半导体物理第七章总结复习_北邮分析
(完整word版)半导体物理知识点总结.doc
![(完整word版)半导体物理知识点总结.doc](https://img.taocdn.com/s3/m/aa440b6a67ec102de2bd8972.png)
一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理第7章概要
![半导体物理第7章概要](https://img.taocdn.com/s3/m/2c2968688e9951e79b89277d.png)
加反向电压时,势垒增高,从半导体到金属的电子数目 减少,金属到半导体的电子流占优势,形成一股半导体 到金属的反向电流。 由于金属中的电子要越过相当高的势垒才能到达半导体 中,因此反向电流是很小的。 金属一边的势垒不随外加电压变化,所以从金属到半导 体的电子流是恒定的。 当反向电压提高,使半导体到金属的电子流可以忽略不 计时,反向电流趋于饱和。 以上的讨论说明这样的阻挡层具有类似pn结的伏—安特 性,即有整流作用
功函数越大,电子越不容易离开金属。 金属的功函数约为几个电子伏特。 铯的功函数最低,为1.93eV 铂的最高.为5.36eV。
功函数的值与表面状况有关
金属功函数随原子序数的递增呈现周期性变化。
半导体功函数
半导体功函数
Ws E0 ( EF ) s 电子亲合能,它表示要使半导体导带底的电子逸 出体外所需要的最小能量。
1 * 2 E E c mn v 2 * dE mn vdv
带入上式,并利用 Ec E F n0 N c exp( ) k 0T
可得
* * 2 3 mn m nv 2 2 dn 4n0 ( ) v exp( )dv 2k 0T 2k 0T
7.2.2热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势垒 宽度。
起决定作用的是势垒高度而不是势垒宽度。
电流的计算归结为超越势垒的载流子数目。
由于越过势垒的电子数只占半导体总电子数很 少一部分,故半导体内的电子浓度可以视为常 数。 讨论非简并半导体的情况。
半导体单位体积能量在E~E+dE范围内的电子数
但绝大多数所处的能级都低于体外能级。要使电子从金 属中逸出,必须由外界给它以足够的能量
半导体物理学期末总复习
![半导体物理学期末总复习](https://img.taocdn.com/s3/m/df1d3479bb68a98270fefa50.png)
与理想情况的偏离的原因
理论分析认为,杂质和缺陷的存在使得 原本周期性排列的原子所产生的周期性 势场受到破坏,并在禁带中引入了能级, 允许电子在禁带中存在,从而使半导体 的性质发生改变。
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
电子占据或基本上是空的一
个标志
玻尔兹曼分布函数
当E EF
所以
k0T
时,由于
exp(
E EF k0T
)
1 exp( E EF ) exp( E EF )
k0T
k0T
费米分布函数转化为
1,
fB
(E)
exp(
E EF k0T
)
exp( EF k0T
)
exp(
E k0T
ED
As
N型半导体
施主能级
EC ED
EV
半导体的掺杂
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
B
P型半导体
EA
受主能级
EC
EA EV
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受主和施主杂 质,它们在禁带中引入了能级;受主能级比价带顶 高 E,A 施主能级比导带底低 ED ,均为浅能级,这两 种杂质称为浅能级杂质。
考虑电子的自旋情况,电子的允许量子态密度
为V (/ 4 3),每个量子态最多只能容纳一个电子。
kx
2
nx L
(nx
半导体物理学第七章知识点
![半导体物理学第七章知识点](https://img.taocdn.com/s3/m/ecd7c70027d3240c8547ef0d.png)
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
(最新整理)半导体物理知识点及重点习题总结
![(最新整理)半导体物理知识点及重点习题总结](https://img.taocdn.com/s3/m/3775a923770bf78a6429542f.png)
半导体物理知识点及重点习题总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(半导体物理知识点及重点习题总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为半导体物理知识点及重点习题总结的全部内容。
