教堂是哈尔滨的标志性建筑,其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.为了估算圣·索菲亚教堂的高度,某人在教堂的正东方向找到一座建筑物AB ,高约为36m ,在它们之间的地面上的点M (B ,M ,D 三点共线)处测得建筑物顶A 、教堂顶C 的仰角分别是45和60,在建筑物顶A 处测得教堂顶C 的仰角为15,则可估算圣·索菲亚教堂的高度CD 约为( )A .54mB .47mC .50mD .44m5.已知函数()13π2sin (0,)6f x x m x ⎡⎤=-∈⎢⎥⎣⎦有三个不同的零点123,,x x x ,且123x x x <<,则1232x x x ++=( ) A .4πB .2πC .4π3D .7π36.已知sin sin 13πθθ⎛⎫++= ⎪⎝⎭,则tan 6πθ⎛⎫+= ⎪⎝⎭( )A .63B .33C .±2D .±227.tan10tan 503tan10tan 50++的值为( ) A .33B .3C .1D .3-8.已知()1sin 5αβ+=,()3sin 5αβ-=,则tan tan αβ的值为( )A .2B .2-C .12D .12-9.已知函数()()sin 20,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()f x 的图象关于点,03π⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移6π个单位后得到sin 2y x =的图象 C .()f x 在区间0,2π⎡⎤⎢⎥⎣⎦的最小值为3D .6f x π⎛⎫+ ⎪⎝⎭为偶函数10.在ABC 中,A ,B ,C 分别为ABC 三边a ,b ,c 所对的角,若cos 32B B =,且cos cos 2sin sin 3sin B C A Bb c C+=,则a c +的最大值是( ) A .1 B 3C .2 D .2311.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若2222022a b c +=,则()2tan tan tan tan tan A BC A B +的值为( )A .0B .1C .2021D .202212.已知M 是ABC 内的一点,且2AB AC ⋅=,4BAC π∠=,12MBC ABC S S =△△,则11MABMACS S +△△的最小值是( )A .8B .4C .2D .1二、填空题13.已知cos(75°+α)=13,求cos(105°-α)+sin(15°-α)=________.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足22230b c ac --=,sin()2sin A B A +=,则cos C ___________.15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()sin sin sin a A b B c b C =++,若角A 的内角平分线AD 的长为2,则△ABC 面积的最小值为______.16.已知函数()2sin f x x ω=(0>ω)在区间3,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,且函数()2sin 2g x x ω=+在[]2,0π-上有且仅有一个零点,则实数ω的取值范围是_______. 三、解答题17.设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知3c =,且()cos 2A B C ++=.(1)求角C 的大小;(2)若向量()sin ,1m A =-与()2,sin n B =互相垂直,求a 、b 的值.18.从①)sin sin sin c C a A b B -=-;② sin 22A A =补充到下面横线处,并解答:在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,AB =(1)求角A ;(2)若ABC 外接圆的圆心为O ,11cos 14AOB ∠=,求BC 的长. 注:如果选择多个条件分别解答;按第一个解答计分.19.在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.20.在ABC 中,内角,,A B C 的对边分别为,,a b c ,tan tan b A b B += (1)求角B ;(2)D 是AC 边上的点,若1CD =,3AD BD ==,求sin A 的值. 21.如图,在平面四边形ABCD 中,3,2,4B BC ABC π∠==的面积 2.ABCS =(1)求AC 的长;(2)从条件①、条件②、条件③这三个条件中任选两个作为已知,判断DCA BCA ∠=∠是否可能成立,并说明理由. 条件①:4D π∠=;条件②:4=AD ;条件③:6CD =.22.在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()sin sin 2sin sin sin a A c C B b C B =-++.(1)求角A ;(2)若ABC )32b c a-的取值范围.参考答案:1.A 【解析】 【分析】根据正弦定理进行判断即可. 【详解】由正弦定理可知:4sin 1sin sin sin a bB A B B==⇒=, 显然不存在这样的角B , 故选:A 2.B 【解析】 【分析】利用最小正周期为π排除选项AC ;利用在区间π,π2⎛⎫⎪⎝⎭上单调递减排除选项D ;选项B 以π为最小正周期,且在区间π,π2⎛⎫⎪⎝⎭上单调递减,判断正确.【详解】选项A :cos y x =最小正周期为2π.判断错误;选项B :sin y x =最小正周期为π,且在区间π,π2⎛⎫⎪⎝⎭上单调递减.判断正确;选项C :cos 2xy =最小正周期为4π.判断错误;选项D :tan y x =在区间π,π2⎛⎫⎪⎝⎭上单调递增. 判断错误.故选:B 3.B 【解析】 【分析】根据奇偶性及函数值的正负判断即可. 【详解】因为2sin ()2x f x x =+,定义域为R所以2sin()2sin ()()22x xf x f x x x --==-=--++所以()f x 为奇函数,且(0)0f =,排除CD 当()0,x π∈时,sin 0x >,即()0f x >,排除A 故选:B. 4.A 【解析】 【分析】根据题意求得AM =AMC 中由正弦定理求出CM ,即可在直角CDM 中求出CD .【详解】由题可得在直角ABM 中,45AMB ∠=︒,36AB =,所以AM = 在AMC 中,180604575AMC ∠=︒-︒-︒=︒,154560MAC ∠=︒+︒=︒, 所以180756045ACM ∠=︒-︒-︒=︒,所以由正弦定理可得sin 45sin 60AM CM=︒︒,所以CM ==则在直角CDM 中,sin6054CD CM =⋅︒=,即圣·索菲亚教堂的高度约为54m. 故选:A. 5.A 【解析】 【分析】根据正弦函数的对称性,结合函数零点的定义进行求解即可. 【详解】令()2sin 02sin f x x m m x =-=⇒=,当13π0,6x ⎡⎤∈⎢⎥⎣⎦时,函数有三个零点,因此函数,2sin y m y x ==的图象有三个不同的交点, 因为13ππ12sin2sin 21662==⨯=,所以[0,1]m ∈, 显然有123π13π0π<2π26x x x ≤<<≤≤≤,而12,x x 关于直线π2x =对称,23,x x 关于直线3π2x =对称, 所以21231232π3π224π22x x x x x x x ++=+++=⨯+⨯=, 故选:A 6.D 【解析】 【分析】根据两角和的正弦公式展开,之后再用辅助角公式可得sin 6πθ⎛⎫+= ⎪⎝⎭函数的关系求解即可. 【详解】sin sin()13πθθ++=,则1sin sin 12θθθ+=,即3sin 12θθ+=,1cos 2θθ+=sin 6πθ⎛⎫+= ⎪⎝⎭cos 6πθ⎛⎫+== ⎪⎝⎭,所以tan 6πθ⎛⎫+== ⎪⎝⎭故选:D 7.B 【解析】 【分析】由()tan 60tan 10503=+=,利用两角和差正切公式可整理得到结果. 【详解】()tan10tan 50tan 60tan 105031tan10tan 50+=+==-,tan10tan 5033tan10tan 50∴+=-,tan10tan 503tan10tan 503∴++=. 故选:B. 8.B 【解析】 【分析】首先根据正弦两角和差公式得到2sin cos 51cos sin 5αβαβ⎧=⎪⎪⎨⎪=-⎪⎩,再利用同角三角函数的商数关系求解即可. 【详解】 由题知:()()1sin sin cos cos sin 53sin sin cos cos sin 5αβαβαβαβαβαβ⎧+=+=⎪⎪⎨⎪-=-=⎪⎩,解得2sin cos 51cos sin 5αβαβ⎧=⎪⎪⎨⎪=-⎪⎩, 所以tan sin cos 2tan cos sin ααββαβ==-. 故选:B 9.D 【解析】 【分析】先由函数图象求出函数解析式,然后再逐个分析判断 【详解】因为()f x 的图象过点10,2⎛⎫⎪⎝⎭,所以1sin 2ϕ=,因为02πϕ<<,所以6π=ϕ,因为()f x 的图象过点2,13π⎛⎫- ⎪⎝⎭, 所以由五点作图法可知43362πππω⋅+=,得1ω=, 所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭,对于A ,因为2sin sin 13362f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3x π=-为()f x 的图象的一条对称轴,所以A 错误,对于B ,()f x 的图象向右平移6π个单位后,得sin 2sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以B错误,对于C ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦的最小值为12-,所以C 错误, 对于D ,sin 2sin 2cos 26662f x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,令()cos 26g x f x x π⎛⎫=+= ⎪⎝⎭,因为()cos(2)cos 2()g x x x g x -=-==,所以()cos 26g x f x x π⎛⎫=+= ⎪⎝⎭为偶函数,所以D 正确, 故选:D 10.D 【解析】 【分析】根据已知条件求得,B b ,再利用正弦定理将角化边,将问题转化为求6A π⎛⎫+ ⎪⎝⎭的最大值问题求解即可. 【详解】cos 2B B =得sin 16B π⎛⎫+= ⎪⎝⎭,又7666B πππ<+<,所以3B π=. 在ABC 中,由正弦定理得:cos cos cos cos sin cos sin cos sin 2sin sin sin sin 3sin B C c B b C C B B C A A Bb c bc b C b C C+++====所以32sin b B=()2sin sin 2sin 2sin sin 36b a c A C A A A B ππ⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎝⎭⎝⎭.故当62A ππ+=,即3A π=时,a c +取得最大值故选:D 11.C 【解析】 【分析】将给定三角式切化弦,再利用正弦定理角化边,借助余弦定理及已知计算作答. 【详解】在ABC 中,由余弦定理得:22222cos 2021ab C a b c c =-=+,所以sin sin 22tan tan 2sin sin cos cos cos sin sin sin tan (tan tan )sin (sin cos cos sin )()cos cos cos A BA B A B C A B C A B C A B C A B A B C A B⋅⋅==+++ 222sin sin cos 2sin sin cos 2cos 2021sin sin()sin A B C A B C ab CC A B C c ====+.故选:C 12.A 【解析】 【分析】利用向量数量积公式及三角形面积公式可得ABC 的面积,结合已知可得12MAB MACS S+=,再根据基本不等式即可求解. 