平行四边形单元 易错题难题测试提优卷试题
人教版八年级初二数学下学期平行四边形单元 易错题难题提优专项训练试卷
人教版八年级初二数学下学期平行四边形单元易错题难题提优专项训练试卷一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2ab-(a、b为正整数),则+a b的值为()A.10B.11C.12D.132.在正方形ABCD 中,P 为AB 的中点,BE PD⊥的延长线于点E ,连接AE 、BE ,FA AE⊥交DP 于点F ,连接BF 、FC ,下列结论:①ABE ADF≅;②FB =AB ;③CF PD⊥;④FC =EF . 其中正确的是()A.①②④B.①③④C.①②③D.①②③④3.将个边长都为1cm的正方形按如图所示的方法摆放,点分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为( )A.B.C.D.4.如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,且AB=AE,过点A作AF⊥BE,垂足为F,交BD于点G,点H在AD上,且EH∥AF.若正方形ABCD的边长为2,下列结论:①OE=OG;②EH=BE;③AH=222-,其中正确的有()A .0个B .1个C .2个D .3个5.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.86.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF=25.其中正确的结论是()A .①②③④B .①④C .①②④D .①③④7.下列命题:①一组对边平行且另一组对边相等的四边形是平行四边形;②一组邻角相等的平行四边形是矩形;③顺次连结矩形四边中点得到的四边形是菱形;④如果一个菱形的对角线相等,那么它一定是正方形.其中真命题个数是( )A .4个B .3个C .2个D .1个8.已知,在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点1B 在y 轴上,点1C 、1E 、2E 、2C 、3E 、4E 、3C 均在x 轴正半轴上,若已知正方形1111D C B A 的边长为1,1160B C O ︒∠=,且112233////B C B C B C ,则点3A 的坐标是( )A .331(3++B .33332+C .33132++D .333(3++ 9.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( )A .32B .2C .52D .310.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.5二、填空题11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.12.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.13.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .14.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.15.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______16.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.17.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.20.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.三、解答题21.综合与探究如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.22.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB 3BC =3①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.24.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论; (3)若AB =1,BC =5,且BF =DF ,求旋转角度α的大小.25.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.26.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .27.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)28.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.29.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.30.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a、b为正整数的条件分析求解.【详解】解:由题意可知,21AD ==∴(42)(42a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a 、b 是关键.2.D解析:D【解析】【分析】根据已知和正方形的性质推出∠EAB=∠DAF ,∠EBA=∠ADP ,AB=AD ,证△ABE ≌△ADF 即可;取EF 的中点M ,连接AM ,推出AM=MF=EM=DF ,证∠AMB=∠FMB ,BM=BM ,AM=MF ,推出△ABM ≌△FBM 即可;求出∠FDC=∠EBF ,推出△BEF ≌△DFC 即可.【详解】解:∵正方形ABCD ,BE ⊥ED ,EA ⊥FA ,∴AB=AD=CD=BC ,∠BAD=∠EAF=90°=∠BEF ,∵∠APD=∠EPB ,∴∠EAB=∠DAF ,∠EBA=∠ADP ,∵AB=AD ,∴△ABE ≌△ADF ,∴①正确;∴AE=AF ,BE=DF ,∴∠AEF=∠AFE=45°,取EF 的中点M ,连接AM ,∴AM ⊥EF ,AM=EM=FM ,∴BE ∥AM ,∵AP=BP ,∴AM=BE=DF ,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB ,∵BM=BM ,AM=MF ,∴△ABM ≌△FBM ,∴AB=BF ,∴②正确;∴∠BAM=∠BFM ,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,∵BE=DF,BF=CD,∴△BEF≌△DFC,∴CF=EF,∠DFC=∠FEB=90°,∴③正确;④正确;故选D.【点睛】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.3.B解析:B【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和.由此即可解答.【详解】由题意可得一个阴影部分面积等于正方形面积的,即一个阴影部分的面积为如图,5个这样的正方形重叠部分(阴影部分)的面积和为×4,∴n个这样的正方形重叠部分(阴影部分)的面积和为×(n-1),∴2019个正方形重叠形成的重叠部分的面积和为×(2019-1)=.故选B.【点睛】本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.4.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH∥AF∴HE⊥BE,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH≌△CBE,∴EH=BE,②正确;∵△AEH≌△CBE,AC=22+=2222∴AH=CE=AC-AE=22-2,③正确.故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.5.D解析:D【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【详解】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC 的最小值为:68 4.810AC BC PC AB ⋅⨯=== ∴线段EF 长的最小值为4.8.故选:D .【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.6.D解析:D【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF=FH ,然后根据邻边相等的平行四边形是菱形证明即可判断出①正确;②根据菱形的对角线平分一组对角可得∠BCH=∠ECH ,然后求出只有∠DCE=30°时EC 平分∠DCH ,即可判断出②错误;③点H 与点A 重合时,设BF=x ,表示出AF=FC=8-x ,利用勾股定理列出方程求解得到BF 的最小值,点G 与点D 重合时,CF=CD ,求出BF=4,然后写出BF 的取值范围,即可判断出③正确;④过点F 作FM ⊥AD 于M ,求出ME ,再利用勾股定理列式求解得到EF ,即可判断出④正确.【详解】①∵FH 与CG ,EH 与CF 都是矩形ABCD 的对边AD 、BC 的一部分,∴FH ∥CG ,EH ∥CF ,∴四边形CFHE 是平行四边形,由翻折的性质得,CF=FH ,∴四边形CFHE 是菱形,故①正确;②∵四边形CFHE 是菱形,∴∠BCH=∠ECH ,∴只有∠DCE=30°时EC 平分∠DCH ,故②错误;③点H 与点A 重合时,设BF=x ,则AF=FC=8-x ,在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8-x )2,解得x=3,点G 与点D 重合时,CF=CD=4,∴BF=4,∴线段BF 的取值范围为3≤BF ≤4,故③正确;④如图,过点F 作FM ⊥AD 于M ,则ME=(8-3)-3=2,由勾股定理得,2225+=MF ME综上所述,结论正确的有①③④,故选:D.【点睛】本题考查了菱形的判定和性质,勾股定理,掌握知识点是解题关键.7.B解析:B【分析】根据平行四边形的判定方法对①进行判断;根据矩形的判定方法对②进行判断即可;根据三角形中位线性质和菱形的判定方法对③进行判断;根据正方形的判定方法对④进行判断.【详解】解:①错误,反例为等腰梯形;②正确,理由一组邻角相等,且根据平行四边形的性质,可得它们都为直角,从而推得矩形;③正确,理由:得到的四边形的边长都等于矩形对角线的一半;④正确.故答案为B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.判定一个命题的真假关键在于对基本知识的掌握.8.C解析:C【分析】根据两直线平行,同位角相等可得∠B3C3O=∠B2C2O=∠B1C1O=60°,然后利用三角形全等可得B2E2=E1E2=D1E1=E3C2,E2C2=E3E4=B3E4,解直角三角形求出OC1、C1E、E1E2、E2C2、C2E3、E3E4、E4C3,再求出B3C3,过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,先求出A3M,再解直角三角形求出A3N、C3N,然后求出ON,再根据点A3在第一象限写出坐标即可.【详解】解∵B1C1∥B2C2∥B3C3,∴∠B3C3O=∠B2C2O=∠B1C1O=60°,∵正方形A1B1C1D1的边长为1,B1C1=C1D1,∠B1C1D1=90°,∴∠C1B1O=∠D1C1E1=30°,∴△C1B1O≌△D1C1E1;∴B 1O=C 1E 1,OC 1=D 1E 1,同理可得B 2E 2=E 1E 2=D 1E 1=E 3C 2;E 2C 2=E 3E 4=B 3E 4;111122223111111222OC D E E E B E C E B C ∴======⨯= 11113331C E D C ==⨯= 2234342231333236E C E E B E B E ====⨯= 433433316E C B E ==⨯= 3343112263B C E C ∴==⨯= 过点A 3延长正方形的边交x 轴于M ,过点A 3作A 3N ⊥x 轴于N ,则3323233333311333333339A M A D C DBC B C +=+=+=+⨯= 33333331A N A M ++===3313313329218C M A M +=== 343133331233186C N E M C M ⎛⎫∴=-=⨯-= ⎪ ⎪⎝⎭111122223343ON OC C E E E E C C E E E C N =++++++13131313133222626662'=+++++++= ∵点A 3在第一象限,∴点A 3的坐标是33132+⎭. 故选C.【点睛】本题考查正方形的性质,坐标与图形性质,全等三角形的判定与性质,30°角的直角三角形.熟练掌握有30°角的直角三角形各边之间的数量关系是解决本题的关键.9.C解析:C【分析】证明△BNA ≌△BNE ,得到BA=BE ,即△BAE 是等腰三角形,同理△CAD 是等腰三角形,根据题意求出DE ,根据三角形中位线定理计算即可.【详解】解:∵BN 平分∠ABC ,BN ⊥AE ,∴∠NBA=∠NBE ,∠BNA=∠BNE ,在△BNA 和△BNE 中,ABN EBN BN BNANB ENB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△BNA ≌△BNE ,∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=12DE=52. 故选C .【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10.B解析:B【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,2222=+=+=GH GE HE2222故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.二、填空题11.43 4【解析】分析:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.详解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,.∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2-AC2,∴AB=22;84=43②当∠A'FE=90°时,如图2,.∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC 与△ABC 关于BC 所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC 是等腰直角三角形,∴AB=AC=4;.综上所述,AB 的长为43或4; 故答案为43或4.点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.12.322或3102【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ,∠APB=∠PQC ∵AP PQ=∴ABP PCQ≅∴PC=AB=32,BP=BC+PC=3+32=92∴AP=223922+()()=3102故答案为:322或3102【点睛】此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.13.25【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE和△CBF中,BEA BFCABE CBFAB CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CBF(AAS),∴BE=BF,△ABE的面积=△CBF的面积,∴四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,∴BE=DE,BE2=10 cm2,∴BE=10(cm),∴BD=2BE=25(cm).故答案为:25.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.14.83或4433-【分析】连接AC交BD于O,由菱形的性质可得AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,可证四边形BEGF是菱形,可得∠ABG=30°,可得点B,点G,点D三点共线,由直角三角形性质可求BD=43,AC=4,分两种情况讨论,利用等腰三角形的性质可求解.【详解】如图,连接AC交BD于O,∵菱形ABCD的边长是4,∠ABC=60°,∴AB=BC=4,∠ABD=30°,AC⊥BD,BO=DO,AO=CO,∵EG∥BC,FG∥AB,∴四边形BEGF是平行四边形,又∵BE=BF,∴四边形BEGF是菱形,∴∠ABG=30°,∴点B,点G,点D三点共线,∵AC⊥BD,∠ABD=30°,∴AO=12AB=2,22224223AB AO--=∴BD=3AC=4,同理可求3BE,即3,若AD=DG'=4时,∴BG'=BD-DG'=434-, ∴BE'4344343-==-; 若AG''=G''D 时,过点G''作G''H ⊥AD 于H ,∴AH=HD=2,∵∠ADB=30°,G''H ⊥AD ,∴DG''=2HG'',∵222HD HG''DG''+=,解得:HG''233=,DG''=2HG''433=, ∴BG''=BD-DG''=43834333-=, ∴BE''=83, 综上所述:BE 为83或4343-. 【点睛】本题考查了菱形的性质,含30度角的直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.15.12013【分析】设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,根据等腰三角形的性质和勾股定理可求AO 和OH 长,若MN 最小,则MO 最小即可,而O 点到AC 的最短距离为OH 长,所以MN 最小值是2OH .【详解】解:设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,∵四边形MCNB 是平行四边形,∴O 为BC 中点,MN =2MO .∵AB =AC =13,BC =10,∴AO ⊥BC .在Rt △AOC 中,利用勾股定理可得AO 2222135AC CO -=-12.利用面积法:AO ×CO =AC ×OH ,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.16.1382+【分析】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=2,进一步可得2221382FN FR NR=+=+,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.【详解】如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,∵ABCD为正方形,∴∠CDG=∠GDK=90°,∵正方形ABCD面积为1,∴AD=CD=AG=DQ=1,∴DG=CT=2,∵四边形DEFG为菱形,∴DE=EF=DG=2,同理可得:CT=TN=2,∵∠EFG=45°,∴∠EDG=∠SCT=∠NTK=45°,∵FE∥DG,CT∥SN,DG⊥CT,∴∠FQP=∠FRN=∠DQE=∠NKT=90°,∴DQ=EQ=TK=NK=2,FQ=FE+EQ=22+,∵∠NKT=∠KQR=∠FRN=90°,∴四边形NKQR是矩形,∴QR=NK=2,∴FR=FQ+QR=222+,NR=KQ=DK−DQ=2121+-=,∴2221382FN FR NR=+=+,再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),∴FN=MN,∠NFR=∠MNZ,∵∠NFR+∠FNR=90°,∴∠MNZ+∠FNR=90°,即∠FNM=90°,同理可得:∠NFH=∠FHM=90°,∴四边形FHMN为正方形,∴正方形FHMN的面积=21382FN=+,故答案为:1382+.【点睛】本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.17.5【分析】先判断四边形BCEF的形状,再连接FM FC、,利用正方形的性质得出AFG是等腰直角三角形,再利用直角三角形的性质得出12MN FC=即可.【详解】∵四边形ABCP是边长为4的正方形,//EF BC,∴四边形BCEF是矩形,∵1PE=,∴3CE=,连接FM FC、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠ ,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG = ,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =,∵5FC ==∴ 2.5MN =,故答案为:2.5 .【点睛】本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键. 19.52【分析】连接AF ,CF ,AC ,利用勾股定理求出AC 、AF ,再根据三角形的三边关系得到当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为52.【详解】解:如图,连接AF ,CF ,AC ,∵长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,∴AC =5AF 2,∵AF +CF ≥AC ,∴CF ≥AC ﹣AF ,∴当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为52,故答案为:52.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.20.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.三、解答题21.(1)①=CF BD ,CF BD ⊥;②当点D 在BC 的延长线上时①中结论仍成立,详见解析;(2)45︒【分析】(1)①结论:CF 与BD 位置关系是垂直、数量关系是相等; 只要证明△BAD ≌△CAF,即可解决问题;②当点D 在BC 的延长线上时①的结论仍成立.证明方法类似;(2)过点A 作AG ⊥AC 交BC 于点G,理由(1)中的结论即可解决问题.【详解】解:(1)①相等(或=CF BD ),互相重直(或CF BD ⊥)理由如下:∵AB=AC,∠BAC=90︒,∴∠ABC=∠ACB=45︒,∵∠BAC=∠DAF,∴∠BAD=∠CAF,在△BAD 和△CAF 中,BA CA BAD CAF DA FA ⎧⎪∠∠⎨⎪⎩=== , ∴△BAD ≌△CAF (SAS ),∴BD=CF,∠ABD=∠ACF=45︒,∵∠ACB=45︒,∴∠FCB=90︒,∴CF ⊥BD,CF=BD,故答案为CF ⊥BD,CF=BD .②当点D 在BC 的延长线上时①的结论仍成立.理由:由正方形ADEF 得 AD=AF,∠DAF=90︒.∵∠BAC=90︒,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB ≌△FAC (SAS ),∴CF=BD,∠ACF=∠ABD,∵∠BAC=90︒,AB=AC,∴∠ABC=45︒,∴∠ACF=45︒,∴∠BCF=∠ACB+∠ACF=90︒.即 CF ⊥BD .(2)结论:当∠ACB=45︒时,CF ⊥BD .理由:过点A 作AG ⊥AC 交BC 于点G,∴AC=AG,由(1)可知:△GAD ≌△CAF,∴∠ACF=∠AGD=45︒,∴∠BCF=∠ACB+∠ACF=90︒,即CF ⊥BD .故答案为45︒.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.22.(1)3AH 2)①证明见解析;②证明见解析【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可.【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒.∵AH BD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=.∴AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥,∴线段CF 是线段BE 的垂直平分线.∴CE CB =,ECF BCF ∠=∠.∵ADE ∆是等边三角形,∴DE AD =.∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =.∵AD BC ∥,∴180ADC BCD ︒∠+∠=.∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒.∵CF MN ,∴60DNE DCF ∠=∠=︒.∴ENG ∆是等边三角形.【点睛】本题考查的是平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质,掌握平行四边形的性质定理、全等三角形的判定定理和性质定理是解题的关键.23.(1)①等腰;②BE =;(2)①2;②存在,【分析】(1)①由折叠的性质得EF =BF ,即可得出结论;②当折痕经过点A 时,由折叠的性质得AF 垂直平分BE ,由线段垂直平分线的性质得AE =BE ,证出ABE 是等腰直角三角形,即可得出BEAE ;(2)①由等边三角形的性质得BF =BE ,∠EBF =60°,则∠ABE =30°,由直角三角形的性质得BE =2AE ,AB,则AE =1,BE =2,得BF =2即可;②当点F 在边BC 上时,得S △BEF ≤12S 矩形ABCD ,即当点F 与点C 重合时S △BEF 最大,由折叠的性质得CE =CB =EF =当点F 在边CD 上时,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,则S △EKF =。
平行四边形单元 易错题难题提优专项训练