基本概念题:第一章半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多.1.2能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法.答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程.通过该方程和周期性边界条件最终给出E—k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E—k关系而提出的一维晶体的势场分布模型,如下图所示在频率为时便观测到共振吸收现象。
1。
6 直接带隙材料如果晶体材料的导带底和价带顶在k空间处于相同的位置,则本征跃迁属直接跃迁,这样的材料即是所谓的直接带隙材料。
1。
6 间接带隙材料如果半导体的导带底与价带顶在k空间中处于不同位置,则价带顶的电子吸收能量刚好达到导带底时准动量还需要相应的变化第二章半导体杂质和缺陷能级2。
半导体物理_复习总结(刘恩科)
![半导体物理_复习总结(刘恩科)](https://img.taocdn.com/s3/m/f3960e31964bcf84b8d57b00.png)
半导体物理
准费米能级
当半导体处于非平衡状态,不再具有统一的费米能 级,引入准费米能级
非平衡态下电子浓度:
n
ni
exp
Ei EFn k0T Βιβλιοθήκη 非平衡态下空穴浓度:p
ni
exp
Ei EFp k0T
以及其他大量电子的平均势场中运动,这个势场也是周期变化的, 并且它的周期与晶格周期相同。
半导体物理
半导体中的电子运动
半导体中E(k)与k的关系
电子速度与能量关系
电子有效质量
mn*
h2 d2E
dk 2
半导体物理
有效质量的意义:
f
a
1、概括了半导体内部势场 的作用 2、a是半导体内部势场和 外电场作用的综合效果 3、直接将外力与电子加速 度联系起来
(1) VG<0,多子积累 •绝对值较大时,,空穴聚集表面, C=C0,AB段(半导体看成导通) •绝对值较小时,C0和Cs串联,C随 V增加而减小,BC段 (2)VG=0 CFB-表面平带电容 (3) VG>0 •耗尽状态:VG增加,xd增大,Cs减小,CD段 •Vs>2VB时: EF段(低频)强反型,电子聚集表面, C=C0 GH段(高频):反型层中电子数量不能随高频信号而变,对电容无贡献, 还是由耗尽层的电荷变化决定(强反型达到xdm不随VG变化,电容保持最小 值);GH段
玻尔兹曼分布函数
条件:E-EF>>k0T EEF
fB E e k0T
费米统计分布:受到泡利不相容原理限制 玻尔兹曼分布:泡利原理不起作用
半导体物理复习资料全
![半导体物理复习资料全](https://img.taocdn.com/s3/m/fbdc1b22c1c708a1294a44aa.png)
第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
半导体物理学第七章知识点
![半导体物理学第七章知识点](https://img.taocdn.com/s3/m/c61ef03bf524ccbff12184a1.png)
第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。
金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。
在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。
要使电子从金属中逸出,必须由外界给它以足够的能量。
所以,金属中的电子是在一个势阱中运动,如图7-1所示。
若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。
W M 越大,电子越不容易离开金属。
金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。
图7-2给出了表面清洁的金属的功函数。
图中可见,功函数随着原子序数的递增而周期性变化。
2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。
与金属不同,半导体中费米能级一般并不是电子的最高能量状态。
如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。
E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。
它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。