【详解】∵2AB AC ⋅=,4BAC π∠=,∴cos 222AB AC AB AC BAC AB AC ⋅=⋅∠=⇒⋅= ∴1sin 4512ABCSAB AC =⋅︒=, 因为ABCMBCMABMACS SSS=++,12MBC ABC S S =△△, 所以1122MAB MACABCSSS +==, 所以()22221122442MAC MAC MAB MABMABMACMABMAC MAB MAC MAB MACS S S S S SS S S S S S ⎛⎫++=++≥+⋅ ⎪⎝⎭, 448=+=,当且仅当22MAC MABMAB MACS S S S =,即14MACMABS S==时取等. 故选:A. 13.0 【解析】 【分析】利用诱导公式化简每一个式子,再把已知代入即得解. 【详解】因为(105°-α)+(75°+α)=180°,(15°-α)+(α+75°)=90°, 所以cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13,sin(15°-α)=sin[90°-(α+75°)]=cos(75°+α)=13.所以cos(105°-α)+sin(15°-α)=-13+13=0.故答案为:0 14【解析】 【分析】利用正弦定理角化边及其余弦定理即可求解. 【详解】∵sin()2sin A B A +=,∴sin 2sin C A =, 由正弦定理得2c a =,∵ 22230b c ac --=,∴22222b c c ac -=+,由余弦定理得:2222cos b c a ac B -=-,∴2224cos a ac B c ac -=+, ∴ 222228cos 42a a B a a -=+, ∴228cos 4a B a -=,解得1cos 2B =-,又∵0πB <<,∴2π3B =, 将2c a =代入22230b c ac --=得b =, 由正弦定理可得sin sin b c B C =,即22πsin sin 3c C =,解得sin 7C =, 又∵π02C <<,∴cos C ===. 15.【解析】 【分析】利用正弦定理进行边角互化,再利用余弦定理即可求出角A ,由三角形面积相等,结合基本不等式求面积的最小值. 【详解】本题考查解三角形的应用,考查逻辑推理的核心素养. 因为()sin sin sin a A b B c b C =++,所以222a b c bc =++. 由余弦定理易得1cos 2A =-,又0A π<<所以23A π=.因为AD 平分角A ,所以∠BAD =∠CAD =60°. 由ABCABDACDSSS=+,得111sin120sin 60sin 60222bc c AD b AD ︒=⋅︒+⋅︒,即()2bc b c =+≥16bc ≥,当且仅当b =c 时,等号成立,所以△ABC 面积的最小值为故答案为: 16.12,43⎡⎤⎢⎥⎣⎦【解析】 【分析】第一步,函数()2sin f x x ω=(0>ω)在区间3ππ,43⎡⎤-⎢⎥⎣⎦上单调递增结合()2sin f x xω=(0>ω)在ππ22ωω⎡⎤-⎢⎥⎣⎦,单调递增得到3ππππ,4322ωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,,得出203ω<≤ . 第二步,()2sin 2g x x ω=+在[]2,0π-上有且仅有一个零点,可得12π2π452π2π4ωω⎧⨯≤⎪⎪⎨⎪⨯>⎪⎩,解出实数ω的取值范围.第三步,求出交集即可. 【详解】由题及ππ22x ω-≤≤得()2sin f x x ω=(0>ω)在ππ,22ωω⎡⎤-⎢⎥⎣⎦单调递增, 又函数()2sin f x x ω=(0>ω)在区间3ππ,43⎡⎤-⎢⎥⎣⎦上单调递增,所以,3ππππ,4322ωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,,得203ω<≤ . ()2sin 2g x x ω=+在[]2,0π-上有且仅有一个零点,可得12π2π452π2π4ωω⎧⨯≤⎪⎪⎨⎪⨯>⎪⎩,所以,1544ω≤<,所以,1243ω≤≤. 故答案为:1243⎡⎤⎢⎥⎣⎦,.17.(1)3C π=(2)a =b = 【解析】 【分析】(1)利用三角恒等变换化简得出sin 61C π⎛⎫+= ⎪⎝⎭,结合角C 的取值范围可求得角C 的值;(2)由平面向量垂直的坐标表示以及正弦定理可得出2b a =,再利用余弦定理可求得a 、b 的值. (1)()cos cos 2sin 26A B C C C C π⎛⎫++=+=+= ⎪⎝⎭,所以,sin 61C π⎛⎫+= ⎪⎝⎭,0C π<<,则7666C πππ<+<,62C ππ∴+=,解得3C π=. (2)解:由已知2sin sin 0m n A B ⋅=-=,则2b a =,由余弦定理可得22222292cos 3c a b ab C a b ab a ==+-=+-=,因此,a =b =18.(1)π6A =(2)BC =【解析】 【分析】(1)选择条件①可以用正弦定理进行角化边即可求解,选择条件②利用辅助角公式进行三角恒等变换即可.(2)利用圆的角度关系和正弦定理即可求解. (1)解:选择条件①:因为)sin sin sin c C a A b B -=-,由正弦定理,可得)22c a bb -=-,即222b c a +-=,所以222cos 2b c A bc a +===-. 因为()0,πA ∈,所以π6A =.选择条件②:因为sin 22A A =所以π2sin 23A ⎛⎫+= ⎪⎝⎭πsin 23A ⎛⎫+=⎪⎝⎭因为()0,πA ∈所以ππ7π2,333A ⎛⎫+∈ ⎪⎝⎭所以π2π233A +=,π6A =.(2)由题意,O 是ABC 外接圆的圆心,所以2AOB C ∠=,所以211cos cos 212sin 14AOB C C ∠==-=故此sin C =. 在ABC 中,由正弦定理,sin sin AB BC C A=12BC=,解得BC =19.(1)3A π=(2)134【解析】 【分析】(1)利用两角和差余弦公式、二倍角和辅助角公式化简可得sin 216A π⎛⎫-= ⎪⎝⎭,由此可求得A ; (2)利用面积桥可求得AB ,利用余弦定理求得BC 后可得CD ,由勾股定理可得结果.(1)21sin cos sin cos cos sin sin cos sin 6662A A A A A A A Aπππ⎛⎫⎛⎫-=+=+ ⎪ ⎪⎝⎭⎝⎭311113sin 2cos 2sin 24442644A x A π⎛⎫=-+=-+= ⎪⎝⎭,sin 216A π⎛⎫∴-= ⎪⎝⎭;()0,A π∈,112,666A πππ⎛⎫∴-∈- ⎪⎝⎭,262A ππ∴-=,解得:3A π=.(2)D 是BC 中点,1228632ABCADCSSAC DE DE ∴==⨯⋅==又1sin 23632ABCSAB AC A AB =⋅==3AB =; 在ABC 中,由余弦定理得:2222cos 9642449BC AB AC AB AC A =+-⋅=+-=, 7BC ∴=,则72CD =,224927134164CE CD DE ∴=-=-. 20.(1)3B π=(2)21sin A = 【解析】 【分析】(1)利用正弦定理边化角、切化弦,结合三角恒等变换公式可化简已知等式求得cos B ,由此可得B ;(2)设ABD BAD θ∠=∠=;在ABC 和BDC 分别利用正弦定理和余弦定理可构造关于sin θ的方程,解方程可求得结果.(1)由3tan tan c b A b B +=sin sin 3cos cos A B c A B +=由正弦定理得:()sin sin sin sin cos cos sin 3sin cos cos cos cos cos cos A B A B A B A B CA B A B A B +++===()()sin sin sin A B C C π+=-=,又()0,C π∈,sin 0C ∴≠,sin cos 3cos cos B A A B ∴=;tan A 有意义,cos 0A ∴≠,sin 3cos B B ∴=,即tan 3B =,又()0,B π∈,3B π∴=.(2)AD BD =,ABD BAD ∴∠=∠, 设ABD BAD θ∠=∠=,则2BDC θ∠=,在ABC 中,由正弦定理得:sin sin BC AC ABCθ=∠,即4sin 83sin 3BC θθπ==; 在BDC 中,由余弦定理得:2222cos 2106cos 2BC BD CD BD CD θθ=+-⋅=-;()2264sin 106cos 210612sin 3θθθ∴=-=--,解得:23sin 7θ=, 即23sin 7A =,又()0,A π∈,21sin A ∴=21.(1)25(2)答案见解析 【解析】 【分析】(1)由面积公式先求出AB 的长,进而根据余弦定理求出AC 的长.(2)由题设,可以随意选择两个条件,去判断DCA ∠与BCA ∠是否可能相等.但是优先选择哪两个条件思维逻辑最清晰、解题过程最简洁是同学们应该思考的.由第一问可知,ABC 是唯一确定的三角形,sin ,cos BCA BCA ∠∠都是可求的,而要判断DCA ∠与BCA ∠是否可能相等,可转化为判断它们的某一个三角函数值是否相等,因此首选条件②和条件③,此时ADC 中的三条边长都知道,容易计算余弦值.如果看到条件①4D π∠=,正好满足D B π∠+∠=,能够想到四点共圆,那么圆周角相等则对应的弦长相等,因此选条件①和条件②也非常简单.最麻烦的是选择条件①和条件③,因为此时ADC 中知道的条件是边边角,ADC 不一定唯一确定,需要讨论. (1) 因为3,2,24ABCB BC S π∠===,所以在ABC 中,由1sin 2ABCSAB BC B =⋅⋅,得2sin ABC S AB BC B ===⋅由余弦定理2222cos AC ABBC AB BC B =-+⋅, 得2842220AC ⎛=+-⋅⋅= ⎝⎭,所以AC =(2)选择条件②:4=AD 和条件③:6CD =,在ADC 中由余弦定理可得222cos 2CD CA AD DCA CD CA ∠+-==⋅,在ABC 中由余弦定理可得222cos 2CB CA AB BCA CB CA ∠+-=⋅,因为cos cos DCA BCA ∠∠≠, 所以DCA BCA ∠∠≠; 选择条件①:4D π∠=和条件②:4=AD ,在ADC 中,由正弦定理可得sin sin AC ADD DCA∠=, 在ABC 中,由正弦定理可得sin sin AC ABB BCA=∠, 所以,若DCABCA ∠=∠,则AD AB =, 与4,AD AB == 所以DCA BCA ∠∠≠; 选择条件①:4D π∠=和条件③:6CD =,在ABC 中由余弦定理可得222cos 2CB CA AB BCA CB CA ∠+-=⋅. 在ADC 中,由余弦定理2222cos AC ADDC AD DC D =+-⋅, 可得2160AD -+=,所以AD =AD =当AD=ADC中,由余弦定理可得222cos2CD CA ADDCACD CA∠+-==⋅因为cos cosDCA BCA∠∠=,且(),0,DCA BCA∠∠π∈,所以DCA BCA∠=∠.当AD=ADC中,由余弦定理可得222cos2CD CA ADDCACD CA∠+-=⋅,因为cos cosDCA BCA∠∠≠,所以DCA BCA∠∠≠.所以选择条件①和条件③时,当AD=DCA BCA∠=∠成立;当AD= DCA BCA∠∠≠.22.(1)3Aπ=;(2)11,22⎛⎫-⎪⎝⎭.【解析】【分析】(1)角换边,在利用余弦定理求解;(2)边换角,将待求表达式表示成关于B的三角函数,利用锐角三角形条件求出B的范围,最后再求表达式的范围即可.(1)因为()()sin sin2sin sin sina A c C Bb C B=-++,所以由正弦定理得()()22a c cb bc b=-++,整理得222b c a bc+-=,由余弦定理得2221cos22b c aAbc+-==.因为0Aπ<<,所以3Aπ=.(2)由正弦定理得)sin sin2sin sin sin sin sin2sin33b c B CB C B B Ba Aππ--⎛⎫⎛⎫==-=--=-⎪ ⎪⎝⎭⎝⎭.因为ABC为锐角三角形,所以0,220,32BBπππ⎧<<⎪⎪⎨⎪<-<⎪⎩解得62B ππ<<,所以636B πππ-<-<,所以11sin 232B π⎛⎫-<-< ⎪⎝⎭,故)2b c a-的取值范围为11,22⎛⎫- ⎪⎝⎭.。