平行四边形单元 易错题难题提优专项训练一、选择题1.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .632.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =62+,则正方形的面积为( )A .5B .4C .3D .23.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )A .0个B .1个C .2个D .3个4.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC= 6,△DEG 的周长为10,则△ABC 的周长为( )A .2B .2C .2D .25.如图,边长为1的正方形EFGH 在边长为4的正方形ABCD 所在平面上移动,始终保持EF//AB ,CK=1.线段KG 的中点为M ,DH 的中点为N ,则线段MN 的长为 ( ).A .26B .17C .172D .2626.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .127.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .33B .322-C .22D .238.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( )①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥9.在菱形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的一点(不与端点重合),对于任意的菱形ABCD,下面四个结论中:①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形正确的结论的个数是()A.1个B.2个C.3个D.4个10.如图,矩形ABCD的面积为20cm2,对角线相交于点O.以AB、AO为邻边画平行四边形AOC1B,对角线相交于点O ;以AB、AO 为邻边画平行四边形AO1C2B,对角线相交于点O2 :……以此类推,则平行四边形AO4C5B的面积为()A.58cm2B.54cm2C.516cm2D.532cm2二、填空题11.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B、C 重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是__.12.如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.13.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.14.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________15.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.16.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.17.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.22.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.23.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..24.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)26.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).27.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.29.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 3D 在1l 上以每秒3322+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.30.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线'EA,'AC与线段CE重合时,线段'AC长度最短,可以求出最小值.【详解】如图,连接EC,过点E 作EM ⊥CD 交CD 的延长线于点M.四边形ABCD 是平行四边形,6AD BC AD BC ∴==,,E 为AD 的中点,30BCD ∠=︒,330DE EA MDE BCD ∴==∠=∠=︒,,又 EM CD ⊥,133322ME DE DM ∴===, 3315363CM CD DM ∴=+== 根据勾股定理得: 22223153319.22CE ME CM ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭根据翻折的性质,可得'3EA EA ==,当折线'EA ,'AC 与线段CE 重合时,线段'AC 长度最短,此时'AC = 3193. 【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.2.B解析:B【解析】【分析】过点O 作OM ⊥CE 于M ,作ON ⊥DE 交ED 的延长线于N ,判断出四边形OMEN 是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON ,根据正方形的性质可得OC=OD ,然后利用“角角边”证明△COM 和△DON 全等,根据全等三角形对应边相等可得OM=ON ,然后判断出四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=12CD ,再利用勾股定理列式求出CE ,根据正方形的性质求出2a ,然后利用四边形OCED 的面积列出方程求出2a ,再根据正方形的面积公式列式计算即可得解.【详解】解:如图,过点O 作OM ⊥CE 于M ,作ON ⊥DE 交ED 的延长线于N ,∵∠CED=90°,∴四边形OMEN 是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM ,∴∠COM=∠DON ,∵四边形ABCD 是正方形,∴OC=OD ,在△COM 和△DON 中,==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△COM ≌△DON (AAS ),∴OM=ON ,∴四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,则222a a = ∵∠CED=90°,∠DCE=30°,∴DE=12CD=a , 由勾股定理得,2222(2)3CD DE a a a -=-= ,∴四边形OCED 的面积=2111623(2)(2)()222a a a a ++=⨯, 解得21a =,所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.故选B .【点睛】本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 3.C解析:C【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=12 DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=12 CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD, AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF ∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH ,∴∠HDG=∠HGD ,∴∠GHC=∠HDG+∠HGD=2∠CDF ,∴∠GHC=∠DAG ,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.4.C解析:C【解析】【分析】由中点性质先得AF =3,再用勾股定理求出AG =DG =AG =,已知△DEG 的周长为10,所以求得EG+DE 的值,进一步证得AB=2DE,BD=2EG,从而求得△ABC 的周长.【详解】∵ E,F 分别是AB,AC 中点,EF 交AD 于G,∴EF ∥BC ,11AF AC 6322==⨯= ∵AD 是高∴∠ADC=∠AGF=90°在Rt △AGF 中AG ===∵EF ∥BC∴1AG AF DG FC== ∴FG 是△ADC 的中位线∴DC=2GF=2∴ ∵ △DEG 的周长为10,∴ 在Rt △ADB 中,点E 是AB 边的中点,点G 是AD 的中点,∴AB=2DE ,BD=2EG∴AB+BD=2(EG+DE )∴△ABC 的周长为:故答案为C【点睛】此题主要考查了直角三角形的性质、勾股定理、中位线性质等知识点.在直角三角形中,斜边上的中线等于斜边的一半.5.D解析:D【解析】【分析】因为题目没有确定正方形EFGH的位置,所以我们可以将正方形EFGH的位置特殊化,使点H与点A重合,重新画出图形,这样有利于我们解题,过点M作MO⊥ED于O,则可得出OM是梯形FEDC的中位线,从而可求出ON、OM,然后在Rt△MON中利用勾股定理可求出MN.【详解】如图,将正方形EFGH的位置特殊化,使点H与点A重合,过点M作MO⊥ED与O,则MO是梯形FEDC的中位线,∴EO=OD=52,MO=12(EF+CD)=52,∵点N、M分别是AD、FC的中点,∴AN=ND=2,∴ON=OD-ND=52-2=12,在Rt△MON中,MN2=MO2+ON2,即MN=225126 222⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,故选D.【点睛】本题考查了梯形的中位线定理、正方形的性质及勾股定理的知识,属于综合性题目,对待这样既有动态因素又不确定位置的题目,一定要将位置特殊化,这样不影响结果且解题过程简单,要学会在以后的解题中利用这种思想.6.B解析:B【分析】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.首先证明△ABE ≌△GHF ,推出BE=FH=x-2,在Rt △BGE 中,根据GE 2=BG 2+BE 2,构建方程求出x 即可解决问题.【详解】如图,连接GE ,作GH ⊥CD 于H .则四边形AGHD 是矩形,设AG=DH=x ,则FH=x-2.∵GF 垂直平分AE ,四边形ABCD 是正方形,∴∠ABE=∠GHF=90°AB=AD=GH ,AG=GE=x ,∵∠BAE+∠AGF=90°,∠AGF+∠FGH=90°,∴∠BAE=∠FGH ,∴△ABE ≌△GHF ,∴BE=FH=x-2,在Rt △BGE 中,∵GE 2=BG 2+BE 2,∴x 2=42+(x-2)2,∴x=5,∴AB=9,BE=3,在Rt △ABE 中,222293310AB BE ++=故选:B .【点睛】此题考查正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.A解析:A【分析】根据翻转变换的性质求出BM 、BF ,根据勾股定理计算求出FM 的值;再在Rt △NEF 中,运用勾股定理列方程求解,即可得到EN 的长.【详解】∵四边形ABCD 为正方形,AB=2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB=AB=2,BM=12BC=1,BF=BA=2,∠BMF=90°, 则在Rt △BMF 中, 2222213FM BF BM -=-= ∴23FN MN FM =-=-设AE=FE=x ,则EN=1x -,∵Rt △EFN 中,222NE NF EF +=,∴()()222123x x -+-=,解得:423x =-,∴EN=1233x -=-.故选:A .【点睛】本题考查了翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.8.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DFE,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM 11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.9.D解析:D【分析】根据菱形的判定和性质,矩形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【详解】①如图,连接AC ,BD 交于O ,四边形ABCD 是菱形,过点O 直线MP 和QN ,分别交AB ,BC ,CD ,AD 于M ,N ,P ,Q ,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④如图,当四边形ABCD为正方形时,四边形MNPQ是正方形,故至少存在一个四边形MNPQ是正方形;故④正确;综上,①②③④4个均正确,故选:D.【点睛】本题考查了平行四边形的判定和性质,菱形的判定,正方形的判定,矩形的判定,熟记各定理是解题的关键.10.A解析:A【分析】设矩形ABCD的面积为S=20cm2,由O为矩形ABCD的对角线的交点,可得平行四边形AOC1B底边AB上的高等于BC的12,依此类推可得下一个图形的面积是上一个图形的面积的12,然后求解即可.【详解】设矩形ABCD的面积为S=20cm2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12S , ∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12×12S=22S , ……依此类推,平行四边形AO 4C 5B 的面积=52S =5202=58(cm 2), 故选:A .【点睛】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12是解题的关键. 二、填空题11.3013≤AM<6 【分析】 由勾股定理得BC=13从而得到点A 到BC 的距离, M 为EF 中点,所以AM=12EF ,继而求得AM 的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A 到BC 的距离为AC 512BC 13AB ⨯⨯==6013, 所以AM 的最小值为6013÷2=3013, 因为M 为EF 中点,所以AM=12EF , 当E 越接近A ,F 越接近C 时,EF 越大,所以EF <AC ,则AM <6, 所以3013≤AM<6, 故答案为3013≤AM<6. 12.33或3或572 【分析】△AEF 为等腰三角形,分三种情况讨论,由等腰三角形的性质和30°直角三角形性质、平行四边形的性质可求解.【详解】解:当AE AF =时,如图,过点A 作AH EF ⊥于H ,E 是AB 的中点,132AE AB ∴==, =AE AF ,AH EF ⊥,120A ∠=︒,30AEF AFE ∴∠=∠=︒,FH EH =,1322AH AE ∴==,333EH AH ==, 233EF EH ∴==,当AF EF =时,如图2,过点A 作AN CD ⊥于N ,过点F 作FM AB ⊥于M ,图2在平行四边形ABCD 中,6AB =,4BC =,120A ∠=︒,4AD BC ∴==,60ADC ∠=︒,30DAN ∴∠=︒,122DN AD ∴==,323AN DN == //AB CD ,AN CD ⊥,FM AB ⊥,23AN MF ∴==AF EF =,FM AB ⊥, 32AM ME ∴==, 229571242EF ME MF ∴=+=+=; 当3AE EF ==时,如图3,图33EF ∴=,综上所述:EF 的长为33或3或57. 【点睛】 本题考查了平行四边形的性质,等腰三角形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键.13.102︒【分析】根据菱形的性质求出∠DAB=2∠DAC ,AD=CD ;再根据垂直平分线的性质得出AF=DF ,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB 的度数.【详解】连接BD ,BF ,∵四边形ABCD 是菱形,∴AD=CD ,∴∠DAC=∠DCA .∵EF 垂直平分AB ,AC 垂直平分BD ,∴AF=BF ,BF=DF ,∴AF=DF ,∴∠FAD=∠FDA ,∴∠DAC+∠FDA+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°.故答案为:102°.【点睛】本题主要考查了线段的垂直平分线的性质,三角形内角和定理的应用以及菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.14.①②④⑤【分析】根据∠B=90°,AB=BE,△ABE绕点A逆时针旋转45°,得到△AHD,可得△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,可证AD//BC,根据DC⊥BC,可得∠HDE=∠CDE,根据三角形的内角和可得∠HDE=∠CDE,即DE平分∠HDC,所以①正确;利用∠DAB=∠ABC=∠BCD=90°,得到四边形ABCD是矩形,有∠ADC=90°,∠HDC=45°,由①有DE平分∠HDC,得∠HDO=22.5°,可得∠AHB=67.5°,∠DHO=22.5°,可证OD=OH,利用 AE=AD易证∠OHE=∠HEO=67.5°,则有OE=OH,OD=OE,所以②正确;利用AAS证明ΔDHE≅ΔDCE,则有DH=DC,∠HDE=∠CDE=22.5°,易的∠DHF=22.5°,∠DFH=112.5°,则△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③错误;根据△ABE是等腰直角三角形,JH⊥JE,∵J是BC的中点,H是BF的中点,得到2JH=CF,2JC=BC,JC=JE+CE,易证BC−CF=2CE,所以④正确;过H作HJ⊥BC于J,并延长HJ交AD于点I,得IJ⊥AD,I是AD的中点,J是BC的中点,H是BF的中点,所以⑤正确;【详解】∵Rt△ABE中,∠B=90°,AB=BE,∴∠BAE=∠BEA=45°,又∵将△ABE绕点A逆时针旋转45°,得到△AHD,∴△ABE≅△AHD,并且△ABE和△AHD都是等腰直角三角形,∴∠EAD=45°,AE=AD ,∠AHD=90°,∴∠ADE=∠AED,∴∠BAD=∠BAE+∠EAD=45°+45°=90°,∴AD//BC,∴∠ADE=∠DEC,∴∠AED=∠DEC,又∵DC⊥BC,∴∠DCE=∠DHE=90°∴由三角形的内角和可得∠HDE=∠CDE,即:DE平分∠HDC,所以①正确;∵∠DAB=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴∠ADC=90°,∴∠HDC=45°,由①有DE平分∠HDC,∴∠HDO=12∠HDC=12×45°=22.5°,∵∠BAE=45°,AB=AH,∴∠OHE=∠AHB=12(180°−∠BAE)=12×(180°−45°)=67.5°,∴∠DHO=∠DHE−∠FHE=∠DHE−∠AHB=90°−67.5°=22.5°,∴OD=OH,在△AED中,AE=AD,∴∠AED=12(180°−∠EAD)=12×(180°−45°)=67.5°,∴∠OHE=∠HEO=67.5°,∴OE=OH,∴OD=OE,所以②正确;在△DHE和△DCE中,DHE DCEHDE CDEDE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔDHE≅ΔDCE(AAS),∴DH=DC,∠HDE=∠CDE=12×45°=22.5°,∵OD=OH,∴∠DHF=22.5°,∴∠DFH=180°−∠HDF−∠DHF=180°−45°−22.5°=112.5°,∴△DHF不是直角三角形,并DH≠HF,即有:CD≠HF,所以③不正确;如图,过H作HJ⊥BC于J,并延长HJ交AD于点I,∵△ABE是等腰直角三角形,JH⊥JE,∴JH=JE,又∵J是BC的中点,H是BF的中点,∴2JH=CF,2JC=BC,JC=JE+CE,∴2JC=2JE+2CE=2JH+2CE=CF+2CE=BC,即有:BC−CF=2CE ,所以④正确;∵AD//BC ,∴IJ ⊥AD ,又∵△AHD 是等腰直角三角形,∴I 是AD 的中点,∵四边形ABCD 是矩形,HJ ⊥BC ,∴J 是BC 的中点,∴H 是BF 的中点,所以⑤正确;综上所述,正确的有①②④⑤,故答案为:①②④⑤.【点睛】本题考查了全等三角形的判定与性质、旋转的性质、矩形的性质、角平分线的性质以及等腰直角三角形的判定与性质;证明三角形全等和等腰直角三角形是解决问题的关键. 15.【详解】解析:∵在正方形ABCD 中,AC=∴AB=AD=BC=DC=6,∠EAD=45°设EF 与AD 交点为O ,O 是AD 的中点,∴AO=3以AD 为对角线的所有▱AEDF 中,当EF ⊥AC 时,EF 最小,即△AOE 是直角三角形,∵∠AEO=90°,∠EAD=45°,2, ∴EF=2OE=16.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中 45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB的大小.17.8或3【分析】根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE +CF +EF =BC∴2AB +5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.18.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.20.2【分析】分别延长AE ,BF 交于点H ,易证四边形EPFH 为平行四边形,得出点G 为PH 的中点,则G 的运动轨迹为△HCD 的中位线MN ,再求出CD 的长度,运用中位线的性质求出MN 的长度即可.【详解】解:如图,分别延长AE ,BF 交于点H ,∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分,∵点G 为EF 的中点,∴点G 为PH 的中点,即在P 运动的过程中,G 始终为PH 的中点,∴G 的运动轨迹为△HCD 的中位线MN ,∵CD=6-1-1=4,∴MN=12CD =2, ∴点G 移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .三、解答题21.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=;D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.22.(1)见解析;(2【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.23.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,3【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是263∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-=∴222725213AD AH DH ++=。
人教版八年级初二数学第二学期平行四边形单元 易错题难题提优专项训练试卷
一、选择题1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个A .2B .3C .4D .52.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④3.如图所示,等边三角形ABC 沿射线BC 向右平移到DCE ∆的位置,连接AD 、BD ,则下列结论:(1)AD BC =(2)BD 与AC 互相平分(3)四边形ACED 是菱形(4)BD DE ⊥,其中正确的个数是( )A .1B .2C .3D .44.如图,在菱形ABCD 中,两对角线AC 、BD 交于点O ,AC =8,BD =6,当△OPD 是以PD 为底的等腰三角形时,CP 的长为( )A.2 B.185C.75D.525.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).A.5B.21+C.21+D.51+6.如图,点P在长方形OABC的边OA上,连接BP,过点P作BP的垂线,交射线OC于点Q,在点P从点A出发沿AO方向运动到点O的过程中,设AP=x,OQ=y,则下列说法正确的是()A.y随x的增大而增大B.y随x的增大而减小C.随x的增大,y先增大后减小D.随x的增大,y先减小后增大7.下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个8.如图,矩形ABCD中,AB=10,AD=4,点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为( )A .1B .103C .4D .1439.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=,FO FC =,则下列结论:①FB OC ⊥,OM CM =;②EOB CMB ≅;③四边形EBFD 是菱形;④:3:2MB OE =.其中正确结论的个数是( )A .1B .2C .3D .410.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE △是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有( )A .2个B .3个C .4个D .5个二、填空题11.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62BC=______.12.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.13.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.14.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.15.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.16.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.23.如图,四边形OABC中,BC∥AO,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x 轴于点P,连结AC交NP于Q,连结MQ.(1)当t为何值时,四边形BNMP为平行四边形?(2)设四边形BNPA的面积为y,求y与t之间的函数关系式.(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.24.如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC5BF=DF,求旋转角度α的大小.25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD中,AB BC≠,将ABC∆沿AC翻折至'AB C∆,连结'B D.结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)26.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②27.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.28.如图,在四边形ABCD 中,AD BC =,AD BC ∥,连接AC ,点P 、E 分别在AB 、CD 上,连接PE ,PE 与AC 交于点F ,连接PC ,D ∠=BAC ∠,DAE AEP ∠=∠. (1)判断四边形PBCE 的形状,并说明理由;(2)求证:CP AE =;(3)当P 为AB 的中点时,四边形APCE 是什么特殊四边形?请说明理由.29.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
人教版八年级初二数学下学期平行四边形单元 易错题难题测试提优卷
一、选择题1.已知点A (4,0),B (0,﹣4),C (a ,2a )及点D 是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )A .655B .1255C .32D .422.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312m ,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m3.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .164 4.如图,E 是边长为2的正方形ABCD 的对角线AC 上一点,且AE AB =,F 为BE 上任意一点,FG AC 于点G ,FH AB ⊥于点H ,则FG FH +的值是( )A .22B 2C .2D .15.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④6.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .237.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 8.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .59.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB:②GC平分∠BGD;③S四边形BCDG=34CG2;④∠BGE的大小为定值.其中正确的结论个数为()A.1 B.2 C.3 D.410.如图,在正方形ABCD中,AB=4,E是CD的中点,将BCE沿BE翻折至BFE,连接DF,则DF的长度是()A.5B.25C.35D.45二、填空题11.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为_____.12.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD△和等边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.13.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG ,BG ,BD ,DG ,下列结论:①BC=DF ;②135DGF ︒∠=;③BG DG ⊥;④34AB AD =,则254BDG FDG S S =,正确的有__________________.14.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.15.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.16.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.17.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.18.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________19.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.20.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.三、解答题21.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.22.在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°.点P从点A 出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t= 时,四边形ABQP成为矩形?(2)当t= 时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.23.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.24.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.25.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.26.正方形ABCD中,对角线AC与BD交于点O,点P是正方形ABCD对角线BD上的一个动点(点P不与点B,O,D重合),连接CP并延长,分别过点D,B向射线作垂线,垂足分别为点M,N.(1)补全图形,并求证:DM=CN;(2)连接OM,ON,判断OMN的形状并证明.27.如图1,已知四边形ABCD是正方形,E是对角线BD上的一点,连接AE,CE.(1)求证:AE=CE;(2)如图2,点P是边CD上的一点,且PE⊥BD于E,连接BP,O为BP的中点,连接EO.若∠PBC=30°,求∠POE的度数;(3)在(2)的条件下,若OE2,求CE的长.28.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).29.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒2246B BP PD +=时,求PD 之长.30.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷
一、选择题 1.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A .25B .26C .32D .52.如图,在△ABC 中,BF 平分∠ABC ,过A 点作AF ⊥BF ,垂足为F 并延长交BC 于点G ,D 为AB 中点,连接DF 延长交AC 于点E 。
若AB=12,BC=20,则线段EF 的长为( )A .2B .3C .4D .53.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个4.如图,在ABC 中,BD ,CE 是ABC 的中线,BD 与CE 相交于点O ,点F G ,分别是,BO CO 的中点,连接AO ,若要使得四边形DEFG 是正方形,则需要满足条件( )A .AO BC =B .AB AC ⊥ C .AB AC =且AB AC ⊥D .AO BC =且AO BC ⊥5.如图:点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形,且菱形AECF 的周长为20,BD 为24,则四边形ABCD 的面积为( )A .24B .36C .72D .1446.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BE:BC=5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .47.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个8.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连结EF ,则线段EF 的长的最小值是( )A .2.5B .2.4C .2.2D .2 9.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .4 10.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.5二、填空题11.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.12.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.13.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.16.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.17.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP交直线DQ于点E.求证:BE DQ⊥;()3如图丙,若BCP为等边三角形,探索线段,PD PE之间的数量关系,并说明理由.22.如图1,已知四边形ABCD是正方形,E是对角线BD上的一点,连接AE,CE.(1)求证:AE=CE;(2)如图2,点P是边CD上的一点,且PE⊥BD于E,连接BP,O为BP的中点,连接EO .若∠PBC =30°,求∠POE 的度数;(3)在(2)的条件下,若OE =2,求CE 的长.23.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE :①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.24.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若3,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 25.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.26.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).27.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .28.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.29.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.30.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
平行四边形单元 易错题难题测试题试题
平行四边形单元 易错题难题测试题试题一、选择题1.如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是( )A .35°B .30°C .25°D .20°2.如图,在四边形ABCD 中,AB ∥CD ,∠BCD=90°,AB=AD=10cm ,BC=8cm ,点P 从点A 出发,以每秒3cm 的速度沿折线A-B-C-D 方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若△BPQ 的面积为20cm 2 , 则满足条件的t 的值有( )A .1个B .2个C .3个D .4个3.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论: ①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .14.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A .2B .32-C 3D .435.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF=25.其中正确的结论是()A .①②③④B .①④C .①②④D .①③④6.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =3.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为7;④S 正方形ABCD =8+14.则正确结论的个数是( )A .1B .2C .3D .47.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCDSAC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个9.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .20171210.如图,在△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,下列结论中:①AB ⊥AC ;②四边形AEFD 是平行四边形;③∠DFE =150°;④S 四边形AEFD =5.正确的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.12.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论: ①可以得到无数个平行四边形EGFH ; ②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ; ④至少得到一个正方形EGFH . 所有正确结论的序号是__.13.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.15.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.16.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .17.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.18.如图,菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,若将菱形绕点O 以每秒45︒的速度逆时针旋转,则第2019秒时,菱形两对角线交点D 的坐标为__________.19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.如图,在平行四边形ABCD 中,53AB AD ==,,BAD ∠的平分线AE 交CD 于点E ,连接BE ,若BAD BEC ∠=∠,则平行四边形ABCD 的面积为__________.三、解答题21.如图1所示,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E ,F 分别在正方形的边CB ,CD 上,连接AE 、AF .(1)求证:AE =AF ;(2)取AF 的中点M ,EF 的中点N ,连接MD ,MN .则MD ,MN 的数量关系是 ,MD 、MN 的位置关系是(3)将图2中的直角三角板ECF ,绕点C 旋转180°,如图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.22.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒. ①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形. ②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.23.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.24.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥. ②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = . 25.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE . (1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.27.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论. 拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②28.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α. ①按要求补全图形;②∠EBF =______________(用含α的式子表示); ③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明. 29.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系; ②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ︒∠=∠=,从而得到OEB ∠度数,再依据90OED OEB ︒∠=-∠即可. 【详解】解:∵四边形ABCD 是菱形,50BCD ︒∠=, ∵O 为BD 中点,1652DBE ABC ︒∠=∠=. DE BC ⊥,∴在 Rt BDE ∆中,OE BE OD ==,65OEB OBE ︒∴∠=∠=.906525OED ︒︒︒∴∠=-=.故选:C . 【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.2.B解析:B 【解析】 【分析】过A 作AH ⊥DC ,由勾股定理求出DH 的长.然后分三种情况进行讨论:即①当点P 在线段AB 上,②当点P 在线段BC 上,③当点P 在线段CD 上,根据三种情况点的位置,可以确定t 的值. 【详解】解:过A 作AH ⊥DC ,∴AH =BC =8cm ,DH =22AD AH - =10064-=6.i )当P 在AB 上时,即1003t ≤≤时,如图,1110382022BPQS BP BC t =⋅=-⨯=(),解得:53t =;ii )当P 在BC 上时,即103<t ≤6时,BP =3t -10,CQ =16-2t ,113101622022BPQSBP CQ t t =⋅=-⨯-=()(),化简得:3t 2-34t +100=0,△=-44<0,∴方程无实数解.iii)当P在线段CD上时,若点P在线段CD上,若点P在Q的右侧,即6≤t≤345,则有PQ=34-5t,13458202BPQS t=-⨯=(),295t=<6(舍去);若点P在Q的左侧时,即3485t≤<,则有PQ=5t-34,15348202BPQS t=-⨯=();t=7.8.综上所述:满足条件的t存在,其值分别为15 3t=,t2=7.8.故选B.【点睛】本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.3.B解析:B【分析】由正方形的性质和折叠的性质得出AB=AF,∠AFG=90°,由HL证明Rt△ABG≌Rt△AFG,得出①正确;设BG=FG=x,则CG=12﹣x.由勾股定理得出方程,解方程求出BG,得出GC,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∠AGB=∠GCF,得出AG∥CF,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】①正确.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.在Rt△ABG和Rt△AFG中,AG AGAB AF=⎧⎨=⎩,∴Rt△ABG≌Rt△AFG(HL);②正确.理由如下:由题意得:EF=DE=13CD=4,设BG=FG=x,则CG=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+82=(x+4)2,解得:x=6,∴BG=6,∴GC=12﹣6=6,∴BG=GC;③正确.理由如下:∵CG =BG ,BG =GF ,∴CG =GF ,∴△FGC 是等腰三角形,∠GFC =∠GCF .又∵Rt △ABG ≌Rt △AFG ,∴∠AGB =∠AGF ,∠AGB +∠AGF =2∠AGB =180°﹣∠FGC =∠GFC +∠GC F =2∠GFC =2∠GCF ,∴∠AGB =∠GCF ,∴AG ∥CF ;④错误.理由如下:∵S △GCE =12GC •CE =12×6×8=24. ∵GF =6,EF =4,△GFC 和△FCE 等高,∴S △GFC :S △FCE =3:2,∴S △GFC =35×24=725≠28.8. 故④不正确,∴正确的有①②③.故选B .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.4.C解析:C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题.【详解】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =43在Rt △ACN 中,∵AC =3ACN =∠DAC =30°,∴AN =12AC =∵AE =EH ,GF =FH ,∴EF =12AG , ∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为∴EF 的最大值为∴EF 故选:C【点睛】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD =90°,属于中考选择题中的压轴题.5.D解析:D【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF=FH ,然后根据邻边相等的平行四边形是菱形证明即可判断出①正确;②根据菱形的对角线平分一组对角可得∠BCH=∠ECH ,然后求出只有∠DCE=30°时EC 平分∠DCH ,即可判断出②错误;③点H 与点A 重合时,设BF=x ,表示出AF=FC=8-x ,利用勾股定理列出方程求解得到BF 的最小值,点G 与点D 重合时,CF=CD ,求出BF=4,然后写出BF 的取值范围,即可判断出③正确;④过点F 作FM ⊥AD 于M ,求出ME ,再利用勾股定理列式求解得到EF ,即可判断出④正确.【详解】①∵FH 与CG ,EH 与CF 都是矩形ABCD 的对边AD 、BC 的一部分,∴FH ∥CG ,EH ∥CF ,∴四边形CFHE 是平行四边形,由翻折的性质得,CF=FH ,∴四边形CFHE 是菱形,故①正确;②∵四边形CFHE 是菱形,∴∠BCH=∠ECH ,∴只有∠DCE=30°时EC 平分∠DCH ,故②错误;③点H 与点A 重合时,设BF=x ,则AF=FC=8-x ,在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8-x )2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;④如图,过点F作FM⊥AD于M,则ME=(8-3)-3=2,由勾股定理得,2225+=MF ME综上所述,结论正确的有①③④,故选:D.【点睛】本题考查了菱形的判定和性质,勾股定理,掌握知识点是解题关键.6.C解析:C【分析】①易知AE=AP,AB=AD,所以只需证明∠EAB=∠PAD即可用SAS说明△APD≌△AEB;②易知∠AEB=∠APD=135°,则∠BEP=∠AEB﹣∠AEP=135°﹣45°=90°,所以EB⊥ED;③在Rt△BEP中利用勾股定理求出BE7,根据垂线段最短可知B到直线AE的距离7;则③错误;④要求正方形的面积,则需知道正方形一条边的平方值即可,所以在△AEB中,∠AEB=135°,AE=1,BE7A作AH⊥BE交BE延长线于H点,在Rt△AHB中利用勾股定理AB2=BH2+AH2即可.【详解】∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°.∴∠DAP+∠BAP=90°.又∠EAP+∠BAP=90°,∴∠EAP=∠DAP.又AE=AP,∴△APD≌△AEB(SAS).所以①正确;∵AE=AP,∠EAP=90°,∴∠APE=∠AEP=45°,∴∠APD=180°﹣45°=135°.∵△APD≌△AEB,∴∠AEB=∠APD=135°,∴∠BEP=135°﹣45°=90°,即EB⊥ED,②正确;在等腰Rt△AEP中,利用勾股定理可得EP=222AE AP+=,在Rt△BEP中,利用勾股定理可得BE=227BP EP-=.∵B点到直线AE的距离小于BE,所以点B到直线AE的距离为7是错误的,所以③错误;在△AEB中,∠AEB=135°,AE=1,BE=7,如图所示,过点A作AH⊥BE交BE延长线于H点.在等腰Rt△AHE中,可得AH=HE=22AE=22.所以BH 27 +.在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,即AB2=(272+)2+(22)2=14,所以S正方形ABCD=14.所以④正确.所以只有①和②、④的结论正确.故选:C.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,解决复杂几何图形时要会分离图形,分离出对解决问题有价值的图形单独解决.7.C解析:C【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,∴AC =.AO OC =,AE BE =, ∴1OE BC 2=, 1::62OE AC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.8.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt △ABG ≌Rt △AFG ;根据角的和差关系求得∠GAF =45°;在直角△ECG 中,根据勾股定理可证CE =2DE ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;求出S △ECG ,由S △FCG =35GCE S ∆即可得出结论.【详解】①正确.理由:∵AB =AD =AF ,AG =AG ,∠B =∠AFG =90°,∴Rt △ABG ≌Rt △AFG (HL );②正确.理由:∵∠BAG =∠FAG ,∠DAE =∠FAE .又∵∠BAD =90°,∴∠EAG =45°;③正确.理由:设DE =x ,则EF =x ,EC =12-x .在直角△ECG 中,根据勾股定理,得:(12﹣x )2+62=(x +6)2,解得:x =4,∴DE =x =4,CE =12-x =8,∴CE =2DE ; ④正确.理由:∵CG =BG ,BG =GF ,∴CG =GF ,∴∠GFC =∠GCF .又∵Rt △ABG ≌Rt △AFG ,∴∠AGB =∠AGF ,∠AGB +∠AGF =2∠AGB =∠GFC +∠GCF =2∠GFC =2∠GCF ,∴∠AGB =∠AGF =∠GFC =∠GCF ,∴AG ∥CF ;⑤正确.理由:∵S △ECG =12GC •CE =12×6×8=24. ∵S △FCG =35GCE S ∆=3245⨯=725. 故选D .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.9.A解析:A【分析】由三角形的中位线定理得:22B C ,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12,所以△222A B C 的周长等于△111A B C 的周长的一半,以此类推可求出结论.【详解】 解:△111A B C 中,114A B =,115AC =,117B C =, ∴△111A B C 的周长是16,2A ,2B ,2C 分别是边11B C ,11A C ,11A B 的中点,22B C ∴,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12, ⋯,以此类推,则△444A B C 的周长是311622⨯=; ∴△n n n A B C 的周长是4122n -, 当2019n =时,第2019个三角形的周长42019120142122-==故选:A .【点睛】 本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.10.C解析:C【分析】由222AB AC BC +=,得出∠BAC =90°,则①正确;由等边三角形的性质得∠DAB =∠EAC =60°,则∠DAE =150°,由SAS 证得△ABC ≌△DBF ,得AC =DF =AE =4,同理△ABC ≌△EFC (SAS ),得AB =EF =AD =3,得出四边形AEFD 是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE =150°,则③正确;∠FDA =180°-∠DFE =30°,过点A 作AM DF ⊥于点M ,1143622AEFD SDF AM DF AD ===⨯⨯=,则④不正确;即可得出结果.【详解】解:∵22234=5+,∴222AB AC BC +=,∴∠BAC=90°,∴AB ⊥AC ,故①正确; ∵△ABD ,△ACE 都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=150°,∵△ABD 和△FBC 都是等边三角形,∴BD=BA ,BF=BC ,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC ,在△ABC 与△DBF 中,BD BA DBF ABC BF BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DBF (SAS ),∴AC=DF=AE=4,同理可证:△ABC ≌△EFC (SAS ),∴AB=EF=AD=3,∴四边形AEFD 是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;∴∠FDA=180°-∠DFE=180°-150°=30°,过点A 作AM DF ⊥于点M , ∴1143622AEFD S DF AM DF AD ===⨯⨯=, 故④不正确;∴正确的个数是3个,故选:C .【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.二、填空题11.201812【分析】根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .【详解】∵点E 是BC 的中点,ED ∥AB ,EF ∥AC∴DE 、EF 是△ABC 的中位线∵等边△ABC 的边长为1∴AD=DE=EF=AF =12 则1C =1422⨯= 同理可求得:2C =1,3C =12发现规律:规律为依次缩小为原来的12 ∴2020C =201812 故答案为:201812.【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.12.①③④【分析】由“AAS ”可证△AOE ≌△COF ,△AHO ≌△CGO ,可得OE =OF ,HO =GO ,可证四边形EGFH 是平行四边形,由EF ⊥GH ,可得四边形EGFH 是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA ”可证△BOG ≌△COF ,可得OG =OF ,可证四边形EGFH 是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD 是菱形,∴AO =CO ,AD ∥BC ,AB ∥CD ,∴∠BAO =∠DCO ,∠AEO =∠CFO ,∴△AOE ≌△COF (AAS ),∴OE =OF ,∵线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,∴GH 过点O ,GH ⊥EF ,∵AD ∥BC ,∴∠DAO =∠BCO ,∠AHO =∠CGO ,∴△AHO ≌△CGO (AAS ),∴HO =GO ,∴四边形EGFH 是平行四边形,∵EF ⊥GH ,∴四边形EGFH 是菱形,∵点E 是AB 上的一个动点,∴随着点E 的移动可以得到无数个平行四边形EGFH ,随着点E 的移动可以得到无数个菱形EGFH ,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.13.①②③④【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,可得出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE2=,从而得到AE=AD,然后利用“角角边”证明△ABE 和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.14.【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°2=2 故答案为2.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.15.