利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。
表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。
北京邮电大学 微电子学基础 半导体物理期末总复习
![北京邮电大学 微电子学基础 半导体物理期末总复习](https://img.taocdn.com/s3/m/4d27699fdaef5ef7ba0d3ce5.png)
微电子基础----总复习2012-12说明:重点总结的请以复习课上为准。
另有答疑时间安排。
以下内容为部分重要的概念供参考。
第1章. 半导体的晶体结构和缺陷概念:晶体和非晶体金刚石结构和闪锌矿结构能带有效质量空穴本征点缺陷代位式杂质间隙式杂质第2章. 半导体中的电子状态2.1.半导体中的电子状态和能带2.1.1.电子的共有化运动2.1.2.允带与禁带2.2.外力作用下的电子运动—---有效质量2.3.导体,半导体,绝缘体2.4.空穴2.5.杂质和缺陷能级2.5.1.施主能级和受主能级2.5.2.浅能级杂质2.5.3.深能级杂质⏹能带图⏹施主,N型半导体⏹受主P型半导体⏹杂质能级,浅能级深能级⏹杂质补偿⏹复合中心第3章. 平衡载流子浓度3.1.态密度3.2.费米分布和玻尔兹曼分布3.3.非简并半导体的载流子浓度◆费米分布函数和波尔兹曼函数公式:◆简并半导体和非简并半导体◆费米能级◆热平衡下,非简并半导体载流子浓度公式:◆热平衡下,本征半导体载流子浓度公式◆热平衡下,非简并半导体载流子浓度积:◆半导体的整体电中性方程◆载流子浓度随温度的变化分析第4章. 弱场下的载流子输运4.1.载流子的散射和迁移率4.2.散射几率和迁移率4.3.半导体中的主要散射机构4.4.迁移率随杂质浓度和温度的变化图4.5.电导和电导率4.6.半导体的散射现象⏹电离杂质散射和晶格散射⏹迁移率⏹电导率(电阻率)公式及各情况:⏹本征:⏹N型:⏹P型⏹补偿:⏹电阻率随温度的变化图第5章. 过剩载流子和载流子的复合5.1.过剩载流子及其寿命5.2.非平衡载流子的运动和空间分布5.3.复合过程与寿命的计算5.4.主要复合机理和实验结果⏹非平衡载流子⏹注入停止后,非平衡载流子浓度随时间衰减规律: ⏹寿命⏹复合几率⏹复合的种类:⏹复合中心理论及简化:⏹准费米能级,能带图:2⏹扩散定律⏹扩散长度⏹爱因斯坦关系⏹半导体器件的基本方程,连续性方程第6章. 同质PN结6.1.热平衡条件下的P-N结,能带图36.2.P-N结直流伏安特性:结论肖克莱方程6.3.P-N结电容:电荷,电场,电压,图,突变结6.4.P-N击穿:3机理特点比较⏹肖克莱方程:⏹简化情况:反向,单边突变结⏹突变结,缓变结⏹平衡PN结,接触电势差和势垒高度:⏹载流子浓度公式⏹PN结扩散流公式⏹简化:P+N结时⏹N+P结时⏹理想和实际的伏安比较和原因分析:(势垒产生流)⏹势垒电容和扩散电容⏹雪崩击穿和隧道击穿第7章. 表面电场效应与MOS物理7.1.半导体表面和硅-二氧化硅界面7.2.表面电场效应⏹表面态,界面态⏹表面势⏹表面积累层,耗尽层,反型层,等6个能带图,临界情况3个⏹表面耗尽层的厚度公式:⏹表面面电荷密度公式⏹表面强反型条件,表达式,费米势⏹硅—二氧化硅界面电荷●金属半导体接触:功函数,能带图●异质结:能带图,阻挡层和非阻挡层,整流效应和欧姆接触第8章. MOS场效应晶体管8.1.结构和分类,4个管子的综合大图:符号结构曲线等8.2.特性曲线⏹NMOS,PMOS, 增强型管,耗尽型管的转移特性曲线和输出特性曲线的区别,⏹NMOS输出特性曲线的分段讨论8.3.阈值电压表达式计算⏹NMOS管:⏹PMOS管:⏹增强型管和耗尽型管的掺杂措施和控制8.4.电流电压特性:电流表达式⏹非饱和区,线性区和非线性区⏹饱和区,临界饱和条件:3:沟道图,电压,电流式⏹考虑有效沟道长度调制效应的饱和漏极电流:2:现象描述和电流式⏹击穿区的讨论8.5.其他电参数⏹阈值电压⏹饱和漏极电流⏹导通电阻⏹穿通电压⏹跨导⏹导电因子和宽长比⏹渡越时间⏹增量电导定义,分段的表达式第9章. 双极型晶体管9.1. 双极型晶体管工作原理1,放大倍数:4个乘积项:发射效率,基区输运系数等4个……定义、表达式、影响因素,2,讨论从工艺制造上提高放大的措施9.2.直流特性和电流增益9.3.反向电流和击穿电压,基极电阻,符号和电路图9.4.频率特性,功率特性1,渡越时间表达式和分析:2,讨论从工艺制造上提高频率的措施。
半导体物理第七章总结复习_北邮
![半导体物理第七章总结复习_北邮](https://img.taocdn.com/s3/m/d676dcb10740be1e640e9a2e.png)
第七章一、基本概念1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。