解直角三角形》单元测试卷及答案

解直角三角形》单元测试卷及答案

《解直角三角形》单元测试卷一、填空题:1、如下图,表示甲、乙两山坡的情况, _____坡更陡。

(填“甲”“乙”)αβ1213 34甲乙2、在Rt △ABC 中,∠C =90°,若AC =3,AB =5,则cosB 的值为__________。

3、在Rt △ABC 中,∠C=90°.若sinA=22,则sinB= 。

4、计算:tan 245°-1= 。

5、在△ABC 中,AB=AC=10,BC=16,则tanB=_____。

6、△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=31,则S △ABC=______。

7、菱形的两条对角线长分别为23和6,则菱形较小的内角为______度。

8、如图2是固定电线杆的示意图。

已知:CD ⊥AB ,CD 33=m ,∠CAD=∠CBD=60°,则拉线AC 的长是__________m 。

9、升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。

(用含根号的式子表示)10、如图3,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30,90BCA ∠=,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m ,取2 1.414=,3 1.732=)11、如图4,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P 'B ,且BP=2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos 15°=624+)二、选择题:12、在ABC ∆中,︒=∠90C ,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、14513、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是( ) A.40° B.30° C.20° D.10°14、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300 m ,250 m ,200 m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高 15、在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是一般锐角三角形16、如图5,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8 m ,要在窗子外面上方安装水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板的宽度AC 为( )A.1.8tan80°mB.1.8cos80°mC.︒80sin 8.1 m D.︒80tan 8.1 m17、如图6,四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=23,AD=2,则四边形ABCD 的面积是( ) A.42B.43C.4D.6三、解答题:18、计算:(1)3cos30°+2sin45° (2)6tan 2 30°-3sin 60°-2sin 45°19、根据下列条件,求出Rt △ABC(∠C=90°)中未知的边和锐角. (1)BC=8,∠B=60°; (2)AC=2,AB=2.20、如图7,在Rt △ABC 中,∠C=90°,AC=8,∠A 的平分线AD=3316,求∠B 的度数及边BC 、AB 的长.21、等腰三角形的底边长20 cm ,面积为33100c m 2,求它的各内角.22、同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC =2m ,滑梯着地点B 与梯架之间的距离BC =4m 。

2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷(解析版)

2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷(解析版)