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,可证点B ,点A ,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB∥CD,S△ABC=1242=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=12S△AB'C=6cm2,故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B,点A,点B'三点共线是本题的关键.16.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.17.663【分析】==,得到△FEM是等边三角形,根据含30°直通过四边形ABCD是矩形以及CE CB BE角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC==,∵CE CB BE∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,2223-=KM EM∴NE=NK+KE=6+23∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+3∴22663-=+BN NE∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.18.(-2,0)【分析】先计算得到点D 的坐标,根据旋转的性质依次求出点D 旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形OABC 的两个顶点坐标为()0,0O ,()4,4B ,∴对角线的交点D 的坐标是(2,2), ∴22222OD =+=将菱形绕点O 以每秒45︒的速度逆时针旋转,旋转1次后坐标是(0,22),旋转2次后坐标是(-2,2),旋转3次后坐标是(-2,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-22旋转6次后坐标是(2,-2),旋转7次后坐标是(2,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,22由此得到点D 旋转后的坐标是8次一个循环,∵201982523÷=,∴第2019秒时,菱形两对角线交点D 的坐标为(-2,0) 故答案为:(-220).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D 的坐标依次求出旋转后的坐标得到变化规律是解题的关键.19.8或3根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF+EF =BC∴2AB+5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.20.102【分析】根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据BAD BEC ∠=∠证明BC=BE ,由此根据三角形的三线合一及勾股定理求出BF ,即可求出平行四边形的面积.【详解】过点B 作BF CD ⊥于点F ,如图所示.∵AE 是BAD ∠的平分线,∴DAE BAE ∠=∠.∵四边形ABCD 是平行四边形,∴53CD AB BC AD BAD BCE AB CD ====∠=∠,,,∥, ∴BAE DEA ∠=∠,∴DAE DEA ∠=∠,∴3DE AD ==,∴2CE CD DE =-=.∵BAD BEC ∠=∠,∴BCE BEC ∠=∠,∴BC=BE, ∴112CF EF CE ===, ∴22223122BF BC CF =-=-=∴平行四边形ABCD 的面积为225102BF CD ⋅==.故答案为:2【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.三、解答题21.(1)见解析;(2)相等,垂直;(3)成立,理由见解析【分析】(1)由等腰直角△ECF得到CE=CF,再由正方形ABCD进一步得到BE=DF,最后证明△ABE≌△ADF即可求解;(2)MN是△AEF的中位线,得到AE=2MN,又M是直角三角形ADF斜边上的中点,得到AF=2MD,再由(1)中的AE=AF即可得到MN=MD;由∠DMF=∠DAF+∠ADM,∠FMN=∠FAE,∠DAF=∠BAE,∠ADM=∠DAF=∠BAE,由此得到∠DMN=∠BAD=90°;(3)连接AE,同(1)中方法证明△ABE≌△ADF,进而得到AE=AF,此时MN是△AEF中位线,MD是直角△ADF斜边上的中线,证明方法等同(2)中即可求解.【详解】解:(1)证明:如图1中,∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF.(2)如图2中,MD,MN的数量关系是相等,MD、MN的位置关系是垂直,理由如下:∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,由(1)知:AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,。
八年级初二数学下学期平行四边形单元 易错题难题测试提优卷试题
八年级初二数学下学期平行四边形单元 易错题难题测试提优卷试题一、选择题1.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+2.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个A .2B .3C .4D .53.如图,在矩形ABCD 中,1,2AD AC AE =平分BAD ∠交CD 于点E ,给出以下结论:①ADE ∆为等腰直角三角形;②BOC ∆为等边三角形;③70DOE ︒∠=;④3;EOC EAC ∠=∠⑤OE 是ACD ∆的中位线.其中正确的结论有( )A .2个B .3个C .4个D .5个4.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( )①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥5.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个6.如图,在ABC ∆中,4BC =,BD 平分ABC ∠,过点A 作AD BD ⊥于点D ,过点D 作//DE CB ,分别交AB 、AC 于点E 、F ,若2EF DF =,则AB 的长为( )A .10B .8C .7D .67.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ;②△EOB ≌△CMB ;③四边形EBFD 是菱形;④MB ∶OE =3∶2.其中正确结论的个数是( )A.1 B.2 C.3 D.48.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A.2个B.3个C.4个D.5个9.如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为85,最小值为8,则菱形ABCD的边长为( )A.4 6B.10 C.12 D.1610.如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E 不与A、B重合),连接EF、CF,则下列结论中一定成立的是 ( )①∠DCF=12∠BCD;②EF=CF;③2BEC CEFS S∆∆<;④∠DFE=4∠AEFA.①②③④B.①②③C.①②D.①②④二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.12.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.13.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,在正方形ABCD 中,AC=62,点E 在AC 上,以AD 为对角线的所有平行四边形AEDF 中,EF 最小的值是_________.16.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.19.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.三、解答题21.如图,在四边形ABCD 中,AB ∥DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 23.综合与探究 如图1,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF ,解答下列问题:(1)研究发现:如果AB AC =,90BAC ∠=︒①如图2,当点D 在线段BC 上时(与点B 不重合),线段CF 、BD 之间的数量关系为______,位置关系为_______.②如图3,当点D 在线段BC 的延长线上时,①中的结论是否仍成立并说明理由. (2)拓展发现:如果AB AC ≠,点D 在线段BC 上,点F 在ABC ∆的外部,则当ACB =∠_______时,CF BD ⊥.24.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .25.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.26.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.27.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).28.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.29.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.30.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD于点E,F.(1)求证:四边形DEBF是平行四边形;(2)若四边形DEBF是菱形,则需要增加一个条件是_________________,试说明理由;(3)在(2)的条件下,若AB=8,AD=6,求EF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设PE=x,则PB=23x,PF=33x,AP=6-23x,由此先判断出AF PF,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大.从而求出m 的取值范围.【详解】如上图:设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ∵0030,120BPE EPF ∠=∠= ∴030APE ∠=由AP 、PF 的数量关系可知AF PF ⊥,060PAF ∠=如上图,作060BAM ∠=交BC 于M ,所以点F 在AM 上.当点P 与点B 重合时,CF+DF 最小.此时可求得33,37CF DF ==如上图,当点P 与点A 重合时,CF+DF 最大.此时可求得37,9CF DF ==∴3337379m +<<故选:D【点睛】此题考查几何图形动点问题,判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大是解题关键.2.B解析:B【分析】根据已知条件易证△ABE ≌△ADF ,根据全等三角形的性质即可判定①②;由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,即可判定③;设EC=FC=x ,由勾股定理和三角函数计算后即可判定④⑤.【详解】∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩== , Rt △ABE ≌Rt △ADF (HL ),∴BE=DF (故①正确).∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故③正确).设EC=FC=x ,由勾股定理,得:,2EF CG FG x ===, ∴EC ≠FG (⑤错误)在Rt △AEG 中,sin 60sin 602sin 60AG AE EF CG ︒︒︒===⨯=,AC ∴=,AB ∴=,BE x ∴==,BE DF x ∴+=-≠,(故④错误),综上所述,正确的结论为①②③,共3个,故选B .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题的关键.3.B解析:B【分析】由矩形的性质可得AO =CO =DO =BO ,∠DAB =∠ABC =∠DCB =∠CDA =90°,AD ∥BC ,AB ∥CD ,由角平分线的性质和平行线的性质可判断①,由锐角三角函数可求∠ACD =30°,即可判断②,由三角形内角和定理可求∠DOE 的度数,即可判断③④,由直角三角形的性质可求CE 的长,即可判断⑤.【详解】∵四边形ABCD 是矩形∴AO =CO =DO =BO ,∠DAB =∠ABC =∠DCB =∠CDA =90°,AD ∥BC ,AB ∥CD ∵AE 平分∠BAD∴∠DAE =∠EAB =45°∵AB ∥CD∴∠DEA =∠EAB =45°∴∠DEA =∠DAE =45°∴AD =DE ,且∠ADE =90°∴△ADE 是等腰直角三角形故①正确∵AD =12AC ,∠ADC =90° ∴∠ACD =30°∴∠OCB =60°,且OB =OC ∴△OBC 是等边三角形故②正确∵△OBC 是等边三角形∴OB =OC =BC∴OD =OA =AD =OC =OB∴∠ODA =∠OAD =∠DOA =60°,∠OCD =∠ODC =30°,且OD =DE∴∠DOE =280013︒-︒=75° 故③错误∵∠EAC =∠OAD−∠DAE =15°,∠EOC =∠DOC−∠DOE =180°−∠DOA−75°=120°−75°=45° ∴∠EOC =3∠EAC故④正确∵∠ACD =30°,∴AD=12AC ,AC=2AD∴,且DE =DO =AD ∴CE∴OE 不是△ACD 的中位线,故⑤错误故选:B .【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形的性质,求出∠ACD =30°是本题的关键.4.D解析:D【分析】先根据全等三角形进行证明,即可判断①和②,然后作辅助线,推出OD=OF ,得出四边形BEDF 是平行四边形,求出BM=DM 即可判断④和⑤,最后根据AE=CF ,即可判断⑥.【详解】①∵四边形ABCD 是平行四边形,∴AB ∥DC,AB=DC,∴∠BAC=∠ADC,在△ABE 和△DFC 中BAC ADC AB A F C E D C ∠=∠=⎧=⎪⎨⎪⎩∴△ABE≌△DFC(SAS ),∴BE=DF,故①正确.②∵△ABE≌△DFC,∴∠AEB=∠DFC,∴∠BEF=∠DFE,∴BE∥DF,故②正确.③根据已知的条件不能推AB=DE ,故③错误.④连接BD 交AC 于O ,过D 作DM⊥AC 于M ,过B 作BN⊥AC 于N,∵四边形ABCD 是平行四边形,∴DO=BO,OA=OC,∵AE=CF,∴OE=OF,∴四边形BEDF 是平行四边形,故④正确.⑤∵BN⊥AC,DM⊥AC,∴∠BNO=∠DMO=90°,在△BNO 和△DMO 中∠BNO=∠DMO ∠BON=∠DOM OB=OD ⎧⎪⎨⎪⎩△ADE △ABE ∴△BNO ≌△DMO (AAS )∴BN=DM11∵S =AE DM ,S =AE BN 22⨯⨯⨯⨯∴△ADE △ABE S =S ,故⑤正确.⑥∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,故⑥正确.故答案是D.【点睛】本题主要考查了全等三角形的判定和平行四边形的判定以及性质,熟练掌握相关的性质是解题的关键.5.B解析:B【分析】根据平行四边形的性质可得AD//BC ,AD=BC ,根据平行线的性质可得∠BEA=∠EAD ,根据等腰三角形的性质可得∠ABE=∠BEA ,即可证明∠EAD=∠ABE ,利用SAS 可证明△ABC ≌△EAD ;可得①正确;由角平分线的定义可得∠BAE=∠EAD ,即可证明∠ABE=∠BEA=∠BAE ,可得AB =BE =AE ,得出②正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠BEA=∠EAD ,∵AB=AE ,∴∠ABE=∠BEA ,∴∠EAD=∠ABE ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );故①正确;∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠ABE=∠BEA=∠BAE ,∴∠BAE =∠BEA ,∴AB =BE=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE =∠EAD =60°,∵△FCD 与△ABC 等底(AB =CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确.若AD=BF ,则BF =BC ,题中未限定这一条件,∴③不一定正确;如图,过点E 作EH ⊥AB 于H ,过点A 作AG ⊥BC 于G ,∵△ABE 是等边三角形,∴AG=EH ,若S △BEF =S △ABC ,则BF=BC ,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B .【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.6.D解析:D【分析】延长AD 、BC 交于点G ,根据三线合一性质推出ABG ∆是等腰三角形,从而可得D 是AG 的中点,E 是AB 的中点,再利用中位线定理即可得.【详解】如图,延长AD 、BC 交于点G∵BD 平分ABC ∠,AD BD ⊥于点D,90ABD GBD ADB GDB ∴∠=∠∠=∠=︒∴BAD G ∠=∠AB BG ∴=,D 是AG 的中点∵//DE BG∴E 是AB 的中点,F 是AC 的中点,DE 是ABG ∆的中位线,EF 是ABC ∆的中位线∴12,22EF BC BG DE === 又∵2EF DF =∴1DF =∴3DE EF DF =+=∴26BG DE ==∴6AB =故选:D.【点睛】本题考查了等腰三角形的判定定理与性质、中位线定理,通过作辅助线,构造等腰三角形是解题关键.错因分析:容易题.失分原因是对特殊三角形的性质及三角形的重要线段掌握不到位.7.C解析:C【解析】连接BD ,∵四边形ABCD 是矩形,∴AC=BD ,AC 、BD 互相平分,∵O 为AC 中点,∴BD 也过O 点,∴OB=OC ,∵∠COB=60°,OB=OC ,∴△OBC 是等边三角形,∴OB=BC=OC ,∠OBC=60°,在△OBF 与△CBF 中,FO FC BF BF OB BC ⎧⎪⎨⎪⎩=== ,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴∵OE=OF,∴MB:OE=3:2,∴④正确;故选C.点睛:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识,会综合运用这些知识点解决问题是解题的关键. 8.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S即可得出结论.【详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.9.B解析:B【分析】当点P和点A重合时,当点C和点Q重合时,PQ的值最大,当PQ⊥BC时,PQ的值最小,利用这两组数据,在Rt△ABQ中,可求得答案.【详解】当点P和点A重合时,当点C和点Q重合时,PQ的值最大,85PQ=当PQ⊥BC时,PQ的值最小,∴PQ=8,∠Q=90°,在Rt△ACQ中,()2285816.CQ=-=在Rt△ABQ中,设AB=BC=x,则BQ=16-x,∴AQ2+BQ2=AB2即82+(16-x)2=x2解之:x=10.故答案为:B.【点睛】本题考查菱形的性质和勾股定理的运用,解题关键是根据菱形的性质,判断出PQ最大和最小的情况.10.B解析:B【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【详解】解:①∵F是AD的中点,∴AF=FD.∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF.∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故①正确;延长EF,交CD延长线于M.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF.∵F为AD中点,∴AF=FD.在△AEF和△DFM中,A FDMAF DFAFE DFM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M.∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°.∵FM=EF,∴EF=CF,故②正确;③∵EF=FM,∴S△EFC=S△CFM.∵MC>BE,∴S△BEC<2S△EFC故③正确;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°﹣x ,∴∠EFC =180°﹣2x ,∴∠EFD =90°﹣x +180°﹣2x =270°﹣3x .∵∠AEF =90°﹣x ,∴∠DFE =3∠AEF ,故④错误.故答案为B .点睛:本题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF 是解题的关键.二、填空题11.200m【分析】如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M ,则四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形,△ABC 是等边三角形,由此即可解决问题.【详解】如图,延长AC 、BD 交于点E ,延长HK 交AE 于F ,延长NJ 交FH 于M由题意可知,四边形EDHF ,四边形MNCF ,四边形MKGJ 是平行四边形∵∠A =∠B =60°∴18060E A B ∠=-∠-∠=∴△ABC 是等边三角形∴ED =FM+MK+KH =CN+JG+HK ,EC =EF+FC =JN+KG+DH∴“九曲桥”的总长度是AE+EB =2AB =200m故答案为:200m .【点睛】本题考查了平行四边形、等边三角形、三角形内角和的知识;解题的关键是熟练掌握平行四边形、等边三角形、三角形内角和的性质,从而完成求解.12.21 【分析】 如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,23EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==, 60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,2212,232EF ME MF ME EF ∴===-=, 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.13.25【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出BE=10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴10(cm),∴25.故答案为:5【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.14.8或12【分析】根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA ,∠ABF=∠BFC ,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.【详解】在ABCD中,AB∥CD,BC=AD=5,∴∠BAE=∠DEA,∠ABF=∠BFC,∵BAD的平分线交CD于点E,∴∠BAE=∠DAE,∴∠DAE=∠DEA,∴DE=AD=5,同理:CF=BC=5,∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,故答案为:8或12.【点睛】此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.15.32【详解】解析:∵在正方形ABCD中,AC=62∴AB=AD=BC=DC=6,∠EAD=45°设EF与AD交点为O,O是AD的中点,∴AO=3以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=45°,2322,∴EF=2OE=3216.6【分析】过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=12PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=12AB=3,得到2PB+PD的最小值等于6.【详解】过点P作PE⊥AD交AD的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=12 PD,∵2PB+ PD=2(PB+12PD)=2(PB+PE),∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=12AB=3,∴2PB+ PD的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.17.②③【分析】根据菱形的性质可知AC⊥BD,所以在Rt△AFP中,AF一定大于AP,从而判断①;设∠BAE=x,然后根据等腰三角形两底角相等表示出∠ABE,再根据菱形的邻角互补求出∠ABE,根据三角形内角和定理列出方程,求出x的值,求出∠BFE和∠BE的度数,从而判断②③.【详解】解:在菱形ABCD中,AC⊥BD,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.18.16或10【分析】等腰三角形一般分情况讨论:(1)当DB'=DC=16;(2)当B'D=B'C时,作辅助线,构建平行四边形AGHD和直角三角形EGB',计算EG和B'G的长,根据勾股定理可得B'D的长;【详解】∵四边形ABCD是矩形,∴DC=AB=16,AD=BC=18.分两种情况讨论:(1)如图2,当DB'=DC=16时,即△CDB'是以DB'为腰的等腰三角形(2)如图3,当B'D=B'C时,过点B'作GH∥AD,分别交AB与CD于点G、H.∵四边形ABCD是矩形,∴AB∥CD,∠A=90°又GH∥AD,∴四边形AGHD是平行四边形,又∠A=90°,∴四边形AGHD是矩形,∴AG=DH,∠GHD=90°,即B'H⊥CD,又B'D=B'C,∴DH=HC=18CD=,AG=DH=8,3∵AE=3,∴BE=EB'=AB-AE=16-3=13,EG=AG-AE=8-3=5,在Rt△EGB'中,由勾股定理得:GB′2213512,∴B'H=GH×GB'=18-12=6,在Rt△B'HD中,由勾股定理得:B′D22+=6810综上,DB'的长为16或10.故答案为: 16或10【点睛】本题是四边形的综合题,考查了矩形的性质,勾股定理,等腰三角形一般需要分类讨论.19.2或14【分析】利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cm EF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1 图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.202【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1, ∴22112FG GC FC =+=+=,故答案为:2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.三、解答题21.(1)见解析;(2)11【分析】(1)根据题意先证明四边形ABCD 是平行四边形,再由AB=AD 可得平行四边形ABCD 是菱形;(2)根据菱形的性质得出OA 的长,根据直角三角形斜边中线定理得出OE=12AC ,在Rt ACE ∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD ∥,∴OAB DCA ∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE =-= 故答案为(2)11.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.23.(1)①=CF BD ,CF BD ⊥;②当点D 在BC 的延长线上时①中结论仍成立,详见解析;(2)45︒【分析】(1)①结论:CF 与BD 位置关系是垂直、数量关系是相等; 只要证明△BAD ≌△CAF,即可解决问题;②当点D 在BC 的延长线上时①的结论仍成立.证明方法类似;(2)过点A 作AG ⊥AC 交BC 于点G,理由(1)中的结论即可解决问题.【详解】解:(1)①相等(或=CF BD ),互相重直(或CF BD ⊥)理由如下:∵AB=AC,∠BAC=90︒,∴∠ABC=∠ACB=45︒,∵∠BAC=∠DAF,∴∠BAD=∠CAF,在△BAD 和△CAF 中,BA CA BAD CAF DA FA ⎧⎪∠∠⎨⎪⎩=== , ∴△BAD ≌△CAF (SAS ),∴BD=CF,∠ABD=∠ACF=45︒,∵∠ACB=45︒,∴∠FCB=90︒,∴CF⊥BD,CF=BD,故答案为CF⊥BD,CF=BD.②当点D在BC的延长线上时①的结论仍成立.理由:由正方形ADEF得 AD=AF,∠DAF=90︒.∵∠BAC=90︒,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又AB=AC,∴△DAB≌△FAC(SAS),∴CF=BD,∠ACF=∠ABD,∵∠BAC=90︒,AB=AC,∴∠ABC=45︒,∴∠ACF=45︒,∴∠BCF=∠ACB+∠ACF=90︒.即 CF⊥BD.(2)结论:当∠ACB=45︒时,CF⊥BD.理由:过点A作AG⊥AC交BC于点G,∴AC=AG,由(1)可知:△GAD≌△CAF,∴∠ACF=∠AGD=45︒,∴∠BCF=∠ACB+∠ACF=90︒,即CF⊥BD.故答案为45︒.【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.24.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,得出BC∥FG,BC=12FG,证出AD∥FH,AD∥FH,由平行四边形的判定方法即可得出结论;(3)连接EH,CH,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,∵AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.25.(1)CE=CF且CE⊥CF,理由见解析;(2)见解析;(3)10【分析】(1)根据正方形的性质,可证明△CBE≌△CDF(SAS),从而得出CE=CF,∠BCE=∠DCF,再利用余角的性质得到CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF(SAS),则结论可求.(3)过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据(2)的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得出DE.【详解】解:(1)CE=CF且CE⊥CF,证明:如图1,∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,又∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF,∠BCE=∠DCF,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD+∠DCF=90°,即CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,。