金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。
3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws4. 半导体与金属平衡接触平衡电势差: q W W V sm D -=5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。
表面空间电荷区=阻挡层=势垒层6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。
半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。
电场从半导体指向金属。
取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。
【电子从功函数小的地方流向功函数大的地方】7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm<Ws )的MS 接触,电子从金属流向半导体,半导体表面带负电,金属表面带正电,电场方向指向半导体。
从半导体内到表面,能带下弯曲,半导体表面电子浓度比体内高(N 型反阻挡层)。
8.半导体表面势垒(肖特基势垒)高度:s m s D W W qV qV -=-=9.表面势垒宽度:10.半导体表面势: 取半导体体内为参考电位,半导体表面的势能Vs 。
11 .表面态: 在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。
表面态一般分为施主型和受主型两种。
若能级被电子占据时呈中性,施放电子后呈正电性,成为施主型表面态;若能级空着的时候为电中性,接收电子后带负电,则成为受主型表面态。
半导体物理总结-讲义
![半导体物理总结-讲义](https://img.taocdn.com/s3/m/f6baec6dae45b307e87101f69e3143323868f54e.png)
击穿
当外加电压过高时,会发生雪崩 击穿,导致电流急剧增加。
双极晶体管
发射极
01
空穴和电子从这里注入到基极。
基极
02
控制空穴和电子的流动,起到放大作用。
集电极
03
收集从基极流过的空穴和电子,形成输出电流。
场效应晶体管
源极
提供电子通道。
漏极
收集电子通道中的电子。
栅极
控制电子通道的开启和关闭。
集成电路
掺杂
通过向半导体中添加杂质元素,可 以改变半导体的载流子浓度,从而 改变其导电性能。
热学性质
01
02
03
热容
热容是描述物质吸收或释 放热量时温度变化的物理 量。
热膨胀
当温度升高时,半导体材 料的体积会膨胀。
热传导
热传导是热量在物质内部 传递的过程。
电学性质
电导率
电导率是描述物质导电能 力的物理量。
半导体物理与其他领域的交叉研究
生物学
将半导体物理与生物学结合,研究生物分子在半导体表面上的吸附、反应和传输过程,为生物传感器 和生物芯片提供技术支持。
医学
利用半导体物理原理和技术,研究医学影像、诊断和治疗技术,提高医学诊断和治疗的准确性和安全 性。
半导体物理在新能源领域的应用
太阳能电池
研究高效、低成本、长寿命的太阳能电 池,利用半导体物理原理提高光电转换 效率。
费米能级
费米能级是描述半导体中电子占据状态的参数,它决定了半导体的导电性能。
能带填充
在半导体中,价带被填满,导带是空的,这决定了半导体的导电性。
载流子类型与浓度
自由电子与空穴
在半导体中,价带中的电子获得 足够的能量后跃迁到导带,形成 自由电子;而在价带中留下一个
半导体物理第七章课件
![半导体物理第七章课件](https://img.taocdn.com/s3/m/46e7829b89eb172dec63b72f.png)
半导体器件物理
© Dr. B. Li
CTD分类
戽链器件-BBD(1969)
CTD 电荷耦合器件CCD 表面CCD-SCCD
(1970) 体内CCD-BCCD
(埋沟)
半导体器件物理
© Dr. B. Li
7.1 CCD工作原理
• 电荷耦合器件(Charge Coupled Device,简称 CCD):70年代初由美国贝尔实验室研制成功的一 种新型半导体器件。
Wm
( 后,再增加的VG主要降在SiO2层上,而s基 本不变,Wm基本不变。
❖反型层电子来源主要由耗尽层复合中心产生电子-空
穴对提供。强反型所需驰豫时间为:
半导体器件物理
© Dr. B. Li
2 ni
NA
❖用脉冲突然给栅极加上+VG(且VG >VT),耗尽层来 不及反型—非平衡状态。
© Dr. B. Li
7.2 CCD物理性能
一、信息处理能力(最大电荷容量) 1. 理想的最大信号容量(势阱消失的值)
QpACoVp AVp d11