2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷一.选择题(共15小题)1.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C2.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A3.如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1B.∠2C.∠B D.∠1、∠2和∠B 4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个5.Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC7.下列命题:(1)相等的角是对顶角.(2)同位角相等(3)直角三角形的两个锐角互余.(4)若两条线段不相交,则两条线段平行.其中正确的命题个数有()A.1个B.2个C.3个D.4个8.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD 的值为()A.B.C.D.310.如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是()A.AB2=AC•BD B.AB•AD=BD•BCC.AB2=BC•BD D.AB•AD=BD•CD11.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.12.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°13.如果α是锐角,且sinα=,那么cos(90°﹣α)的值为()A.B.C.D.14.在Rt△ABC中,∠C=90°,sin B=,则tan A的值为()A.B.C.D.15.已知sin A=,则锐角A的度数是()A.30°B.45°C.60°D.75°二.填空题(共8小题)16.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=.17.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)18.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.19.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=°.20.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.21.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC=.22.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.23.比较大小:sin44°cos44°(填>、<或=).三.解答题(共3小题)24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.25.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.26.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.2019年华师大版数学上册九年级《第24章解直角三角形》单元测试卷参考答案与试题解析一.选择题(共15小题)1.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠C B.∠A﹣∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=3∠C【分析】由直角三角形内角和为180°求得三角形的每一个角,再判断形状.【解答】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.【点评】注意直角三角形中有一个内角为90°.2.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选:B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.3.如图,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A.∠1B.∠2C.∠B D.∠1、∠2和∠B 【分析】根据直角三角形的两个锐角互余,以及同角的余角相等即可判断.【解答】解:∵∠ACB=90°,即∠1+∠2=90°,又∵直角△ACD中,∠A+∠1=90°,∴∠A=∠2.故选:B.【点评】本题考查了直角三角形的性质:直角三角形的两个锐角互余,以及余角的性质:同角的余角相等.4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【解答】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.【点评】此题考查了直角三角形的性质,余角的性质,掌握直角三角形的两锐角互余是解题的关键.5.Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是()A.66°B.36°C.56D.46°【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【解答】解:∵Rt△ABC中,∠C=90°,∠B=54°,∴∠A=90°﹣∠B=90°﹣54°=36°;故选:B.【点评】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.6.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.7.下列命题:(1)相等的角是对顶角.(2)同位角相等(3)直角三角形的两个锐角互余.(4)若两条线段不相交,则两条线段平行.其中正确的命题个数有()A.1个B.2个C.3个D.4个【分析】此题考查的知识点多,用平行线的性质,对顶角性质,余角的定义等来一一验证,从而求解.【解答】解:①相等的角不一定是对顶角,故错误;②两直线同位角相等,故错误;③直角三角形两锐角互余,故正确;④在同一平面内,若两条直线不相交,则两直线平行,故错误.综上可得只有③正确.故选:A.【点评】本题考查了命题与定理的知识,涉及知识较多,请同学们认真阅读,最好借助图形来解答.8.如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是()A.9°B.18°C.27°D.36°【分析】根据直角三角形的两个角互余即可求解.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.故选:B.【点评】本题主要考查了直角三角形的性质,两锐角互余.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD 的值为()A .B .C .D .3【分析】根据射影定理得到:AC 2=AD •AB ,把相关线段的长度代入即可求得线段AD 的长度.【解答】解:如图,∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB , ∴AC 2=AD •AB , 又∵AC =3,AB =6,∴32=6AD ,则AD =. 故选:A .【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.10.如图,△ABC 中,点D 在线段BC 上,且∠BAD =∠C ,则下列结论一定正确的是( )A .AB 2=AC •BD B .AB •AD =BD •BC C .AB 2=BC •BDD .AB •AD =BD •CD【分析】先证明△BAD ∽△BCA ,则利用相似的性质得AB :BC =BD :AB ,然后根据比例性质得到AB 2=BC •BD . 【解答】解:∵∠BAD =∠C , 而∠ABD =∠CBA , ∴△BAD ∽△BCA , ∴AB :BC =BD :AB , ∴AB 2=BC •BD . 故选:C .【点评】本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质.11.已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sin A的值为()A.B.C.D.【分析】根据勾股定理,可得AB的长,根据角的正弦,等于角的对边比斜边,可得答案.【解答】解:由勾股定理得AB==5,sin A=,故选:D.【点评】本题考查了锐角三角函数的定义,先求出斜边,再求出正弦值.12.当锐角A的cos A>时,∠A的值为()A.小于45°B.小于30°C.大于45°D.大于30°【分析】明确cos45°=,余弦函数随角增大而减小进行分析.【解答】解:根据cos45°=,余弦函数随角增大而减小,则∠A一定小于45°.故选:A.【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.13.如果α是锐角,且sinα=,那么cos(90°﹣α)的值为()A.B.C.D.【分析】根据互为余角三角函数关系,解答即可.【解答】解:∵α为锐角,,∴cos(90°﹣α)=sinα=.故选:B.【点评】本题考查了互为余角的三角函数值,熟记三角函数关系式,是正确解答的基础.14.在Rt△ABC中,∠C=90°,sin B=,则tan A的值为()A.B.C.D.【分析】根据一个角的余弦等于它余角的正弦,可得∠A的余弦,根据同角三角函数的关系,可得∠A的正弦,∠A的正切.【解答】解:由Rt△ABC中,∠C=90°,sin B=,得cos A=sin B=.由sin2A+cos2A=1,得sin A==,tan A===.故选:D.【点评】本题考查了互余两角三角函数的关系,利用一个角的余弦等于它余角的正弦得出∠A的余弦是解题关键.15.已知sin A=,则锐角A的度数是()A.30°B.45°C.60°D.75°【分析】根据30°角的正弦值等于解答.【解答】解:∵sin A=,∴A=30°.故选:A.【点评】本题考查了特殊角的三角函数值,需熟记.二.填空题(共8小题)16.在Rt△ABC中,∠C=Rt∠,∠A=70°,则∠B=20°.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.【点评】本题考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.17.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.18.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.【分析】由条件知△ABE,三角形ADB是直角三角形,且EM,DM分别是它们斜边上的中线,证明∠EMD=2∠DAC=60°,从而可得三角形DME是边长为2的等边三角形可得到问题答案.【解答】解:∵在△ABC中,AD⊥BC,BE⊥AC,∴△ABE,△ADB是直角三角形,∴EM,DM分别是它们斜边上的中线,∴EM=DM=AB,∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC=60°,=.所以△DEM是边长为2的正三角形,所以S△DEM故答案为:.【点评】本题考查了直角三角形的性质以及等边三角形的判定和性质和等边三角形的面积计算,题目综合性很好.19.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=50或90°.【分析】分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.【解答】解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为:50或90.【点评】此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.20.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为4.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.【点评】本题考查了射影定理.Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:①AD2=BD•DC;②AB2=BD•BC;AC2=CD•BC.21.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC=.【分析】由三角形的性质:直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项,即CD2=AD×BD,可将BD的长求出,然后在Rt△BCD中,根据勾股定理可将BC的边求出.【解答】解:∵若CD是Rt△ABC斜边上的高,AD=3,CD=4∴CD2=AD×BD,即42=3×BD解得:BD=在Rt△BCD中,∵BC2=CD2+BD2,∴BC===.故答案为:.【点评】本题主要考查三角形的性质及对勾股定理的应用.22.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10.【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.【点评】本题主要考查解直角三角形,熟练掌握正弦函数的定义是解题的关键.23.比较大小:sin44°<cos44°(填>、<或=).【分析】首先根据互余两角的三角函数的关系,得cos44°=sin46°,再根据正弦值随着角的增大而增大,进行分析.【解答】解:∵cos44°=sin46°,正弦值随着角的增大而增大,又∵44°<46°,∴sin44°<cos44°.故答案为<.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小).同时考查了互余两角的三角函数的关系.三.解答题(共3小题)24.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF 中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.25.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.26.在△ABC中,∠B、∠C均为锐角,其对边分别为b、c,求证:=.【分析】如图,过A作AD⊥BC于D,如果利用三角函数可以分别在△ABD和△ADC中可以得到sin sB,sin C的表达式,由此即可证明题目的结论.【解答】证明:过A作AD⊥BC于D,在Rt△ABD中,sin B=,∴AD=AB sin B,在Rt△ADC中,sin C=,∴AD=AC sin C,∴AB sin B=AC sin C,而AB=c,AC=b,∴c sin B=b sin C,∴=.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.解题的关键是作辅助线把普通三角形转化为直角三角形解决问题.。

《第十一章 三角形》单元测试卷含答案(共5套)

《第十一章 三角形》单元测试卷含答案(共5套)