八年级初二数学第二学期平行四边形单元 易错题难题提优专项训练
八年级初二数学第二学期平行四边形单元 易错题难题提优专项训练一、选择题1.如图,已知平行四边形ABCD ,6AB =,9BC =,120A ∠=︒,点P 是边AB 上一动点,作PE BC ⊥于点E ,作120EPF ∠=︒(PF 在PE 右边)且始终保持33PE PF +=,连接CF 、DF ,设m CF DF =+,则m 满足( )A .313m ≥B .63m ≥C .313937m <+≤D .3337379m +<<+2.如图,在正方形ABCD 中,E ,F 分别为BC ,DC 的中点,P 为对角线AC 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .AB B .CEC .ACD .AF3.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点.设AM 的长为x ,则x 的取值范围是( )A .4≥x >2.4B .4≥x≥2.4C .4>x >2.4D .4>x≥2.44.如图,平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,且AB AE =,延长AB 与DE 的延长线交于点F ,连接AC ,CF .下列结论:①ABC EAD ∆∆≌;②ABE ∆是等边三角形;③AD BF =;④BEF ACD S S ∆∆=;⑤CEF ABE S S ∆∆=中正确的有( )A .1个B .2个C .3个D .4个5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为6和14,则b 的面积为()A.8 B.18 C.20 D.266.如图,正方形ABCD中,对角线AC、BD交于点O,折叠正方形纸片,使AD落在BC 上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E、G,连结GF,给出下列结论①∠AGD=110.5°;②S△AGD=S△OGD;③四边形AEFG是菱形;④BF=2OF;⑤如果S△OGF=1,那么正方形ABCD的面积是12+82,其中正确的有()个.A.2个B.3个C.4个D.5个7.如图的△ABC中,AB>AC>BC,且D为BC上一点.现打算在AB上找一点P,在AC上找一点Q,使得△APQ与以P、D、Q为顶点的三角形全等,以下是甲、乙两人的作法:甲:连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求;乙:过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求;对于甲、乙两人的作法,下列判断何者正确()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误乙正确8.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A .2个B .3个C .4个D .5个9.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,AB 长为半径画弧,交边AD 于点;②再分别以B ,F 为圆心画弧,两弧交于平行四边形ABCD 内部的点G 处;③连接AG 并延长交BC 于点E ,连接BF ,若BF =3,AB =2.5,则AE 的长为( )A .2B .4C .8D .510.如图,在正方形ABCD 中,AB =4,E 是CD 的中点,将BCE 沿BE 翻折至BFE ,连接DF ,则DF 的长度是( )A .5B .25C .355D .455二、填空题11.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.12.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.13.在ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则DEF 的周长为______.14.如图,直线1l ,2l 分别经过点(1,0)和(4,0)且平行于y 轴.OABC 的顶点A ,C 分别在直线1l 和2l 上,O 是坐标原点,则对角线OB 长的最小值为_________.15.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =DF =_________.19.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.22.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.24.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②25.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.26.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .27.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围. (3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)28.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD 交AD 于点H ,交BE 于点M .NH∥BE,NB∥HE,连接NE .若AB=4,AH=2,求NE 的长.29.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC =_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ,由此先判断出AF PF ⊥,然后可分析出当点P 与点B 重合时,CF+DF 最小;当点P 与点A 重合时,CF+DF 最大.从而求出m 的取值范围.【详解】如上图:设PE=x ,则PB=233x ,PF=33x ,AP=6-233x ∵0030,120BPE EPF ∠=∠=∴030APE ∠=由AP 、PF 的数量关系可知AF PF ⊥,060PAF ∠=如上图,作060BAM ∠=交BC 于M ,所以点F 在AM 上.当点P 与点B 重合时,CF+DF 最小.此时可求得33,37CF DF ==如上图,当点P 与点A 重合时,CF+DF 最大.此时可求得37,9CF DF ==∴3337379m +<<故选:D【点睛】此题考查几何图形动点问题,判断出AF PF⊥,然后可分析出当点P与点B重合时,CF+DF最小;当点P与点A重合时,CF+DF最大是解题关键.2.D解析:D【解析】【分析】连接DP,当点D,P,E在同一直线上时,由△PCF≌△PCB可得DP=BP,BP EP+的最小值为DE长,依据△ADF≌△DCE,AF=DE,即可得到BP EP+最小值等于线段AF的长.【详解】解:如图,连接DP,∵PC=PC, ∠PCD=∠PCB=45°∴△PCF≌△PCB∴BP=DP∴BP+PE =DP+PE∴当点D,P,E在同一直线上时,BP EP+的最小值为DE长,又∵AB=CD,∠ADF=∠ECD,DF=EC,∴△ADF≌△DCE∴AF=DE,∴BP EP+最小值等于线段AF的长,故选:D.【点睛】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.3.D解析:D【解析】【分析】根据勾股定理的逆定理求出△ABC是直角三角形,得出四边形AEPF是矩形,求出AM=12EF=12AP,求出AP≥4.8,即可得出答案.【详解】解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=12EF=12AP,当AP⊥BC时,AP值最小,此时S△BAC=12×6×8=12×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).∵P为边BC上一动点,当P和C重合时,AM=4,∵P和B、C不重合,∴x<4,综上所述,x的取值范围是:2.4≤x<4.故选:D.【点睛】本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定的应用,直角三角形的性质,关键是求出AP的范围和得出AM=12 AP.4.C解析:C【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF ,⑤正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴△ABE 是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE ,BC=AD ,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB=CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确;若AD 与AF 相等,即∠AFD=∠ADF=∠DEC ,即EC=CD=BE ,即BC=2CD ,题中未限定这一条件,∴③④不一定正确;故选C .【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.5.C解析:C【分析】由题意根据全等三角形的判定与性质,结合勾股定理和正方形的面积公式进行分析计算.【详解】解:∵a 、b 、c 都为正方形,a ,c 的面积分别为6和14,∴AC=CE,AB 2=6,DE 2=14,90ACF ︒∠=,∵90,90BAC BCA BCA DCE ︒︒∠+∠=∠+∠=,∴BAC DCE ∠=∠,在ABC 和CDE △中,ABC CDE BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC CDE AAS ≅,∴BC=DE,BC 2=DE 2=14,由勾股定理可知222AC AB BC =+,∴b 的面积为261420AC =+=.故选:C.【点睛】本题考查全等三角形的判定与性质以及勾股定理和正方形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.6.B解析:B【分析】①由四边形ABCD 是正方形,可得∠GAD =∠ADO =45°,又由折叠的性质,可求得∠ADG 的度数,从而求得∠AGD ;②证△AEG ≌△FEG 得AG =FG ,由FG >OG 即可得;③先计算∠AGE =∠GAD+∠ADG =67.5°,∠AED=∠AGD -∠EAG=67.5°,从而得到∠AGE =∠AED ,易得AE=AG ,由AE =FE 、AG =FG 即可得证;④设OF =a ,先求得∠EFG =45°,易得∠GFO =45°,在Rt △OFG 中,GFa ,从而可证得BF =EF =GF;⑤由S △OGF =1求出a 2,再表示出BE 及AE 的长,利用正方形的面积公式可得出结论.【详解】解:∵四边形ABCD 是正方形,∴∠EAG=∠GAD =∠ADO =45°,∠AOB=90°,由折叠的性质可得:∠ADG =12∠ADO =22.5°, ∴∠AGD =180°-∠GAD -∠ADG =112.5°,故①错误;由折叠的性质可得:AE=EF,∠AEG=∠FEG,在△AEG和△FEG中,AE FEAEG FEGEG EG=⎧⎪∠=∠⎨⎪=⎩,∴△AEG≌△FEG(SAS),∴AG=FG,∵在Rt△GOF中,AG=FG>GO,∴S△AGD>S△OGD,故②错误;∵∠AGE=∠GAD+∠ADG=67.5°,∠AED=∠AGD-∠EAG=67.5°,∴∠AGE=∠AED,∴AE=AG,又∵AE=FE,AG=FG,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故③正确;设OF=a,∵△AEG≌△FEG,∴∠EFG=∠EAG=45°,又∵∠EFO=90°,∴∠GFO=45°,∴在Rt△OFG中,GF,∵∠EFO=90°,∠EBF=45°,∴在Rt△EBF中,BF=EF=GFa,即BFOF,故④正确;∵S△OGF=1,∴12OF2=1,即12a2=1,则a2=2,∵BF=EFa,且∠BFE=90°,∴BE=2a,又∵AE=EF,∴AB=AE+BE+2a=)a,则正方形ABCD的面积是)2a2=(6+=12+故⑤正确;故选:B.【点睛】本题考查了四边形的综合,熟练掌握正方形的性质、折叠的性质、等腰直角三角形的性质以及全等三角形、菱形的判定与性质等知识是解题的关键.7.A【分析】如图1,根据线段垂直平分线的性质得到PA=PD,QA=QD,则根据"SSS"可判断APQ≌DPQ,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ 为平行四边形,则根据平行四边形的性质得到PA=DQ,PD=AQ,则根据"SSS"可判断△APQ≌△DQP,则可对乙进行判断.【详解】解:如图1,∵PQ垂直平分AD,∴PA= PD,,QA= QD,∵PQ= PQ,∴△APQ≌△DPQ (SSS),所以甲正确;如图2,∵PD ∥AQ,DQ ∥AP,∴四边形APDQ为平行四达形,∴PA=DQ,,PD=AQ,∵PQ=QP,∴△APQ≌△DQP (SSS),所以乙正确;故选:A.【点睛】本题考查了作图-复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作,也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.8.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S即可得出结论.①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.9.B解析:B【分析】连接EF,先证AF=AB=BE,得四边形ABEF是菱形,据此知AE与BF互相垂直平分,继而得OB的长,由勾股定理求得OA的长,继而得出答案.【详解】由题意得:AF=AB,AE为∠BAD的角平分线,则∠BAE=∠FAE.又∵四边形ABCD是平行四边形,则AD∥BC,∠BAE=∠FAE=∠BEA,∴AF=AB=BE.连接EF ,则四边形ABEF 是菱形,∴AE 与BF 互相垂直平分,设AE 与BF 相交于点O ,OB 2BF ==1.5.在Rt △AOB 中,OA 22222515AB OB =-=-=..2,则AE =2OA =4.故选B . 【点睛】本题考查了作图﹣复杂作图,解题的关键是掌握菱形的性质与判定,平行四边形的性质,角平分线的尺规作图方法等.10.D解析:D【分析】由勾股定理可求BE 的长,由折叠的性质可得CE =EF =2,BE ⊥CF ,FH =CH ,由面积法可求CH =45,由勾股定理可求EH 的长,由三角形中位线定理可求DF =2EH =45. 【详解】解:如图,连接CF ,交BE 于H ,∵在正方形ABCD 中,AB =4,E 是CD 的中点,∴BC =CD =4,CE =DE =2,∠BCD =90°,∴BE 2216425BC CE +=+=∵将△BCE 沿BE 翻折至△BFE ,∴CE =EF =2,BE ⊥CF ,FH =CH ,∵S △BCE =12×BE×CH =12×BC×CE , ∴CH 45, ∴22162545CE CH -=-= ∵CE =DE ,FH =CH ,∴DF =2EH =455, 故选:D . 【点睛】 本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.二、填空题11.222+ 【分析】由题意根据三角形的中位线的性质得到EF=12PD ,得到C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ,当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;并作D 关于AB 的对称点D ′,连接CD ′交AB 于P ,进而分析即可得到结论.【详解】解:∵E 为CD 中点,F 为CP 中点,∴EF=12PD , ∴C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ∴当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;如图,作D 关于AB 的对称点T ,连接CT ,则PD=PT ,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT ++=∵△CDP 的周长=CD+DP+PC=CD+PT+PC ,∵PT+PC ≥CT ,∴PT+PC ≥42∴PT+PC 的最小值为2,∴△PDC 的最小值为4+∴C △CEF =12C △CDP =2.故答案为:2.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.12.4:9【分析】设DP =DN =m ,则PN m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN m ,∴m=MC ,,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.13.15.5【分析】先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得1 4.52EF BC ==,最后根据三角形的周长公式即可得. 【详解】由折叠的性质得:,AE DE EAD EDA =∠=∠AD 是BC 边上的高,即AD BC ⊥90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒B BDE ∴∠=∠BE DE ∴=1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ====⨯= 又,AE BE AF CF ==∴点E 是AB 的中点,点F 是AC 的中点EF ∴是ABC 的中位线119 4.522EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=故答案为:15.5.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.14.5【分析】过点B 作BD ⊥l 2,交直线l 2于点D ,过点B 作BE ⊥x 轴,交x 轴于点E .则OABC 是平行四边形,所以OA=BC ,又由平行四边形的性质可推得∠OAF=∠BCD ,则可证明△OAF ≌△BCD ,所以OE 的长固定不变,当BE 最小时,OB 取得最小值,从而可求.【详解】解:过点B 作BD ⊥l 2,交直线x=4于点D ,过点B 作BE ⊥x 轴,交x 轴于点E ,直线l 1与OC 交于点M ,与x 轴交于点F ,直线l 2与AB 交于点N .∵四边形OABC 是平行四边形,∴∠OAB=∠BCO ,OC ∥AB ,OA=BC ,∵直线l 1与直线l 2均垂直于x 轴,∴AM ∥CN ,∴四边形ANCM 是平行四边形,∴∠MAN=∠NCM ,∴∠OAF=∠BCD ,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC ,在△OAF 和△BCD 中,FOA DBC OA BCOAF BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAF ≌△BCD (ASA ),∴BD=OF=1,∴OE=4+1=5,∴OB=22OE BE +.由于OE 的长不变,所以当BE 最小时(即B 点在x 轴上),OB 取得最小值,最小值为OB=OE=5.故答案为:5.【点睛】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质,以及勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键. 15.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×2=故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.16.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可17.6【分析】先证明△AEB≌△FEB≌△DEF,从而可知S△ABE =13S△DAB,即可求得△ABE的面积.【详解】解:由折叠的性质可知:△AEB≌△FEB ∴∠EFB=∠EAB=90°∵ABCD为矩形∴DF=FB∴EF垂直平分DB∴ED=EB在△DEF和△BEF中DF=BF EF=EF ED=EB∴△DEF≌△BEF∴△AEB≌△FEB≌△DEF∴13666AEB FEB DEF ABCDS S S S∆∆∆====⨯=矩形.故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.18.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,22BC=,∴BE=122BC=,DF=2DE,在Rt△EMB中,EM2+BM2=BE2且EM=BM∴EM=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,19.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.20.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题21.(1)P(103,2);(2)(52,2)或(﹣52,2)(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=35x,设P(m,35m),根据S△POB=13S矩形OBCD,列方程即可得到结论;(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=35,∴直线OC的解析式为y=35 x,∵点P在矩形的对角线OC上,∴设P(m,35 m),∵S△POB=13S矩形OBCD,∴12⨯5×35m=13⨯3×5,∴m=103,∴P(103,2);(2)∵S△POB=13S矩形OBCD,∴设点P的纵坐标为h,∴12h×5=133⨯⨯5,∴点P 在直线y =2或y =﹣2上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,∴4=5n ,∴n =45, ∴直线OE 的解析式为y =45x , 当y =2时,x =52, ∴P (52,2), 同理,点P 在直线y =﹣2上,P (52,﹣2), ∴点P 的坐标为(52,2)或(﹣52,2). 【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P 在位置是解题的关键.22.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS );∴△DGF ≌△CGH, ∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴2422AB CD AD ,∴22AE =,∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.23.(1)BD ⊥CF ,CF=BC-CD ;(2)CF=BC+CD ,见解析;(3)①CF=CD−BC ,②等腰三角形,见解析【分析】(1)先说明△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF ⊥BD 、CF=BD ,又 BD+CD=BC, CF=BC-CD ;(2)先利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF-CD=BC ; (3)①与(2)同理可得BD=CF ,然后结合图形可得CF=CD-BC ;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF ,然后利用“边角边”证明△BAD ≌△CAF ,得∠ACF=∠ABD ,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12 DF ,再根据正方形的对角线相等求出OC=OA ,从而得到△AOC 是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF 是正方形∴AD=AF ,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD 和△CAF 中,AB=AC ,∠BAD=∠CAF ,AD=AF ,∴△BAD ≌△CAF(SAS),∴BD=CF ,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF ⊥BC∵BD+CD=BC∴CF+CD=BC ;故答案为:BD ⊥CF ,CF=BC-CD ;(2)证明:∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°,∵∠BAD=∠BAC+∠DAC ,。
八年级初二数学下学期平行四边形单元 易错题难题测试提优卷
19.如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作平行四边形MCNB,连接MN,则MN的最小值是______
八年级初二数学下学期平行四边形单元 易°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,则EF的长度为( )
A. B. C. D.5
2.如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=28.8.其中正确结论的个数是()
21.如图,在四边形 中, ∥ , ,对角线 , 交于点 , 平分 ,过点 作 交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若 , ,求线段 的长.