1:SiO2介电常数 d1: SiO2厚度
当d1一定,提高Vp(VG)可提高Qp。但是提高Vp受两个限制: A)半导体雪崩击穿限制 B)SiO2层击穿电场的限制
❖ 电子势阱的物理模型:
表面处电势s 很高,电子静电势能(-qs)很低,形成电 子势阱。
对一定器件,耗尽层越宽,则电子势能值也越大,即势阱 越深。
随时间,产生的电子-空穴对,在电场作用下,电子被 扫向表面处形成反型层,空穴扫向内部填充(中和)固 定 电 荷 区 , 使 WWm , 即 势 阱 变 浅 。 s 2F(bulk),SiO2层分压。
半导体物理期末复习知识
![半导体物理期末复习知识](https://img.taocdn.com/s3/m/263a77138762caaedc33d44d.png)
一、半导体物理学基本概念有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。
其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。
空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。
回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。
施主-----在半导体中起施予电子作用的杂质。
受主-----在半导体中起接受电子作用的杂质。
杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。
n-型半导体------以电子为主要载流子的半导体。
p-型半导体------以空穴为主要载流子的半导体。
浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。
浅能级杂质对半导体的导电性质有较大的影响。
深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。
深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。
位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。
杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。
直接带隙-----半导体的导带底和价带顶位于k空间同一位置时称为直接带隙。
直接带隙材料中载流子跃迁几率较大。
间接带隙-----半导体的导带底和价带顶位于k空间不同位置时称为间接带隙。
间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。
平衡状态与非平衡状态-----半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级。
半导体物理学复习整理
![半导体物理学复习整理](https://img.taocdn.com/s3/m/d6929f2aba0d4a7303763a5f.png)
半导体物理学复习整理半导体物理复习整理――电子1402班郑彤杰第一单元1. 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因此,电子将可以在整个晶体中运动。
2. 单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场的中运动。
3. 能带论:用单电子近似法研究晶体中电子状态的理论称为能带论。
4. 有效质量:电子受到原子核的周期性势场(这个势场和晶格周期相同)以及其他电子势场综合作用的结果。
5. 禁带:能带结构中能量密度为0的能量区间。
常用来表示导带价带之间能量密度为0的能量区间。
6. 导带:对于被电子部分占满的能带,在外电场的作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用。
7. 满带:电子占据了一个能带中的所有状态,称该能带为满带. 8. 价带:最上面的一个满带称为价带。
9. 杂质缺陷:填隙式杂质、替位式杂质。
10. 本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对的纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
11. 本征激发:当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过程称为本征激发。
12. 施主杂质:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