《第十一章三角形》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列每组长度的三条线段为边能组成三角形的是( )A.2、3、6 B.2、4、6C.2、2、4 D.6、6、62.如图,图中∠1的大小等于( )A.40° B.50° C.60° D.70°第2题图第4题图第6题图3.一个多边形的每一个内角都等于140°,则它的边数是( )A.7 B.8 C.9 D.104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC交AC于点D,那么∠BDC的度数是( )A.76° B.81° C.92° D.104°5.用五根木棒钉成如下四个图形,具有稳定性的有( )A.1个 B.2个 C.3个 D.4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( )A.180° B.360°C.540° D.720°二、填空题(本大题共6小题,每小题3分,共18分)7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为________.8.若n边形内角和为900°,则边数n为________.9.将一副三角板按如图所示的方式叠放,则∠α的度数为________.第9题图第10题图第11题图10.如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD所在直线折叠,使点B落在AC边上的点E处,则∠CDE的度数是________.11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点.若△DEF的面积是1cm2,则S△ABC=________cm2.12.当三角形中一个内角β是另一个内角α的12时,我们称此三角形为“希望三角形”,其中角α称为“希望角”.如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为______________.三、(本大题共5小题,每小题6分,共30分)13.在△ABC中,∠A=30°,∠C=2∠B,求∠B的度数.14.如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.16.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.已知a,b,c为三角形三边的长,化简:|a-b-c|-|b-c-a|+|c-a-b|.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形三边的长.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.22.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).六、(本大题共12分)23.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.D 2.D 3.C 4.A 5.D6.B 解析:如图,∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,∴∠BMQ+∠DQF+∠FNM=∠A+∠B+∠C+∠D+∠E+∠F.∵∠BMQ+∠DQF+∠FNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选B.7.5或7 8.7 9.75°10.65°11.712.54°或84°或108°解析:①54°角是α,则希望角度数为54°;②54°角是β,则12α=β=54°,所以希望角α=108°;③54°角既不是α也不是β,则α+β+54°=180°,所以α+12α+54°=180°,解得α=84°.综上所述,希望角的度数为54°或84°或108°.13.解:∵∠A=30°,∴∠B+∠C=180°-∠A=150°.(3分)∵∠C=2∠B,∴3∠B=150°,∴∠B=50°.(6分)14.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(4分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(6分)15.解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9.(3分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-125°=55°.(4分)又∵∠A=55°,∴∠C=180°-∠A-∠AEC=180°-55°-55°=70°.(6分) 16.解:设这个多边形的边数为n.根据题意,得(n-2)·180°=360°×3+180°,(3分)解得n=9.(5分)答:这个多边形的边数是9.(6分)17.解:(1)在△ABC中,∵BD是AC边上的高,∴∠ADB=∠BDC=90°.∵∠A =70°,∴∠ABD=180°-∠BDA-∠A=20°.(3分)(2)在△EDC中,∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=28°.∵CE平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.(6分)18.解:∵a,b,c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,(4分)∴原式=|a-(b+c)|-|b-(c+a)|+|c-(a+b)|=b+c-a-a-c+b+a+b-c=-a+3b-c.(8分)19.(1)解:∵六边形ABCDEF的内角都相等,∴∠B=∠A=∠BCD=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=180°-120°=60°,∴∠FCD =120°-60°=60°.(4分)(2)证明:∵CF∥AB,∴∠AFC=180°-∠A=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)20.解:如图,设AB=AC=a,BC=b,则AD=CD=12a.根据题意,有a+12a=24且12a +b =18,或a +12a =18且12a +b =24,(4分)解得a =16,b =10或a =12,b =18,两种情况下都能构成三角形.(6分)综上所述,三角形的三边长分别为16,16,10或12,12,18.(8分)21.解:(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°,∴∠EBC =32°.∵AD ⊥BC ,∴∠ADC =90°.(2分)∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-38°=52°.(4分)(2)分两种情况:①当∠EFC =90°时,如图①所示,则∠BFE =90°,∴∠BEF =90°-∠EBC =90°-32°=58°;(6分)②当∠FEC =90°时,如图②所示,则∠EFC =90°-38°=52°,∴∠BEF =∠EFC -∠EBC =52°-32°=20°.(8分)综上所述,∠BEF 的度数为58°或20°.(9分)22.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°.∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°.∵AE 平分∠BAC ,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)由(1)中可得∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(5分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(7分)(3)由(2)中可知∠DAE =12(∠C -∠B ),∴∠C -∠B =α,∴∠DAE =12α.(9分)23.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n.(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n×90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(二) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是( ) A .2、2、4 B .8、6、3 C .2、6、3 D .11、4、6 2.如图,∠1的度数是( ) A .40° B.50° C .60° D.70°3.下列实际情景运用了三角形稳定性的是( )A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是( )A.9 B.14C.16 D.不能确定5.如图,在△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠BDC的度数是( )A.76° B.81°C.92° D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个C.3个 D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角的度数是( )A.108° B.90° C.72° D.60°8.若a、b、c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c9.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n的值为( )A.11 B.12 C.13 D.1410.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有( )A.∠ADE=20° B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC二、填空题(每小题3分,共24分)11.如图,以∠E为内角的三角形共有________个.12.若n边形的内角和为900°,则边数n的值为________.13.一个三角形的两边长分别是3和8,若周长是偶数,则第三边的长是________.14.将一副三角板按如图所示的方式叠放,则∠α的度数是________.15.如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是________.16.如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部.已知∠1+∠2=80°,则∠A的度数是________.17.如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2的度数是________.18.如图,已知在△ABC中,∠A=155°.第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA……则∠A1的度数是________,照此继续,最多能进行________步.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC=20°,求∠C的度数.23.(10分)如果多边形的每个内角都比与它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n边形的内角和为(n-2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n=13.故选C.10.D 解析:如图,在△AED中,∠AED=60°,∴∠ADE=180°-∠A-∠AED =120°-∠A.在四边形ABCD中,∵∠A=∠B=∠C,∴∠ADC=360°-∠A-∠B-∠C=360°-3∠A=3(120°-∠A),∴∠ADC=3∠ADE.∴∠ADE=13∠ADC.故选D.11.3 12.7 13.7或9 14.75°15.16cm216.40°17.28°18.130° 6 解析:∵在△ABC中,∠A=155°,∴∠ABC+∠ACB=25°.又∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=50°,∴在△A1BC中,∠A1=180°-50°=130°.∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,∴最多能进行6步.19.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(5分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)20.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(8分)21.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(4分)(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)22.解:由三角形外角的性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(10分)23.解:设这个多边形的一个外角为x°.依题意有x+4x+30=180,解得x=30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm ,则AD =CD =12x cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(三)一、相信你的选择(每题5分,共35分) 1.三角形三条高的交点一定在( ) (A )三角形的内部 (B )三角形的外部(C )三角形的内部或外部. (D )三角形的内部、外部或顶点 2.一个多边形的边数每增加一条,这个多边形的( ) (A )内角和增加 (B )外角和增加 (C )对角线增加一条 (D )内角和增加3.已知一个三角形的周长为 厘米,且其中两边都等于第三边的倍,那么这个三角形的最短边为( )厘米(A ) (B ) (C ) (D )4.如图,工人师傅砌门时,常用木条固定长方形门框,使其不变形,这种做法的数学根据是 ( )(A )两点之间线段最短 (B )长方形的四个角都是直角 (C )三角形的稳定性 (D 长方形的对称性(第4题图) (第5题图)5.为估计池塘岸边、的距离,小方在池塘的一侧选取点,测得米,米,、间的距离不可能是( ) (A )米 (B )米 (C )米 (D )米6.若线段、、 能组成三角形,则它们的长度比可能是( ) (A ) (B ) (C ) (D )︒360︒360︒1801521234EFABCD A B O 15=OA 10=OB A B 2015105a b c 4:2:14:3:17:4:34:3:2二、试试你的身手(每小题5分,共35分)8.在中,,那么长的取值范围是_______.9.一个多边形的内角和是外角和的倍,该多边形是_______边形.10.有四条线段,长分别是厘米,厘米,厘米,厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为____个.11.一个三角形三边的长度之比为,周长为,则此三角形最短边的长为______.12.在中,是中线,则的面积________的面积(填“>”“<”或“=”).(第13题图)13.将一副直角三角板如图所示摆放,则的度数为_______度.14.如图,已知点是射线上一动点(即可在射线上运动),,当___________时,为直角三角形.(第14题图)三、挑战你的技能(共30分)15.(7分)如图所示,平分,平分,.请判断直线、的位置关系,并给出理由.ABC∆5==ACAB BC335794:3:2cm36cmABC∆AD ABD∆ACD∆1∠P ON P ON︒=∠30AON=∠A AOP∆BE ABD∠DE BDC∠︒=∠+∠9021AB CDABD C(第12题图)BACFEDBA C16.(4分)有人说,自己步子大,一步能走三米多,你相信吗?写出理由.17.(7分)如图所示,一块模板中要求、的延长线相交成角,因交点不在模板上,不便测量,测得,此时,、的延长线相交成的角是否符合规定?请说明理由.18.(12分)如图,在中: (1)画出边上的高和中线(2)若 求和的度数。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。

第十一章-三角形》单元测试卷含答案(共5套)

第十一章-三角形》单元测试卷含答案(共5套)

第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。

2.3.6.B。

2.4.6C。

2.2.4.D。

6、6、62.如图, 图中∠1的大小等于()A。

40°。

B。

50°。

C。

60°。

D。

70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。

7.B。

8.C。

9.D。

104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。

76°。

B。

81°。

C。

92°。

D。

104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。

1个。

B。

2个。

C。

3个。

D。

4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。

180°。

B。

360°。

C。

540°。

D。

720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。

10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。

若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。

11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。

若△DEF的面积是1cm², 则S△ABC=3cm²。

12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。

如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章 解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)

第2章解直角三角形数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、方程,则锐角=()A.30°B.45°C.60°D.无法确定2、如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5 .若用科学计算器求边AC的长,则下列按键顺序正确的是()A. B.C. D.3、如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=nB.x=m+nC.x>m+nD.x 2=m 2+n 24、如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,AB=8,则tan∠ACB的值等于()A. B. C. D.5、如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A. B. C. D.6、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要 ( )A.450a元B.225a元C.150a元D.300a元7、cos30°=()A. B. C. D.8、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A.2个B.3个C.4个D.5个9、如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A.15B.30C.45D.6010、如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+ )kmC.2 kmD.(4﹣)km11、三角形在正方形网格纸中的位置如图所示,则cosα的值是()A. B. C. D.12、等于()A. B. C. D.13、如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3 kmB.3 kmC.4 kmD.(3 ﹣3)km14、如图,⊙O是△ABC的外接圆,弦AC的长为3,sinB= ,则⊙O的半径为().A.4B.2.5C.2D.15、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.()米B.()米C.()米 D.()米二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为________.17、如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.18、如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案