22.如图1所示,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AE、AF.
(1)试判断四边形AGFP的形状,并说明理由.
(2)若AB=1,BC=2,求四边形AGFP的周长.
24.如图,在矩形 中, 是 的中点,将 沿 折叠,点 的对应点为点 .
图1图2
(1)填空:如图1,当点 恰好在 边上时,四边形 的形状是________;
(2)如图2,当点 在矩形 内部时,延长 交 边于点 .
A.22B.24C.44D.48
8.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是( )
平行四边形单元 易错题难题测试提优卷试题
(3)如图②,连接 ,当 为何值时,四边形 是矩形?并说明理由.
24.如图,在平行四边形 中, 的平分线交 于点 ,交 的延长线于 ,以 、 为邻边作平行四边形 .
(1)求证:四边形 是菱形;
(2)连结 、 ,若 ,则 是等边三角形吗?为什么?
(3)若 , , , 是 的中点,求 的长.
A. B. C. D.
4.如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为()
A.2B.3C. D.
5.如图,在矩形ABCD中,AB=2,BC=4,P为边AD上一动点,连接BP,把△ABP沿BP折叠,使A落在A′处,当△A′DC为等腰三角形时,AP的长为()
① ;② 点坐标为 ;③四边形 的面积为16;④ .其中正确的说法个数有()
A.4B.3C.2D.1
10.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为( )
A.0.5B.2.5C. D.1
二、填空题
8.如图,在平行四边形 中, 、 是对角线 上的两点且 ,下列说法中正确的是()
① ;② ;③ ;④四边形 为平行四边形;⑤ ;⑥ .
A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥
9.如图,在平面直角坐标系中, 点坐标为 ,点 从点 出发以1个单位长度/秒的速度沿 轴正半轴方向运动,同时,点 从点 出发以1个单位长度/秒的速度沿 轴负半轴方向运动,设点 、 运动的时间为 秒.以 为斜边,向第一象限内作等腰 ,连接 .下列四个说法:
18.如图,菱形 的两个顶点坐标为 , ,若将菱形绕点 以每秒 的速度逆时针旋转,则第 秒时,菱形两对角线交点 的坐标为__________.
平行四边形单元 易错题难题测试提优卷
平行四边形单元 易错题难题测试提优卷一、解答题1.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由. 2.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.3.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)4.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②5.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.6.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M从点C出发,沿线段CB以每分钟10个单位的速度运动,过M作//MN AB 交y轴于N,连接AN.设运动时间为t分钟,当四边形ABMN为平行四边形时,求t的值. (3)P为直线BC上一点,在坐标平面内是否存在一点Q,使得以O、B、P、Q为顶点的四边形为菱形,若存在,求出此时Q的坐标;若不存在,请说明理由.7.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.8.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.(1)求证:AG AE=(2)过点F作FP AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于H,.求证:NH=FM9.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .10.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12CBE ABF ∠=∠.(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;(2)如图2,当32b a =时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)AE t =;122AD t =-;DF t =;(2)证明见解析;(3)3t =;理由见解析.【分析】(1)根据题意用含t 的式子表示AE 、CD ,结合图形表示出AD ,根据直角三角形的性质表示出DF ;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.【详解】解:(1)由题意得,AE t =,2CD t =,则122AD AC CD t =-=-,∵DF BC ⊥,30C ∠=︒,∴12DF CD t == (2)∵90ABC ∠=︒,DF BC ⊥,∴AB DF , ∵AE t =,DF t =,∴AE DF =,∴四边形AEFD 是平行四边形;(3)当3t =时,四边形EBFD 是矩形,理由如下:∵90ABC ∠=︒,30C ∠=︒,∴162BC AC cm ==, ∵BE DF ∥, ∴BE DF =时,四边形EBFD 是平行四边形,即6t t -=,解得,3t =,∵90ABC ∠=︒,∴四边形EBFD 是矩形,∴3t =时,四边形EBFD 是矩形.【点睛】本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.2.(1)B (12,4);(2)52t s =;(3)58,4,3,4,2,4,,42 【分析】(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.【详解】解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,四边形OABC 是平行四边形,OA BC ,//OA BC , A ,C 的坐标分别为(10,0), (2,4), 10OA ∴=,2OE AF , 10BC ∴=,(12,4)B ;(2)设点P 运动t 秒时,四边形PCDA 是平行四边形,由题意得:102PC t =-,点D 是OA 的中点, 152OD BC AD OA ,四边形PCDA 是平行四边形,PC AD ,即1025t -=,52t ∴=, ∴当52t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PDOD 时,过1P 作1PE OA 于 E ,则14PE ,3DE ∴=,1(8,4)P ,又D ,C 的坐标分别为()5,0,(2,4), ∴225245CD ,即有,当点P 与点C 重合时,5PDOD ,2,4P ; ②当5POOD 时,过2P 作2P G OA 于 G , 则24P G ,3OG ∴=,2(3,4)P ;③当PD OP =时,过3P 作3P F OA 于 F ,则34P F ,52OF =, 35(2P ,4); 综上所述:当ODP ∆是等腰三角形时,点P 的坐标为(8,4), 5(2,4),(3,4),(2,4). 【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.3.(1)见解析;(2)222MN BN DM =+,理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO ,得∠ABO=∠BAO ,∠OBM=∠OMB ,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD 上方作AF ⊥AN ,使AF=AN ,连接DF 、MF ,证△ABN ≌△ADF (SAS ),得BN=DF ,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM ≌△FAM (SAS ),得MN=MF ,在Rt △FDM 中,由勾股定理得FM 2=DM 2+FD 2,进而得出结论;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,则△PCQ ≌△ECQ ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP ,△PCE 是等腰直角三角形,得CE=CP=2PE ,证△BCE ≌△DCP (SAS ),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=PE=6,即可得出PC 的长. 【详解】解:(1)证明:四边形ABCD 是正方形,90ABC BAD ∴∠=∠=︒,45ABD ADB ∠=∠=︒,ME BD ⊥,90BME ∴∠=︒, O 是BE 的中点,12AO MO BE BO EO ∴====, ABO BAO ∴∠=∠,OBM OMB ∠=∠,22290AOM AOE MOE ABO MBO ABD ∴∠=∠+∠=∠+∠=∠=︒;(2)222MN BN DM =+,理由如下:在AD 上方作AF AN ⊥,使AF AN =,连接DF 、MF ,如图2所示:则90NAF ∠=︒,四边形ABCD 是正方形,AB AD ∴=,90BAD NAF ∠=∠=︒,BAN DAF ∴∠=∠, 45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在ABN ∆和ADF ∆中,AB AD BAN DAF AN AF =⎧⎪∠=∠⎨⎪=⎩,()ABN ADF SAS ∴∆≅∆,BN DF ∴=,45DAF ABN ∠=∠=︒,90FDM ADB ADF ∴∠=∠+∠=︒,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在NAM ∆和FAM ∆中,AN AF NAM FAM AM AM =⎧⎪∠=∠⎨⎪=⎩,()NAM FAM SAS ∴∆≅∆,MN MF ∴=,在Rt FDM ∆中,222FM DM FD =+,即222MN BN DM =+;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,如图3所示: 则PCQ ECQ ∆≅∆,135ECQ PCQ ∠=∠=︒,9EQ PQ ==,36090PCE PCQ ECQ ∴∠=︒-∠-∠=︒,BCE DCP ∴∠=∠,PCE ∆是等腰直角三角形,2CE CP ∴==, 在BCE ∆和DCP ∆中,BC DC BCE DCP CE CP =⎧⎪∠=∠⎨⎪=⎩,()BCE DCP SAS ∴∆≅∆,45CBE CDB CBD ∴∠=∠=∠=︒,90EBQ ∴∠=︒,90PBE ∴∠=︒,2PB =,9PQ =,7∴=-=,BQ PQ PB2222∴=-=-=,9742BE EQ BQ2222∴=+=+=,2(42)6PE PB BE2∴==;PC PE32故答案为:32.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.4.猜想与证明:猜想DM与ME的数量关系是:DM=ME,证明见解析;拓展与延伸:(1)DM=ME,DM⊥ME;(2)证明见解析【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM与ME的数量关系是:DM=ME.证明:如图①,延长EM交AD于点H.①∵四边形ABCD、四边形ECGF都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°. ∴AD ∥EF.∴∠AHM =∠FEM.又∵AM =FM ,∠AMH =∠FME , ∴△AMH ≌△FME.∴HM =EM.又∵∠HDE =90°,∴DM =12EH =ME ; (1)∵四边形ABCD 和CEFG 是正方形, ∴AD ∥EF ,∴∠EFM=∠HAM ,又∵∠FME=∠AMH ,FM=AM ,在△FME 和△AMH 中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FME ≌△AMH (ASA )∴HM=EM ,在RT △HDE 中,HM=EM ,∴DM=HM=ME ,∴DM=ME .∵四边形ABCD 和CEFG 是正方形, ∴AD=CD ,CE=EF ,∵△FME ≌△AMH ,∴EF=AH ,∴DH=DE ,∴△DEH 是等腰直角三角形,又∵MH=ME ,故答案为:DM =ME ,DM ⊥ME ; (2)证明:如图②,连结AC.②∵四边形ABCD 、四边形ECGF 都是正方形, ∴∠DCA =∠DCE =∠CFE =45°, ∴点E 在AC 上.∴∠AEF=∠FEC=90°.又∵点M是AF的中点,∴ME=12 AF.∵∠ADC=90°,点M是AF的中点,∴DM=12 AF.∴DM=ME.∵ME=12AF=FM,DM=12AF=FM,∴∠DFM=12(180°-∠DMF),∠MFE=12(180°-∠FME),∴∠DFM+∠MFE=12(180°-∠DMF)+12(180°-∠FME)=180°-12(∠DMF+∠FME)=180°-12∠DME.∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,∴180°-12∠DME=135°.∴∠DME=90°.∴DM⊥ME.【点睛】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.5.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.【分析】(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题.(2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1).(3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1).【详解】解:(1)探究问题:结论:AD=AB+DC.理由:如图①中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,CE=BE,∠BAF=∠F,∠AEB=∠FEC,∴△ABE≌△FEC(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD.故答案为AD=AB+DC.(2)方法迁移:结论:AB=AF+CF.证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC∴△AEB≌△GEC(AAS)∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG,∵∠BAG∠G,∴∠FAG=∠G,∴FA=FG,∵CG =CF+FG ,∴AB =AF+CF .(3)联想拓展:结论;AB =DF+CF .证明:如图③,延长AE 交CF 的延长线于点G ,∵E 是BC 的中点,∴CE =BE ,∵AB ∥CF ,∴∠BAE =∠G ,在△AEB 和△GEC 中,BAE G AEB GEC BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△GEC ,∴AB =GC ,∵∠EDF =∠BAE ,∴∠FDG =∠G ,∴FD =FG ,∴AB =DF+CF .【点睛】本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.(1)123y x =-+;(2)t=23s 时,四边形ABMN 是平行四边形;(3)存在,点Q 坐标为:618,55⎛⎫ ⎪⎝⎭或(3, 1)-或( 3,1)-或155,88⎛⎫- ⎪⎝⎭. 【分析】(1)如图1中,作BH ⊥x 轴于H .证明△COA ≌△AHB (AAS ),可得BH=OA=1,AH=OC=2,求出点B 坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N 的坐标,再求出AN ,BM ,CM 即可解决问题. (3)如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3,当OB 为菱形的对角线时,可得菱形OP 2BQ 2,点Q 2在线段OB 的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH ⊥x 轴于H .∵A (1,0)、C (0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH ,∵AC=AB ,∴△COA ≌△AHB (AAS ),∴BH=OA=1,AH=OC=2,∴OH=3,∴B (3,1),设直线BC 的解析式为y=kx+b ,则有231b k b =⎧⎨+=⎩, 解得:132k b ⎧=-⎪⎨⎪=⎩,∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+,∴10,3 N⎛⎫ ⎪⎝⎭,∴10BM AN==,∵B(3,1),C(0,2),∴BC=10,∴2103CM BC BM=-=,∴2102103t=÷=,∴t=23s时,四边形ABMN是平行四边形;(3)如图3中,如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,连接OQ交BC于E,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ 是正方形.理由是:如图,设MQ ,DE 分别交AF 于点G ,O ,PQ 交DE 于点H ,∵点M ,N ,P ,Q 分别为AE ,EF ,FD ,AD 的中点,∴MQ=PN=12DE ,PQ=MN=12AF ,MQ ∥DE ,PQ ∥AF ,∴四边形OHQG 是平行四边形,∵AF=DE ,∴MQ=PQ=PN=MN ,∴四边形MNPQ 是菱形,∵AF ⊥DE ,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ 是正方形.考点:1.四边形综合题;2.综合题.8.(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质证得BG=DE ,利用SAS 可证明ABG ≌ADE ,再利用全等的性质即可得到结论;(2)过M 作MK ⊥BC 于K ,延长EF 交AB 于T ,根据ASA 可证明MHK △≌AED ,得到AE=MH ,再利用AAS 证明TNF △≌DAE △,得到NF=AE ,从而证得MH=NF ,即可得到结论.【详解】证明:(1)∵四边形ABCD 与四边形CEFG 均为正方形,∴AB=AD=BC=CD ,CG=CE ,∠ABG=∠ADE=90°,∴BC -GC=CD -EC ,即BG=DE ,∴ABG ≌ADE ,∴AG=AE ;(2)过M 作MK ⊥BC 于K ,则四边形MKCD 为矩形,∴∠MKH=∠ADE=90°,MK=CD ,∠AMK=90°,∴MK=AD ,∠AMP+∠HMK=90°,又∵FP AE ,∴∠EAD+∠AMP=90°,∴∠HMK=∠EAD ,∴MHK △≌AED ,∴MH=AE ,延长EF 交AB 于T ,则四边形TBGF 为矩形,∴FT=BG ,∠FTN=∠ADE=90°,∵ABG ≌ADE ,∴DE=BG ,∴FT=DE ,∵FP ⊥AE ,∠DAB=90°,∴∠N+∠NAP=∠DAE+∠NAP=90°,∴∠N=∠DAE ,∴TNF △≌DAE △,∴FN=AE ,∴FN=MH ,∴FN -FH=MH -FH ,∴NH=FM .【点睛】本题考查了正方形的性质,矩形的判定与性质,及全等三角形的判定与性质,熟练掌握各性质、判定定理是解题的关键.9.(1)14;(2)mb AG a ;(3)53 【分析】(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O 作ON ⊥AD 于N ,OM ⊥AB 于M ,根据图形的面积得到14mb =14AG •a ,于是得到结论; (3)如图③,同理:过O 作QM ⊥AB ,PN ⊥AD ,先根据平行四边形面积可得OM 和ON 的比,同理可得S △BOE =S △AOG ,根据面积公式可计算AG 的长.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴OA=OC,∠OAG=∠EBO=45°,∠AOB=90°,∵EF⊥GH,∴∠EOG=90°,∴∠BOE=∠AOG(SAS),∴△BOE≌△AOG,∴S△BOE=S△AOG,又∵S△AOB=14S四边形ABCD,∴S四边形AEOG=14S正方形ABCD,故答案为:14.(2)解:如图②,过O作OM⊥AB于M,ON⊥AD于N,∴S△AOB=S△AOD=14S矩形ABCD,∵S四边形AEOG=14S矩形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=12BE•OM=14mb,S△AOG=12AG•ON=14AG•a,∴mb=AG•a,∴AG=mba;(3)如图③,过O作OM⊥AB于M,ON⊥AD于N,∵S △AOB =S △AOD =14S ▱ABCD ,S 四边形AEOG =14S ▱ABCD , ∴S △AOB =S 四边形AEOG ,∴S △BOE =S △AOG , ∵S △BOE =12BE •OM =12OM ,S △AOG =12AG •ON , ∴OM =AG •ON ,∵S ▱ABCD =3×2OM =5×2 ON ,∴53OM ON =, ∴AG =53; 【点睛】 本题是四边形综合题,考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S △BOE =S △AOG 是解决问题的关键.10.(1)见解析;(2)①2ABE BFC ∠=∠;②见解析;③732【分析】(1)证明()BAE BCF ASA ∆≅∆可得结论.(2)①结论:2ABE BFC ∠=∠.如图2中,设EBC x ∠=,BFC y ∠=,则2ABF x ∠=,利用三角形内角和定理结合已知条件即可解决问题.②将ABE ∆绕BE 翻折得到BEH ∆,延长BH 交CD 于T ,连接ET .设2AB CD k ==,则3AD BC k ==,利用全等三角形的性质解决问题即可. ③求出CF ,利用三角形的面积公式,矩形的面积公式即可解决问题.【详解】解:(1)证明:如图1中,四边形ABCD 是矩形,90ABC BCD BCF ∴∠=∠=∠=︒,60EBC =︒∠,12CBE ABF ∠=∠, 120ABF ∴∠=︒,906030ABE ︒∴-︒∠==︒,1209030CBF ∠=︒-︒=︒,ABE CBF ∴∠=∠,AB BC =,()BAE BCF ASA ∴∆≅∆,BE BF ∴=.(2)①结论:290EBC BFC ∠+∠=︒.理由:如图2中,设EBC x ∠=,BFC y ∠=,则2ABF x ∠=,90BCF ∠=︒,90FBC y ∴∠=︒-,=2ABE FBC ABF EBC x x x ∠+∠=∠-∠-=,(90)ABE x y ∴∠=-︒-,90ABE EBC ∠+∠=︒,(90)90x y x ∴-︒-+=︒,2180x y ∴+=︒,2180EBC BFC ∴∠+∠=︒,()290180ABE BFC ∴︒-∠+∠=︒,2ABE BFC ∴∠=∠.②证明:将ABE ∆绕BE 翻折得到BEH ∆,延长BH 交CD 于T ,连接ET .设2AB CD k ==,则3AD BC k ==,ABE EBH ∠=∠,12EBC ABF ∠=∠, FBC CBT ∴∠=∠,90FBC F CBT BTC ∠+∠=∠+∠=︒,F BTC ∴∠=∠,BF BT ∴=,CT CF =,DE AE EH ==,ET ET =,90D EHT ∠=∠=︒,Rt ETD Rt ETH(HL)∴∆≅∆,DT TH ∴=,在Rt BCT ∆中,则有222(2)(3)(2)k x k k x +=+-, 解得98x k =, 2BF CF BT CT BH TH CT BH TD TC BH CD AB ∴+=+=++=++=+=.③由②可知,3BC k =,97288CF CR k k k ==-=, ∴2173728632BCFABCD k k S S k ∆⋅⋅==矩形. 【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.。