N型半导体:主要依靠导带电子导电的半导体13. 受主杂质:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
P型半导体:主要依靠价带空穴导电的半导体14. 浅能级杂质:在半导体中,能够提供能量靠近导带的电子束缚态或能量接近价带的空穴束缚态的杂质称为浅能级杂质。
15. 深能级杂质:在半导体中,能够提供能量接近价带的电子束缚态或能量接近导带的空穴束缚态的杂质称为深能级杂质。
半导体物理学Chapter 7解析
![半导体物理学Chapter 7解析](https://img.taocdn.com/s3/m/3c864a5b551810a6f424863c.png)
exp[
qV (x)] k0T
qDn
d [n(x) exp( dx
qV (x))] k0T
在稳定情况下,J是一个与x无关的常数,从x=0到x=xd对上式积分,得
V (xd )
qN D
r0
x2 d
ns
n( xd
)
n0
Nc
exp(
qn
k0T
)
假定半导体是非简并的,并且体内浓度仍为平衡时的浓度n0。在x=0处,
Wm Ws
接触前,未平衡的能级
平衡状态的能级
q(Vs' Vm ) Wm Ws
Vms
Vm
Vs'
Ws
Wm q
接触电势差
紧密接触
忽略间隙
Ws
Wm q
Vms
Vs
qVD qVs Wm Ws
当 Vms 很小时,接触电势差绝大部分
落在空间电荷区。 金属一边的势垒高度是
qns qVD En Wm
半导体内电场为零,因而
E(xd ) dV dx xxd 0
金属费米能级除以-q作为电势零点,则有 V (0) ns
势垒区中
E(xd )
dV (x) dx
qN D
r0
(x
xd )
V (x)
qN D
r0
( xxd
1 2
x2)
ns
外加电压V于金属,则 V (xd ) (n V ),而ns n VD
施主型表面态
受主型表面态
表面态密度钉扎
7.2 金属半导体接触整流理论
外加电压对n型阻挡层的影响 (a)V=0 (b)V>0 (C)V<0 有外加电压时,若外加电压为正,势垒区高度下降
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
一、基本概念
1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。
金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差
2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。
3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws
4. 半导体与金属平衡接触平衡电势差: q W W V s
m D -=
5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。
表面空间电荷区=阻挡层=势垒层
6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。
半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。
电场从半导体指向金属。
取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。
【电子从功函数小的地方流向功函数大的地方】
7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm<Ws )的MS 接触,电子从金属流向半导体,半导体表面带负电,金属表面带正电,电场方向指向半导体。
从半导体内到表面,能带下弯曲,半导体表面电子浓度比体内高(N 型反阻挡层)。
8.半导体表面势垒(肖特基势垒)高度:
s m s D W W qV qV -=-=
9.表面势垒宽度:
10.半导体表面势: 取半导体体内为参考电位,半导体表面的势能Vs 。
11 .表面态: 在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。
表面态一般分为施主型和受主型两种。
若能级被电子占据时呈中性,施放电子后呈正电性,成为施主型表面态;若能级空着的时候为电中性,接收电子后带负电,则成为受主型表面态。
一般表面处存在一个距离价带顶为qf 的能级,电子刚好填满该能级以下所有表面态时呈电中性。
电子填充了该能级以上部分则表面带
负电,电子未填充满该能级以下的所有能级则表面带正电。
12.钉扎效应:若表面态密度高,金属半导体接触时,电子充入或放出表面态,半导体表面形成与体内符号相反的电荷、形成高度为2/3半导体禁带宽度的表面势垒,费米能级钉住在表面中性能级上。