高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。

(完整版)解三角形单元测试题(附答案)

(完整版)解三角形单元测试题(附答案)

解三角形单元测试题6、 A ABC 中,已知ax, b 2, B60°,如果△ ABC 两组解,则 x 的取值范围()A • x 2B• x 2C • 2 x\3D • 2x \3337、已知△ ABC 的面积为3 2且b 2,c3,则/ A 等于()A • 30°B • 30° 或 150 °C • 60°D • 60° 或 120°&甲船在岛B 的正南方A 处,AB = 10千米,甲船以每小时 4千米的速度向正北航行, 同时乙船自B 出发以每小时6千米的速度向北偏东 60。

的方向驶去,当甲,乙两船相距 最近时,它们所航行的时间是()15015A-50分钟 B •二分钟 C • 21.5分钟 D • 2.15分钟779、飞机沿水平方向飞行,在A 处测得正前下方地面目标 C 得俯角为30°,向前飞行10000 米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的水平距离为 ( )A • 5000 米B • 5000、2 米C • 4000 米D • 4000 • 2 米10、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是(、填空题11、在厶 ABC 中,若/ A: / B: / C=1:2:3,1、在厶ABC 中, a = 3, b = .. 7 , c = 2,那么 B 等于() D • 120°A • 30 °B• 45°C •60°2、在厶ABC 中, a = 10, B=60 ° ,C=45° ,则 c 等于( )A . 10 、3B • 10 ,3 1 C• ,3 1 D • 10'.. 33、 在厶ABC 中, a = 2 . 3 ,b = 2 . 2 , B = :45°,贝U A 等于()A • 30°B • 60°C • 30 ° 或 120 °D •30° 或150 °4、在厶ABC 中, 已知a 2 2 2b c bc ,则角A 为( )2亠2 A •B ——CD •或——363335、在厶ABC 中, 已知 2sin AcosB sinC ,那么△ ABC.宀曰疋疋( )、选择题:B •等腰三角形 C •等腰直角三角形A •直角三角形 D •正三角形 C • 0 x -.5 D •. 13 x 5则 a : b: c _______12、在厶ABC 中,a 3、3,C _______ 2, B 150。

三角形测试卷含答案

三角形测试卷含答案

1、2、3、4、5、6、7、第11、选择题(共10小题,每小题至少有两边相等的三角形是(A .等边三角形C •等腰直角三角形下列图形具有稳定性的是(如图,/仁55°,A./3=108 °章《三角形》单元测试卷(满分120分,限时120分钟)3分,共30分))B .等腰三角形D .锐角三角形)则/ 2的度数为(°C. 54 D. 55°10、如图,AD是厶ABC的角平分线,点O在AD上,且OE丄BC于点E,/ BAC=60 ° / C=80 ° 则/ EOD的度数为()A .20°、填空题(共B.30°C. 10 D . 156小题,每小题3分,共18 分)11、已知三角形的两边长分别为3和6,那么第三边长的取值范围是12、如图,AD丄BC于D,那么图中以AD为高的三角形有_________ 个.三角形一边上的中线把原三角形分成两个(B、面积相等的三角形D、周长相等的三角形)A、形状相同的三角形C、直角三角形下列说法不正确的是(A .三角形的中线在三角形的内部B .三角形的角平分线在三角形的内部C •三角形的高在三角形的内部D.三角形必有下列长度的三根小木棒能构成三角形的是()A . 2cm, 3cm, 5cm B. 7cm, 4cm, 2cmC. 3cm, 4cm, 8cmD. 3cm, 3cm, 4cm已知△ ABC中,/ A=20 ° / B= / C,那么三角形△A .锐角三角形B .直角三角形试通过画图来判定,下列说法正确的是(A .一个直角三角形一定不是等腰三角形C .一个钝角三角形一定不是等腰三角形D为垂足,ABC 是(钝角三角形高线在三角形的内部D •正三角形13、如图,△ ABC中,/ ACB >90° AD丄BC,BE丄AC,CF丄AB,垂足分别为D、E、F,则线段是厶ABC中AC边上的高.9、A. 35° B .55°B •一个等腰三角形一定不是锐角三角形D .一个等边三角形一定不是钝角三角形/ C=55 °则/ ABC的度数是()14、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_________15、十边形的外角和是________ °16、若三角形的周长是60cm,且三条边的比为3: 4: 5,则三边长分别为__________________三、解答题(共8题,共72分)17、(本题8分)求正六边形的每个外角的度数.C. 60° D .70°18、(本题8分)如图,一个六边形木框显然不具有稳定性,要把它固定下来,至少要钉上几根木条,请画出相应木条所在线段. AF22、(本题10分)如图,在△ ABC中,AD是BC边上的中线,△ ADC的周长比厶ABD的周长多5cm, AB与AC的和为11cm,求AC的长.共有_____ 个三角形.(2)按上面的方法继续下去,第n个图形中有__________ 个三角形(用n的代数式表示结论)23、(本题10分)如图,在△ ABC中,/ ABC=66 ° / ACB=54 ° BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求/ ABE、/ ACF和/ BHC的度数.20、(本题8 分)已知:如图,/ B=42° / A+10° = Z 1,Z ACD=64°求证:AB // CD。

人教版八年级上《第11章三角形》单元提升试卷((有答案))(数学)

人教版八年级上《第11章三角形》单元提升试卷((有答案))(数学)