平行四边形单元 易错题难题测试提优卷试题
平行四边形单元 易错题难题测试提优卷试题一、解答题1.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积2.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 3.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.4.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =.(1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.5.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52.(1)如图1,求证:DG =BE ;(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .①连结BH ,BG ,求BH BG的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.6.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②7.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.8.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.9.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试题
八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试题一、解答题1.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处)①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由;()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______;2.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.3.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4). (1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 32; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.4.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+5.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长. 6.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.7.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”. (1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.8.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DCAE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O .(1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.9.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数是否发生改变?探究问题:(1)首先考察点的两个特殊位置:①当点与点重合时,如图1所示,____________②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.10.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①6;②结论://P EC A ;(2)为4和16. 【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题.()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴=-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE , 即PA BE ⊥,PB PC PE ==, 90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=,在Rt BQC 中,222CQ BC BQ +=,222(10x)8(x 6)∴-+=+,x 4∴=, DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB , DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=, AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16. 故答案为4和16. 【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.(1)证明见解析;(2)能,10;(3)152,理由见解析;【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED中,∵∠DEA=90°,∠A=60°,AE=2t∴AD=4t,又∵AC=60cm,CD=4t,∴AD+CD=AC,8t=60,∴t=152.即t=152时,∠FDE=∠DEA=90°,△DEF为直角三角形.【点睛】本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.3.(1)见解析;(2)t=2;(3)t=1.【分析】(1)由菱形的性质可得AB=CD,AB∥CD,可求CF=AE,可得结论;(2)由菱形的性质可求AD=2cm,∠ADN=60°,由直角三角形的性质可求AN=3DN=3cm,由三角形的面积公式可求解;(3)由菱形的性质可得EF⊥GH,可证四边形DFEM是矩形,可得DF=ME,由直角三角形的性质可求AM=1,即可求解.【详解】证明:(1)∵动点E、F分别从点B、D同时出发,都以0.5cm/s的速度向点A、C运动,∴DF=BE,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴CF=AE,∴四边形AECF是平行四边形,∴AF∥CE;(2)如图1,过点A作AN⊥CD于N,∵在菱形ABCD中,AB=2cm,∠ADC=120°,∴AD=2cm,∠ADN=60°,∴∠NAD=30°,∴DN=12AD=1cm,AN33cm,∴S△ADF=12×DF×AN=12×12332,∴t=2;(3)如图2,连接GH,EF,过点D作DM⊥AB于M,∵四边形AECF是平行四边形,∴FA=CE,∵点G是AF的中点,点H是CE的中点,∴FG=CH,∴四边形FGHC是平行四边形,∴CF∥GH,∵四边形EHFG为菱形,∴EF⊥GH,∴EF⊥CD,∵AB∥CD,∴EF⊥AB,又∵DM⊥AB,∴四边形DFEM是矩形,∴DF=ME,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1cm,∵AM+ME+BE=AB,∴1+12t+12t=2,∴t=1.【点睛】本题是四边形综合题,考查了菱形的性质,直角三角形的性质,矩形的判定和性质,灵活运用这些性质解决问题是本题的关键.4.(1)证明见解析;(2)62BE 3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH,∠H=∠AFE,再证明四边形ACGE是平行四边形即可证明AE=CG,由此可利用“AAS”可证明全等;(2)证明△AEF≌△DGF(AAS)可得△DGF≌△CGH,所以可得12AE DG CG CD,再结合等腰直角三角形的性质即可求得CD,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论.【详解】解:(1)证明:∵四边形ABCD 为平行四边形, ∴AB//CD ,AD//BC , ∴∠E=∠EGD ,∠H=∠DFG , ∵∠CGH=∠EGD ,∠DFG=∠AFE , ∴∠E=∠CGH ,∠H=∠AFE , ∵//EH AC ,AB//CD , ∴四边形ACGE 是平行四边形, ∴AE=CG ,∴△AEF ≌△CGH (AAS ); (2)∵四边形ABCD 为平行四边形, ∴AB//CD ,AB=CD , ∴∠E=∠EGD ,∠D=∠EAF , ∵F 是AD 的中点, ∴AF=FD ,∴△AEF ≌△DGF (AAS ); 由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH, ∴12AEDG CGCD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =, ∴242ABCDAD ,∴22AE =, ∴62BE AB BE =+=; (3)如下图,∵四边形ABCD 为平行四边形, ∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.5.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∠CEF=∠CFE ,根据等角对等边可得CE=CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG ,再判断出AB=BE ,进而得出BE=CD ,即可判断出△BEG ≌△DCG (SAS ),再判断出∠CGE=60°,进而得出△BDG 是等边三角形,即可得出结论;(3)首先证明四边形ECFG 为正方形,再证明△BME ≌△DMC 可得DM=BM ,∠DMC=∠BME ,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM 是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF 平分∠BAD ,∴∠BAF=∠DAF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠DAF=∠CEF ,∠BAF=∠CFE ,∴∠CEF=∠CFE ,∴CE=CF ,又∵四边形ECFG 是平行四边形,∴四边形ECFG 为菱形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=DC ,AD ∥BC ,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF 是菱形,∴CE=GE ,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵BE CD BEM DCM EM CM =⎧⎪∠=∠⎨⎪=⎩,∴△BME ≌△DMC (SAS ),∴MB=MD ,∠DMC=∠BME .∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD 是等腰直角三角形.∵AB=10,AD=24,∴=26,∴2DM BD == 【点睛】本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质,正方形的判定与性质,等腰直角三角形的判定和性质等知识点,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.6.(1)详见解析;(2)145. 【分析】(1)由AB =DE ,∠A =∠D ,AF =DC ,易证得△ABC ≌DEF (SAS ),即可得BC =EF ,且BC ∥EF ,即可判定四边形BCEF 是平行四边形;(2)由四边形BCEF 是平行四边形,可得当BE ⊥CF 时,四边形BCEF 是菱形,所以连接BE ,交CF 与点G ,由三角形DEF 的面积求出EG 的长,根据勾股定理求出FG 的长,则可求出答案.【详解】(1)证明:∵AF =DC ,∴AC =DF ,在△ABC 和△DEF 中, AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF ,∠ACB =∠DFE ,∴BC ∥EF ,∴四边形BCEF 是平行四边形;(2)如图,连接BE ,交CF 于点G ,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF222286DE EF+=+10,∴S△DEF1122EG DF EF DE =⋅=⋅,∴EG6824105⨯==,∴FG=CG22222418655 EF EG⎛⎫=-=-=⎪⎝⎭,∴AF=CD=DF﹣2FG=10﹣365=145.故答案为:145.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键.7.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:7,3132,332【分析】(1)根据勾股定理计算BC的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB=AD=CD=3,∵BD=4,∴BC225CD BD+=,(2)正确.如图所示:∵AB =AD∴ΔABD 是等腰三角形.∵AC ⊥BD .∴AC 垂直平分BD .∴BC =CD∴CD =AB =AD =BC∴四边形 ABCD 是菱形.(3)存在四种情况,如图2,四边形ABPC 是“准等边四边形”,过C 作CF PE ⊥于F ,则∠CFE=90,∵EP 是AB 的垂直平分线,∴90AEF A ==∠∠ ,∴四边形AEFC 是矩形,在Rt ABC 中,2,2AB AC BC === , ∴22CF AE BE ===, ∵2AB PC ==∴2262PF PC CF =-= ∴BEP CFP AEFC S S S S =++四边形ABPC 矩形12621262222⎛⎫=⨯⨯++⨯+⨯⨯ ⎪ ⎪⎭33+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== , ∴ABP △是等边三角形, ∴2313(2)221422ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴1222BE AB == , ∴2222214222PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 11417222122APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴6PE = ∴16123122222APB APC ABPC S SS +=+=⨯+=四边形【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.8.(1)见解析;(2)2【分析】(1)由ABC 和BCD 中,90BAC BDC ∠=∠=︒,E 为BC 的中点,得到12DE AE BC ==,从而EDA EAD ∠=∠,根据//DC AE 得到ADC EDA ∠=∠,再根据等腰三角形的性质得到EF DA ⊥;(2)由4BC =求出DE=AE=2,根据EF DA ⊥,得到12DO AD ==理求出EO ,由此得到22EF EO ==.【详解】(1)∵ABC 和BCD 中,90BAC BDC ∠=∠=︒,E 为BC 的中点 ∴12DE AE BC == ∴EDA EAD ∠=∠∵//DC AE∴ADC EAD ∠=∠∴ADC EDA ∠=∠∵DF DE =∴EF DA ⊥.(2)∵4BC =, ∴122DE BC ==∵DE AE =, ,EF DA AD ⊥=∴12DO AD ==Rt DEO 中,1EO =∵DF DE =∴22EF EO ==【点睛】此题考查直角三角形的性质,等腰三角形的性质,勾股定理的运用.(1)中点的运用很关键,确定边相等,利用等边对等角求得角的相等关系;(2)在证明中利用(1)的结论求得12DO AD ==是解题的关键. 9.(1)①45;②不变化;(2)成立;(3)详见解析.【解析】【分析】(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点作于点,于点.∵点在的垂直平分线上,∴.∵四边形为正方形,∴平分.∴.∴.∴.∵,∴.∴.∴.证明二:如图所示.过点作于点,延长交于点,连接.∵点在的垂直平分线上,∴.∵四边形为正方形,∴,∴.∴,.∴.又∵,∴.又∵,∴.∴.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点10.(1)成立;(2)成立,理由见试题解析;(3)正方形,证明见试题解析.【解析】试题分析:(1)因为四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠DAF=∠CDE,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(2)∵四边形ABCD为正方形,CE=DF,可证△ADF≌△DCE(SAS),即可得到AF=DE,∠E=∠F,又因为∠ADG+∠EDC=90°,即有AF⊥DE;(3)设MQ,DE分别交AF于点G,O,PQ交DE于点H,因为点M,N,P,Q分别为AE,EF,FD,AD的中点,可得MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,然后根据AF=DE,可得四边形MNPQ是菱形,又因为AF⊥DE即可证得四边形MNPQ是正方形.试题解析:(1)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由是:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,∵DF=CE,∠ADC=∠BCD=90°,AD=CD,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由是:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=12DE,PQ=MN=12AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.考点:1.四边形综合题;2.综合题.。
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试题