半导体电子逸出到金属的势垒高度基本不变,与半导体掺杂浓度、金属功函数无关,只与表面中性能级位置有关。
功函数差产生的接触电势差大部分降落在金属表面与半导体表面之间,少部分降落在半导体表面势垒区。
13.施主型表面态: 电子占据时为电中性、无电子时带正电的表面态为施主型表面态。
14.受主型表面态: 无电子时为电中性,有电子时带负电的表面态为受主型表面态。
15.表面中性能级: 价带顶以上约1/3禁带宽度处的能级是表面中性能级。
16.表面态密度:
17.理想欧姆接触:非整流接触,不产生明显阻抗,不使半导体平衡载流子浓度发生显著改变,线性对称电流-电压关系。
18.接触电阻:
19.高低结: N+N 结或 P+P 结, 内建电场从高杂质浓度区指向低杂质浓度区。
20.肖特基势垒二极管:特点: <1>正向电流由半导体多子注入金属形成,注入电子在金属中不积累,直接漂移流走,高频特性好;<2>正向导通电压0.3V左右,比PN结二极管低;<3>制作工艺简单;<4>制作MS结构后,不能有高于金属-半导体合金温度的工艺;
21.MS肖特基模型: 当金属和半导体接触时,不考虑接触界面状态的影响,电子从功函数较小材料逸出到功函数较大材料,接触面附近两种材料表面状态变化,产生阻止半导体多子继续转移的接触电势差,当功函数差引起的电子转移和接触
电势差阻止转移达到平衡时,金属和半导体的费米能级相等,形成稳定的MS接触势垒。
22.MS巴丁模型:<1>表面态在禁带中准连续分布;<2>价带顶以上约1/3禁带宽度处的能级是表面中性能级。
<3>平衡过程中,表面中性能级高于体费米能级时,表面态放出电子带正电,表面附近体内带负电,能带下弯曲;表面中性能级低于体费米能级时,电子充入表面态带负电,表面附近体内带正电,能带上弯曲;<4>若表面态密度很高,体费米能级被“钉住”在表面中性能级,表面中性能级始终等于体费米能级。
二、图像
1.金属-N型半导体接触形成电子阻挡层情况下的能带图
2.金属-N型半导体接触形成电子反阻挡层情况下的能带图
3.正向偏压下,金属/N型半导体接触能带图表示
4.金属与半导体欧姆接触的基本结构示意图
三、论述题
1.扩散理论模型对肖特基势垒二极管电流-电压关系的解释
答:
扩散理论在计算肖特基势垒二极管的IV 特性时,以“厚势垒层”方式进行,即根据电流密度的连续性,计算通过势垒区任意点的电流密度,该电流密度包括扩散和漂移,通过对整个势垒区积分,将外加偏压的作用考虑在电流中(势垒区厚度时外加偏压的函数),从而得到IV 特性。
扩散理论:半导体表面与金属自由交换电子,即使在外加电压下,半导体表面电子浓度始终等于表面平衡电子浓度,电流主要由因子exp(qV/k0T)-1决定。
扩散理论适合阻挡层宽度远大于载流子平均自由程(半导体杂质浓度很低)的情况
2.热电子发射理论模型对肖特基势垒二极管电流-电压关系的解释 答:
热电子发射理论在计算肖特基势垒二极管的IV 特性时,以“薄势垒层”方式进行,通过计算垂直于MS 接触面、能量高于半导体势垒顶点的电子浓度(这部分浓度与外加偏压有关)得到电流密度与偏压的关系。
热电子发射理论:金属电子进入半导体的势垒高度不随外加电压变化,其电子电流密度等于不加电压时从半导体到金属的电子电流密度(方向相反),流过MS 接触的热电子发射总电流密度)1()1(0002-=-=+=-*→→T k qV
sT T k qV
T k q s m m s e J e e T A J J J ns
φ,
与外加电压无关,强烈依赖温度。
热电子发射理论适合阻挡层宽度远小于载流子平均自由程(半导体杂质浓度很高)的情况。
【MS 肖特基势垒二极管两种理论的推导不必掌握其每个步骤,只要求掌握方法】
3.形成金属与半导体欧姆接触的基本原理和手段
答:
重掺杂的pn 结可以产生显著的隧道电流。
金属和半导体接触时,如果半导体掺杂浓度很高,则势垒区宽度变得很薄,电子也要通过隧道效应贯穿势垒产生
相当大的隧道电流,甚至超过热电子发射电流而成为电流的主要成分。
当隧道电流占主导地位时,它的接触电阻可以很小,可以用作欧姆接触。
4.肖特基势垒二极管的主要特点
答:特点:
<1>正向电流由半导体多子注入金属形成,注入电子在金属中不积累,直接漂移流走,高频特性好;
<2>正向导通电压0.3V左右,比PN结二极管低;
<3>制作工艺简单;
<4>制作MS结构后,不能有高于金属-半导体合金温度的工艺;
公式:
半导体功函数计算
按肖特基功函数模型计算MS接触电势差、势垒高度
3.MS 接触中,电子隧道穿透半导体表面势垒的几率 []⎰=-⎪⎪⎭⎫ ⎝⎛-*2121212)(24x x n dx E x E h m e
P π
三、公式
1.半导体功函数计算;
2.按肖特基功函数模型计算MS接触电势差、势垒高度;
3.MS接触中,电子隧道穿透半导体表面势垒的几率;。