《三角形》单元测试卷第Ⅰ卷(选择题)一.选择题(共12小题)1.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有()个.A.1 B.2 C.3 D.42.如图,∠C=25°,∠AED=150°,则∠CDE为()A.100°B.115°C.125°D.155°3.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.4.如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8° C.6° D.3°5.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°6.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°7.三角形的三边长分别为5,8,x,则最长边x的取值范围是()A.3<x<8 B.5<x<13 C.3<x<13 D.8<x<138.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110°D.40°9.三角形的周长小于13,且各边长为互不相等的整数,则这样的三角形共有()A.2个B.3个C.4个D.5个10.两本书按如图所示方式叠放在一起,则图中相等的角是()A.∠1与∠2 B.∠2与∠3 C.∠1与∠3 D.三个角都相等11.如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个B.4个C.6个D.7个12.如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线CA2是∠A1CD的角平分线,BA3是A2BD∠的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2013为()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共4小题)13.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC= .14.如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对.16.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为.三.解答题(共6小题)17.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.18.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E= .19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.21.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.22.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.参考答案与试题解析一.选择题(共12小题)1.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有()个.A.1 B.2 C.3 D.4【解答】解::①有两个内角分别为55°和25°的三角形一定是钝角三角形;正确,符合题意,②直角三角形中两锐角之和为90°;正确,符合题意;③三角形的三个内角中至少有两个锐角;正确,符合题意;④三条高不相交的三角形一定是钝角三角形;正确,符合题意;故选:D.2.如图,∠C=25°,∠AED=150°,则∠CDE为()A.100°B.115°C.125°D.155°【解答】解:∵∠AED=∠C+∠ADE,又∵∠C=25°,∠AED=150°,∴∠CDE=150°﹣25°=125°,故选:C.3.已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是()A.1<x<B.C.D.【解答】解:首先要能组成三角形,易得 1<x<5下面求该三角形为直角三角形的边长情况(此为临界情况),显然长度为2的边对应的角必为锐角(2<3,短边对小角)则只要考虑3或者x为斜边的情况.3为斜边时,由勾股定理,22+x 2=32,得x=√5 作出图形,固定2边,旋转3边易知当1<x <√5 时,该三角形是以3为最大边的钝角三角形;x 为斜边时,由勾股定理,22+32=x 2,得x=√13,同样作图可得 当√13<x <5时,该三角形是以x 为最大边的钝角三角形.综上可知,当√5<x <√13 时,原三角形为锐角三角形. 故选:B .4.如图△ABC 中,∠A=96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于点A 5,则∠A 5的度数为( )A .19.2°B .8°C .6°D .3°【解答】解:∵∠ABC 与∠ACD 的平分线相交于点A 1,∴∠ABC=2∠A 1BC ,∠A 1CD=∠ACD根据三角形的外角的性质得,∠A 1CD=(∠ABC+∠A )=(2∠A 1BC+∠A )=∠A 1BC+∠A , 根据三角形的外角的性质得,∠A 1CD=∠A 1BC+∠A 1,∴∠A 1=∠A同理:∠A 2=∠A 1,∴∠A 2=∠A 1=×∠A=∠A同理:∠A 3=∠A∠A 4=∠A ,∠A 5=∠A=×96°=3°,故选:D.5.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.6.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°【解答】解:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD﹣∠ABD=60°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°﹣(∠ACD﹣∠ABD)=20°.故选:B.7.三角形的三边长分别为5,8,x,则最长边x的取值范围是()A.3<x<8 B.5<x<13 C.3<x<13 D.8<x<13【解答】解:∵5+8=13,8﹣5=3,∴3<x<13,又∵x是三角形中最长的边,∴8<x<13.故选:D.8.如图, OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110°D.40°【解答】解:因为OB、OC是∠ABC、∠ACB的角平分线,所以∠ABO=∠CBO,∠ACO=∠BCO,所以∠ABO+∠ACO=∠CBO+∠BCO=180°﹣120°=60°,所以∠ABC+∠ACB=60°×2=120°,于是∠A=180°﹣120°=60°.故选:A.9.三角形的周长小于13,且各边长为互不相等的整数,则这样的三角形共有()A.2个B.3个C.4个D.5个【解答】解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过5;所有的情况有:1、1、1;1、2、2;1、3、3;1、4、4;1、5、5;2、2、2;2、2、3;2、3、3;2、3、4;2、4、4;2、4、5;2、5、5;3、3、3;3、3、4;3、3、5;3、4、4;3、4、5;4、4、4,再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选:B.10.两本书按如图所示方式叠放在一起,则图中相等的角是()A.∠1与∠2 B.∠2与∠3 C.∠1与∠3 D.三个角都相等【解答】解:在直角△DEF与直角△FMP中,∠E=∠M=90°,∠5=∠MFP,∴∠4=∠FPM,∴∠2=∠3;同理易证∠ANB=∠CAE,而∠CAE与∠4不一定相等.因而∠1与∠3不一定相等.故图中相等的角是∠2与∠3.故选:B.11.如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个B.4个C.6个D.7个【解答】解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选:C.12.如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是∠A 1BD 的角平分线CA 2是∠A 1CD 的角平分线,BA 3是A 2BD ∠的角平分线,CA 3是∠A 2CD 的角平分线,若∠A 1=α,则∠A 2013为( )A .B .C .D . 【解答】解:∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,又∵∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,∴(∠A+∠ABC )=∠ABC+∠A 1,∴∠A 1=∠A ,∵∠A 1=α.同理理可得∠A 2=∠A 1=α则∠A 2013=.故选:D .二.填空题(共4小题)13.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.14.如图,已知Rt△ABC中,∠C=90°,∠A=30°,AC=6.沿DE折叠,使得点A与点B重合,则折痕DE的长为 2 .【解答】解:由题意可得,BE平分∠ABC,DE=CE又∠A=30°,AC=6可得DE=AE∴DE=(6﹣DE)则DE=2.故答案为2.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有 3 对.【解答】解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故答案为:3.16.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为n (n+1).【解答】解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).故答案为:n(n+1).三.解答题(共6小题)17.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 50 度,∠P= 115 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.【解答】解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.18.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E= 54°.【解答】解:(1)结论:BE⊥DF.理由:如图1中,延长BE交FD的延长线于H.∵∠A=∠C=90°,∴∠ABC+∠AD C=180°,∵∠ADC+∠CDN=180°,∴∠ABC=∠CDN,∵∠ABE=∠ABC,∠FDN=∠EDH=∠CDN,∴∠ABE=∠EDH,∵∠ABE+∠AEB=90°,∠AEB=∠DEH,∴∠DEH+∠EDH=90°,∴∠H=90°,即BE⊥DF.(2)结论:DE∥BF.理由:如图2中,连接BD.∵∠ABC+∠ADC=180°,∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=∠MBC,∠CDN=CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CB F+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF.(3)如图3中,∵∠MBE+∠CDN=180°,∴∠CDE+∠CBE=(∠MBE+∠CDN)=36°,∵∠DCB=∠E+∠CBE+∠CDE,∴∠E=90°﹣36°=54°.故答案为54°.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠C FE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.21.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.22.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.。

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解三角形》单元测试卷一、选择题1.己知三角形三边之比为5:7:8,则最大角与最小角的和为()A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是()A.a:b=∠A:∠B B.a:b=sinA:sinB C.a:b=sinB:sinA D.a sinA=bsinB3.若三角形的三个内角之比为1:2:3,则它们所对的边长之比为()A.1:2:3 B.1::2 C.1:4:9 D.1::4.在△ABC中,()A.B.C.或D.以上都不对5.已知△ABC中,∠A=60°,a=,b=4,那么满足条件的△ABC的形状大小()A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2﹣c2<0,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能7.在△ABC中,b=,c=3,B=30°,则a等于()A.B.12C.或2D.28.(2004•贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,a+c=2b,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.9.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为()A.60米B.60米C.60米或60米D.30米二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b=_________.12.在△ABC中,∠A=105°,∠B=45°,c=,则b=_________.13.在△ABC中,A=60°,a=3,则=_________.14.在△ABC中,若a2+b2<c2,且sin C=,则∠C=_________.15.平行四边形ABCD中,AB=4,AC=4,∠BAC=45°,那么AD=_________.16.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值=_________.三、解答题17.已知在△ABC中,,求角C.18.在△ABC中,已知,c=1,B=60°,求a,A,C.19.根据所给条件,判断△ABC的形状.(1)acosA=bcosB;(2)==.20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b=4,a+c=8,求a,c的长.21.在△ABC中,边a,b,c的对角分别为A.B、C,且sin2A+sin2C-sinA•sinC=sin2B(1)求角B的值;(2)求2cos2A+cos(A-C)的范围.22.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若cos B cos C−sin B sin C=1/2 (Ⅰ)求A;(Ⅱ)若△ABC的面积.《解三角形》单元测试卷参考答案与试题解析一、选择题1.己知三角形三边之比为5:7:8,则最大角与最小角的和为()A.90°B.120°C.135°D.150°考点:余弦定理;两角和与差的正弦函数.专题:解三角形.分析:设最小边为5,则三角形的三边分别为5,7,8,设边长为7的边对应的角为θ,则由余弦定理可得cosθ的值,从而求得θ的值,则最大角与最小角的和为180°﹣θ.解答:解:设最小边为5,则三角形的三边分别为5,7,8,设边长为7的边对应的角为θ,则由余弦定理可得49=25+64﹣80cosθ,解得cosθ=,∴θ=60°,则最大角与最小角的和为180°﹣60°=120°,故选B.点评:本题主要考查余弦定理的应用,根据三角函数的值求角,体现了转化的数学思想,属于中档题.2.在△ABC中,下列等式正确的是()A.a:b=∠A:∠B B.a:b=sinA:sinB C.a:b=sinB:sinA D.a sinA=bsinB解答:解:在三角形BAC中,由正弦定理可得a:b=sinA:sinB,故选B.3.若三角形的三个内角之比为1:2:3,则它们所对的边长之比为()A.1:2:3 B.1::2 C.1:4:9 D.1::B4.在△ABC 中,()A.B.C.或D.以上都不对考点:正弦定理.专题:计算题.分析:由a,b及cosA的值,利用余弦定理即可列出关于c的一元二次方程,求出方程的解即可得到c 的值.解答:解:由,利用余弦定理得:=+c2﹣2c ×,即c2﹣3c+10=0,因式分解得:(c﹣2)(c ﹣)=0,解得:c=2或.故选C点评:此题考查学生灵活运用余弦定理及特殊角的三角函数值化简求值,是一道基础题.5.已知△ABC中,∠A=60°,a=,b=4,那么满足条件的△ABC的形状大小()A.有一种情形B.有两种情形C.不可求出D.有三种以上情形考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得=,解得sinB=>1,可得B不存在,从而得出结论.解答:解:已知△ABC中,∠A=60°,a=,b=4,那么由正弦定理可得=,解得sinB=>1,故B不存在,故选C.点评:本题主要考查正弦定理的应用,正弦函数的值域,属于中档题.6.在△ABC中,若a2+b2﹣c2<0,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能考点:三角形的形状判断.专题:计算题.分析:利用余弦定理cosC=即可判断.解答:解:∵在△ABC中,a2+b2﹣c2<0,∴cosC=<0,∴<C<π.∴△ABC是钝角三角形.故选A.点评:本题考查三角形的形状判断,考查余弦定理的应用,属于基础题.7.在△ABC中,b=,c=3,B=30°,则a等于()A.B.12C.或2D.2考点:余弦定理;正弦定理.专题:计算题.分析:由B的度数求出cosB的值,再由b与c的值,利用余弦定理列出关于a的方程,求出方程的解即可得到a的值.解答:解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB得:()2=a2+32﹣3a,整理得:a2﹣3a+6=0,即(a﹣)(a﹣2)=0,解得:a=或a=2,则a=或2.故选C点评:此题考查了余弦定理,以及特殊角的三角函数值,余弦定理很好的建立了三角形的边角关系,熟练掌握余弦定理是解本题的关键.本题a有两解,注意不要漏解.8.(2004•贵州)△ABC中,a,b、c分别为∠A、∠B、∠C的对边,如果a,b、c成等差数列,a+c=2b,∠B=30°,△ABC的面积为,那么b等于()A.B.C.D.考点:解三角形.专题:计算题;压轴题.分析:先根据等差中项的性质可求得2b=a+c,两边平方求得a,b和c的关系式,利用三角形面积公式求得ac的值,进而把a,b和c的关系式代入余弦定理求得b的值.解答:解:∵a,b、c成等差数列,∴2b=a+c,得a2+c2=4b2﹣2ac、又∵△ABC的面积为,∠B=30°,故由,得ac=6.∴a2+c2=4b2﹣12.由余弦定理,得,解得.又b为边长,∴.故选B点评:本题主要考查了余弦定理的运用.考查了学生分析问题和基本的运算能力.9.(2010•武昌区模拟)某人朝正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好,那么x的值为()A.2或B.2C.D.3考点:解三角形的实际应用.专题:计算题.分析:作出图象,三点之间正好组成了一个知两边与一角的三角形,由余弦定理建立关于x的方程即可求得x的值.解答:解:如图,AB=x,BC=3,AC=,∠ABC=30°.由余弦定理得3=x2+9﹣2×3×x×cos30°.解得x=2或x=故选A.点评:考查解三角形的知识,其特点从应用题中抽象出三角形.根据数据特点选择合适的定理建立方程求解.10.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为()A.60米B.60米C.60米或60米D.30米考点:解三角形的实际应用.专题:解三角形.分析:作出符合题意的图形,利用三角函数及勾股定理,即可求得结论.解答:解:如图所示,设电视塔的高度CD=h,∠CAD=45°,∠CBD=60°,∠ADB=90°,AB=120米,则AD=h,BD=h,在Rt△ABD中,∵BD2+AD2=AB2,∴∴h=60米故选A.点评:本题考查学生利用数学知识解决实际问题,考查方位角,考查学生的计算能力,属于中档题.二、填空题11.在△ABC中,∠A=45°,∠B=60°,a=10,b=5.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得,由此求得b的值.解答:解:在△ABC中,∵∠A=45°,∠B=60°,a=10,则由正弦定理可得,即,解得b=5,故答案为5.点评:本题主要考查正弦定理的应用,属于中档题.12.在△ABC中,∠A=105°,∠B=45°,c=,则b=2.考点:正弦定理.专题:解三角形.分析:利用三角形内角和公式求得角C的值,再利用正弦定理求得c的值.解答:解:∵在△ABC中,∠A=105°,∠B=45°,∴∠C=180°﹣A﹣B=30°.再由c=,利用正弦定理可得,即,解得c=2,故答案为2.点评:本题主要考查三角形内角和公式、正弦定理的应用,属于中档题.13.在△ABC中,A=60°,a=3,则=.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:由A的度数求出sinA的值,利用正弦定理表示出比例式,再由a的值及求出的sinA,算出比例式的比值,根据比例的性质即可得到所求式子的值.解答:解:由A=60°,a=3,根据正弦定理得:==2,则=2.故答案为:2点评:此题考查了正弦定理,特殊角的三角函数值,以及比例的性质,熟练掌握正弦定理是解本题的关键.14.在△ABC中,若a2+b2<c2,且sin C=,则∠C=.考点:余弦定理.专题:计算题.分析:直接利用勾股定理,判断三角形的形状,通过sin C=,求出∠C的值.解答:解:因为在△ABC中,若a2+b2<c2,所以三角形是钝角三角形,∠C>90°,又sin C=,所以∠C=.故答案为:.点评:本题是基础题,考查三角形的有关计算,勾股定理、余弦定理的应用,考查计算能力.15.平行四边形ABCD中,AB=4,AC=4,∠BAC=45°,那么AD=4.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:在△ABC中利用余弦定理,算出BC=4,再由平行四边形边的性质可得AD=BC=4.解答:解:∵△ABC中,AB=4,AC=4,∠BAC=45°,∴根据余弦定理,得BC2=AB2+AC2﹣2AB•ACcos45°=96+48﹣2×××=48∴BC=4∵四边形ABCD是平行四边形,∴AD=BC=4故答案为:4点评:本题给出平行四边形的对角线和一边之长,再已知对角线与边的夹角的情况下求平行四边形的另一边长.着重考查了平行四边形的性质和余弦定理等知识,属于基础题.16.在△ABC中,若sinA:sinB:sinC=2:3:4,则最大角的余弦值=﹣.考点:余弦定理.专题:计算题;解三角形.分析:根据题意结合正弦定理得a:b:c=2:3:4.设a=2k,b=3k,c=3k,利用余弦定理求出cosC之值,即得最大角的余弦值解答:解:∵△ABC中,sinA:sinB:sinC=2:3:4,∴根据正弦定理,得a:b:c=2:3:4,可得c为最大边,角C是最大角设a=2k,b=3k,c=3k(k>0)∴cosC===﹣即最大角的余弦值为﹣故答案为:﹣点评:本题给出△ABC的三个内角的正弦之比,求最大角的余弦值.着重考查了利用正、余弦定理解三角形的知识,属于基础题.三、解答题17.已知在△ABC中,,求角C.考点:正弦定理.专题:计算题;解三角形.分析:由正弦定理可得,把已知可求sinC,进而可求C解答:解:∵由正弦定理可得∴sinC===∴C=60°或120°点评:本题主要考查了正弦定理的简单应用,属于基础试题18.在△ABC中,已知,c=1,B=60°,求a,A,C.考点:解三角形;正弦定理.专题:计算题.分析:由B的度数求出sinB的值,再由b与c的值,利用正弦定理求出sinC的值,再由c小于b,根据大角对大边可得C小于B,由B的度数可得C的范围,进而利用特殊角的三角函数值即可求出C的度数,由B和C的度数,利用三角形的内角和定理求出A的度数,发现A为直角,故由b和c的长,利用勾股定理即可求出a的长.解答:解:∵,c=1,B=60°,由正弦定理得:,又c<b,∴C=30°;…(6分)∴A=180°﹣B﹣C=90°;…(8分)∴△ABC为直角三角形,又b=,c=1,∴根据勾股定理得:.…(11分)点评:此题属于解三角形的题型,涉及的知识有:正弦定理,三角形的内角和定理,勾股定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.19.根据所给条件,判断△ABC的形状.(1)acosA=bcosB;(2)==.考点:三角形的形状判断.专题:解三角形.分析:(1)△ABC中,由条件利用正弦定理可得sinAcosA=sinBcosB,故有sin2A=sin2B,可得2A=2B,或2A+2B=π,即A=B,或A+B=.由此可得,△ABC的形状.(2)△ABC中,由条件利用正弦定理可得,即tanA=tanB=tanC,故有A=B=C,由此可得结论.解答:解:(1)△ABC中,∵acosA=bcosB,由正弦定理可得sinAcosA=sinBcosB,故有sin2A=sin2B,∴2A=2B,或2A+2B=π,即A=B或A+B=.若A=B,△ABC为等腰三角形;若A+B=,则可得C=,△ABC为直角三角形.综上可得,△ABC为等腰三角形或直角三角形.(2)△ABC中,∵==,则由正弦定理可得,即tanA=tanB=tanC,∴A=B=C,故△ABC为等边三角形.点评:本题主要考查正弦定理的应用,判断三角形的形状,属于中档题.20.△ABC中,己知∠A>∠B>∠C,且∠A=2∠C,b=4,a+c=8,求a,c的长.考点:余弦定理;正弦定理.专题:计算题;解三角形.分析:根据正弦定理得=,结合已经条件算出sin2C+sinC=2sin3C,利用两角和的正弦公式和二倍角公式化简整理,得8cos2C﹣2cosC﹣3=0,解出锐角C的余弦值为.最后利用余弦定理建立关系式,结合a+c=8即可解出边a、c的长.解答:解:根据正弦定理==,得=∵b=4,a+c=8,∠A=2∠C,∴=,可得sin2C+sinC=2sin(π﹣3C)=2sin3C∵sin2C=2sinCcosC,sin3C=sin(2C+C)=sin2CcosC+cos2CsinC=2sinCcos2C+sinC(2cos2C﹣1)∴2sinCcosC+sinC=2[2sinCcos2C+sinC(2cos2C﹣1)]结合sinC>0,化简整理得:8cos2C﹣2cosC﹣3=0,解之得cosC=或cosC=﹣∵∠A >∠B >∠C ,得C 为锐角,∴cosC=﹣不符合题意,舍去根据余弦定理,得cosC==, ∴=,解之得a=,c=8﹣a= 综上,a 、c 的长分别为、. 点评: 本题给出△ABC 的最大角等于最小角的2倍,最大边与最小边之和等于第三边的2倍,求边a 、c的长.着重考查了三角恒等变换和利用正余弦定理解三角形的知识,属于中档题.21.(1)B=3(2)(0,2] 22(1)120度.(2)S=3。

相关文档
最新文档