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试题一、解答题1.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 . (2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.2.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB =3,BC =23.①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.3.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.4.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果) 5.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.6.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②7.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 53吗?如果能,求此时x 的值;如果不能,请说明理由.8.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD=_________cm;=;(2)求证:PB PQ、、、为顶点的四边形为平行四边形?(3)当t为何值时,以P Q D M9.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE 为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.(1)如图1,当点E与点D重合时,BF的长为;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.10.点E在正方形ABCD的边BC上,点F在AE上,连接FB,FD,∠ABF=∠AFB.(1)如图1,求证:∠AFD=∠ADF;(2)如图2,过点F作垂线交AB于G,交DC的延长线于H,求证:DH=2 AG;(3)在(2)的条件下,若EF=2,CH=3,求EC的长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(32,32);(2)存在,点D 的坐标为(0,3)或(23,1)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=1322OB =∴2232OB BD -=∴点B 的坐标为(32,32) 332);(2)在图2的基础上继续将直角三角板绕点O顺时针60︒,此时点A落在y轴上,点B 落在x轴上∴点A的坐标为(0,1),点B的坐标为(3,0)∵△ABC为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C的坐标为(3,2)设点D的坐标为(a,b)如图所示,若四边形ABCD为菱形,连接BD,与AC交于点O ∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3 ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O ∴点O既是AD的中点,也是BC的中点∴03322 12022ab⎧+=⎪⎪⎨++⎪=⎪⎩解得:31ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(23,1);当四边形ADBC为菱形时,连接CD,与AB交于点O ∴点O既是AB的中点,也是CD的中点∴03310222ab⎧++=⎪⎨++⎪=⎪⎩解得:1 ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=3∴BP=223 2OB OP-=当∠OMB=90°时,如下图所示,连接BM ∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM-∠FPB=30°∴∠BMP=∠BPM∴BM=BP=3 2在Rt△OBM中,2221 2OB BM+=;综上:OM=32或212.【点睛】此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.2.(1)①等腰;②2BE=;(2)①2;②存在,351 2【分析】(1)①由折叠的性质得EF=BF,即可得出结论;②当折痕经过点A时,由折叠的性质得AF垂直平分BE,由线段垂直平分线的性质得AE=BE,证出ABE是等腰直角三角形,即可得出BE2AE;(2)①由等边三角形的性质得BF=BE,∠EBF=60°,则∠ABE=30°,由直角三角形的性质得BE=2AE,AB33,则AE=1,BE=2,得BF=2即可;②当点F在边BC上时,得S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,由折叠的性质得CE=CB=3EF=3当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,则S△EKF=1 2KF•AH≤12HF•AH=12S矩形AHFD,S△BKF=12KF•BH≤12HF•BH=12S矩形BCFH,得S△BEF≤12S矩形ABCD =3,即当点F为CD的中点时,BEF的面积最大,此时,DF=12CD=3,点E与点A重合,由勾股定理求出EF即可.【详解】解:(1)①由折叠的性质得:EF=BF,∴BEF是等腰三角形;故答案为:等腰;②当折痕经过点A时,由折叠的性质得:AF垂直平分BE,∴AE=BE,∵四边形ABCD是矩形,∴∠ABC=∠A=90°,∴ABE是等腰直角三角形,∴BE=2AE;故答案为:BE=2AE;(2)①当BEF是等边三角形时,BF=BE,∠EBF=60°,∴∠ABE=90°﹣60°=30°,∵∠A=90°,∴BE=2AE,AB=3AE=3,∴AE=1,BE=2,∴BF=2;②存在,理由如下:∵矩形ABCD中,CD=AB=3,BC=23,∴矩形ABCD的面积=AB×BC=3×23=6,第一种情况:当点F在边BC上时,如图1所示:此时可得:S△BEF≤12S矩形ABCD,即当点F与点C重合时S△BEF最大,此时S△BEF=3,由折叠的性质得:CE=CB=3,即EF=3第二种情况:当点F在边CD上时,过点F 作FH ∥BC 交AB 于点H ,交BE 于点K ,如图2所示:∵S △EKF =12KF •AH ≤12HF •AH =12S 矩形AHFD ,S △BKF =12KF •BH ≤12HF •BH =12S 矩形BCFH , ∴S △BEF =S △EKF +S △BKF ≤12S 矩形ABCD =3, 即当点F 为CD 的中点时,BEF 的面积最大,此时,DF =12CD =32,点E 与点A 重合,BEF 的面积为3, ∴EF =22AD DF +=512; 综上所述,BEF 的面积存在最大值,此时EF 的长为23或512. 【点睛】此题考查的是矩形与折叠问题,此题难度较大,掌握矩形的性质、折叠的性质、等边三角形的性质和勾股定理是解决此题的关键.3.(1)B (12,4);(2)52t s =;(3)58,4,3,4,2,4,,42 【分析】(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.【详解】解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,四边形OABC 是平行四边形,OA BC ,//OA BC , A ,C 的坐标分别为(10,0), (2,4), 10OA ∴=,2OE AF , 10BC ∴=,(12,4)B ;(2)设点P 运动t 秒时,四边形PCDA 是平行四边形,由题意得:102PC t =-,点D 是OA 的中点, 152OD BC AD OA ,四边形PCDA 是平行四边形,PC AD ,即1025t -=,52t ∴=, ∴当52t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PDOD 时,过1P 作1PE OA 于 E ,则14PE ,3DE ∴=,1(8,4)P ,又D ,C 的坐标分别为()5,0,(2,4), ∴225245CD ,即有,当点P 与点C 重合时,5PDOD ,2,4P ; ②当5POOD 时,过2P 作2P G OA 于 G , 则24P G ,3OG ∴=,2(3,4)P ;③当PD OP =时,过3P 作3P F OA 于 F ,则34P F ,52OF =, 35(2P ,4); 综上所述:当ODP ∆是等腰三角形时,点P 的坐标为(8,4), 5(2,4),(3,4),(2,4). 【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键.4.(1)见解析;(2)222MN BN DM =+,理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO ,得∠ABO=∠BAO ,∠OBM=∠OMB ,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD 上方作AF ⊥AN ,使AF=AN ,连接DF 、MF ,证△ABN ≌△ADF (SAS ),得BN=DF ,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM ≌△FAM (SAS ),得MN=MF ,在Rt △FDM 中,由勾股定理得FM 2=DM 2+FD 2,进而得出结论;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,则△PCQ ≌△ECQ ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP ,△PCE 是等腰直角三角形,得CE=CP=2PE ,证△BCE ≌△DCP (SAS ),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=PE=6,即可得出PC 的长. 【详解】解:(1)证明:四边形ABCD 是正方形,90ABC BAD ∴∠=∠=︒,45ABD ADB ∠=∠=︒,ME BD ⊥,90BME ∴∠=︒, O 是BE 的中点,12AO MO BE BO EO ∴====, ABO BAO ∴∠=∠,OBM OMB ∠=∠,22290AOM AOE MOE ABO MBO ABD ∴∠=∠+∠=∠+∠=∠=︒;(2)222MN BN DM =+,理由如下:在AD 上方作AF AN ⊥,使AF AN =,连接DF 、MF ,如图2所示:则90NAF ∠=︒,四边形ABCD 是正方形,AB AD ∴=,90BAD NAF ∠=∠=︒,BAN DAF ∴∠=∠, 45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在ABN ∆和ADF ∆中,AB AD BAN DAF AN AF =⎧⎪∠=∠⎨⎪=⎩,()ABN ADF SAS ∴∆≅∆,BN DF ∴=,45DAF ABN ∠=∠=︒,90FDM ADB ADF ∴∠=∠+∠=︒,45NAM ∠=︒,45FAM NAM ∴∠=︒=∠,在NAM ∆和FAM ∆中,AN AF NAM FAM AM AM =⎧⎪∠=∠⎨⎪=⎩,()NAM FAM SAS ∴∆≅∆,MN MF ∴=,在Rt FDM ∆中,222FM DM FD =+,即222MN BN DM =+;(3)作P 关于直线CQ 的对称点E ,连接PE 、BE 、CE 、QE ,如图3所示: 则PCQ ECQ ∆≅∆,135ECQ PCQ ∠=∠=︒,9EQ PQ ==,36090PCE PCQ ECQ ∴∠=︒-∠-∠=︒,BCE DCP ∴∠=∠,PCE ∆是等腰直角三角形,2CE CP ∴==, 在BCE ∆和DCP ∆中,BC DC BCE DCP CE CP =⎧⎪∠=∠⎨⎪=⎩,()BCE DCP SAS ∴∆≅∆,45CBE CDB CBD ∴∠=∠=∠=︒,90EBQ ∴∠=︒,90PBE ∴∠=︒,2PB =,9PQ =,7BQ PQ PB ∴=-=, 22229742BE EQ BQ ∴=-=-=,22222(42)6PE PB BE ∴=+=+=,232PC PE ∴==; 故答案为:32.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.5.(1)见解析;(2)928;(3)4或6 【分析】(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;(2)证四边形ABCD 是矩形,则90CDO ∠=︒,3==CD AB 6AD BC ==OA OC x ==,则6OD x ,在Rt OCD ∆中,由勾股定理得出方程,求出36OA =,由三角形面积公式即可得出答案;(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30角的直角三角形的性质,即可得到BC 的长.【详解】解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,ACB ACE ∴∠=∠,BC EC =,四边形ABCD 是平行四边形,AD BC ∴=,//AD BC .EC AD ∴=,ACB CAD ∠=∠,ACE CAD ∴∠=∠,OA OC ∴=,OD OE ∴=,ODE OED ∴∠=∠,AOC DOE ∠=∠,CAD ACE OED ODE ∴∠=∠=∠=∠,//AC DE ∴;(2)平行四边形ABCD 中,90B ∠=︒,∴四边形ABCD 是矩形,90CDO ∴∠=︒,==CD AB AD BC ==由(1)得:OA OC =,设OA OC x ==,则OD x =,在Rt OCD ∆中,由勾股定理得:222)x x +=,解得:4x =,OA ∴=,OAC ∴∆的面积1122OA CD =⨯=; (3)分两种情况:①如图3,当90EAD ∠=︒时,延长EA 交BC 于G ,AD BC =,BC EC =,AD EC ∴=,//AD BC ,90EAD ∠=︒,90EGC ∴∠=︒,30B ∠=︒,AB =30AEC ∴∠=︒,1122GC EC BC ∴==, G ∴是BC 的中点,在Rt ABG ∆中,3BG AB ==, 26BC BG ∴==;②如图4,当90AED ∠=︒时AD BC =,BC EC =,AD EC ∴=,由折叠的性质得:AE AB =,AE CD ∴=,在ACE ∆和CAD ∆中,AE CD CE AD AC CA =⎧⎪=⎨⎪=⎩,()ACE CAD SSS ∴∆≅∆,ECA DAC ∴∠=∠,OA OC ∴=,OE OD ∴=,OED ODE ∴∠=∠,AED CDE ∴∠=∠,90AED ∠=︒,90CDE ,//AE CD ∴,又//AB CD ,B ∴,A ,E 在同一直线上,90BAC EAC ∴∠=∠=︒,Rt ABC ∆中,30B ∠=︒,23AB =,32AC AB ∴==,24BC AC ==; 综上所述,当AED ∆是直角三角形时,BC 的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.6.猜想与证明:猜想DM 与ME 的数量关系是:DM =ME ,证明见解析;拓展与延伸:(1)DM =ME ,DM ⊥ME ;(2)证明见解析【分析】猜想:延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM 交AD 于点H ,利用△FME ≌△AMH ,得出HM=EM ,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC ,AC 和EC 在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM 与ME 的数量关系是:DM =ME.证明:如图①,延长EM 交AD 于点H.①∵四边形ABCD 、四边形ECGF 都是矩形,∴AD ∥BG ,EF ∥BG ,∠HDE =90°.∴AD ∥EF.∴∠AHM =∠FEM.又∵AM =FM ,∠AMH =∠FME ,∴△AMH ≌△FME.∴HM =EM.又∵∠HDE =90°,∴DM =12EH =ME ; (1)∵四边形ABCD 和CEFG 是正方形,∴AD ∥EF ,∴∠EFM=∠HAM ,又∵∠FME=∠AMH ,FM=AM ,在△FME 和△AMH 中,EFM HAM FM AMFME AMH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=EF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME;(2)证明:如图②,连结AC.②∵四边形ABCD、四边形ECGF都是正方形,∴∠DCA=∠DCE=∠CFE=45°,∴点E在AC上.∴∠AEF=∠FEC=90°.又∵点M是AF的中点,∴ME=12 AF.∵∠ADC=90°,点M是AF的中点,∴DM=12 AF.∴DM=ME.∵ME=12AF=FM,DM=12AF=FM,∴∠DFM=12(180°-∠DMF),∠MFE=12(180°-∠FME),∴∠DFM+∠MFE=12(180°-∠DMF)+12(180°-∠FME)=180°-12(∠DMF+∠FME)=180°-12∠DME.∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,∴180°-12∠DME =135°. ∴∠DME =90°.∴DM ⊥ME.【点睛】本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.7.(1)见解析;(2)不变,见解析;(3)能,1x =-1+ 【分析】(1)由折叠的性质得到BE=EP ,BF=PF ,得到BE=BF ,根据菱形的性质得到AB ∥CD ∥FG ,BC ∥EH ∥AD ,于是得到结论;(2)由菱形的性质得到BE=BF ,AE=FC ,推出△ABC 是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;(3)记AC 与BD 交于点O ,得到∠ABD=30°,解直角三角形得到AO=1,S 四边形ABCD AEFCHG 的面积等于4时,得到S △BEF +S △DGH =4,设GH 与BD 交于点M ,求得GM=12x ,根据三角形的面积列方程即可得到结论. 【详解】解:()1折叠后B 落在BD 上, ,BE EP ∴=BF PF = BD 平分,ABC ∠BE BF ∴=,∴四边形BEPF 为菱形,同理四边形GDHP 为菱形,////,// //,AB CD FG BC EH AD ∴∴四边形AEPG 为平行四边形,AG EP BE ∴==.()2不变.理由如下:由()1得.AG BE =四边形BEPF 为菱形,,.BE BF AE FC ∴==60,BAC ABC ∠=︒为等边三角60B D ∴∠=∠=︒,,,EF BE GH DG ∴==36AEFCHG C AE EF FC CH GH AG AB ∴=+++++==六边形为定值.()3记AC 与BD 交于点O .2,60,AB BAC =∠= 30,ABD ∴∠= 1,AO ∴=3,BO = 12332ABC S ∴=⨯=23ABCD S ∴=四边形当六边形AEFCHG 534 53233344DEF DGH S S +==由()1得BE AG = AE DG ∴= DG x =2BE x ∴=- 记GH 与BD 交于点,M12GM x ∴=,3DM x = 23DHG S x ∴= 同理()223323344BEF Sx x x =-=+ 223333334x x x +=化简得22410,x x -+= 解得121x =-221x = ∴当212x =-或212+时,六边形AEPCHG 534 【点睛】此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x 表示出相关的线段,是一道基础题目.8.(1)12;(2)证明见详解;(3)125t s =或t=4s . 【分析】(1)由勾股定理求出AD 即可;(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB ,再由等腰三角形的判定定理即可得出结论;(3)分两种情况:①当点M 在点D 的上方时,根据题意得:PQ=BP=t ,AM=4t ,AD=12,得出MD=AD-AM=12-4t ,由PQ ∥MD ,当PQ=MD 时,四边形PQDM 是平行四边形,得出方程,解方程即可;②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.【详解】(1)解:∵BD⊥AC,∴∠ADB=90°,∴2222201612AD AB BD=-=-=(cm),(2)如图所示:∵AB=AC,∴∠ABC=∠C,即∠PBQ=∠C,∵PQ∥AC,∴∠PQB=∠C,∴∠PBQ=∠PQB,∴PB=PQ;(3)分两种情况:①当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AD-AM=12-4t,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=12-4t,时,四边形PQDM是平行四边形,解得:125t=(s);②当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AM-AD=4t-12,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=4t-12时,四边形PQDM是平行四边形,解得:t=4(s);综上所述,当125t s=或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.9.(1)35;(2)41;(3)53101或【分析】(1)利用勾股定理即可求出.(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,证出ECD FEH∆∆≌,进而求得MF,BM的长,再利用勾股定理,即可求得.(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得:22223635BF AB AF=+=+=(2)过点F作FH⊥AD交AD于的延长线于点H,作FM⊥AB于点M,如图2所示:则FM=AH ,AM=FH∵四边形CEFG 是正方形 ∴EC=EF,∠FEC=90° ∴∠DEC+∠FEH=90°,又∵四边形ABCD 是正方形 ∴∠ADC=90° ∴∠DEC+∠ECD=90°,∴∠ECD=∠FEH 又∵∠EDC=∠FHE=90°,∴ECD FEH ∆∆≌ ∴FH=ED EH=CD=3∵AD=3,AE=1,ED=AD-AE=3-1=2,∴FH=ED=2∴MF=AH=1+3=4,MB=FH+CD=2+3=5在Rt △BFM 中,BF=22225441BM MF +=+=(3)分两种情况:①当点E 在边AD 的左侧时,过点F 作FM ⊥BC 交BC 的反向延长线于点M ,交DE 于点N.如图3所示:同(2)得:ENF DEC ∆≅∆∴EN=CD=3,FN=ED=7∵AE=4∴AN=AE-EN=4-3=1∴MB=AN=1 FM=FN+NM=7+3=10在Rt FMB ∆中由勾股定理得:2222101101FB FM MB =+=+= ②当点E 在边AD 的右侧时,过点F 作FN ⊥AD 交AD 的延长线于点N ,交BC 延长线于M ,如图4所示:同理得: CDE EFN ∆≅∆∴NF=DE=1,EN=CD=3∴FM=3-1=2,CM=DN=DE+EN=1+3=4∴BM=CB+CM=3+4=7∆中在Rt FMB由勾股定理得:FB===故BF【点睛】本题为考查三角形全等和勾股定理的综合题,难点在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.10.(1)见解析;(2)见解析;(3)7【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD,则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形,可得FM=MD,进而NF=NH,ND=NH,即可得出答案;(3)首先得出△ADN≌△DCP(ASA),得到PC=DN,再利用在Rt△ABE中,BE2+AB2=AE2,即可求出答案.【详解】(1)证明:∵∠ABF=∠AFB,∴AB=AF,∵四边形ABCD为正方形,∴AB=AD,∴AF=AD,∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF,DH于M,N两点,∵GF⊥DF,∴∠GFD=∠AMD=90°,∴AN∥GH,∵四边形ABCD为正方形,∴AG∥NH,∴四边形AGHN为平行四边形,∴AG=NH,∵AF=AD,AM⊥FD,∴FM=MD,连接NF,则NF=ND,∴∠NFD=∠NDF,∵∠NFD+∠NFH=∠NDF+∠H,∴∠NFH=∠H,∴NF=NH,∴ND=NH,∴DH=2NH=2AG;(3)解:延长DF 交BC 于点P ,如图2所示:∵四边形ABCD 为正方形,∴AD ∥BC ,∴∠ADF=∠FPE ,∴∠PFE=∠AFD=∠ADF=∠FPE ,∴EF=EP=2,∵∠DAM+∠ADM=∠ADM+∠PDC ,∴∠DAM=∠PDC ,∵四边形ABCD 为正方形,∴AD=DC ,∠ADN=∠DCP ,在△ADN 和△DCP 中DAN PDC AD DCADN PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADN ≌△DCP (ASA ),∴PC=DN ,设EC=x ,则PC=DN=x+2,DH=2x+4,∵CH=3,∴DC=AB=BC=AF=2x+1∴AE=2x+3,BE=x+1,在Rt △ABE 中,BE 2+AB 2=AE 2,∴(x+1)2+(2x+1)=(2x+3)2.整理得:x 2﹣6x+7=0,解得:x 1=7,x 2=﹣1(不合题意,舍去)∴EC=7.【点睛】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、正方形的性质、平行四边形的性质等知识,解题关键是正确把握正方形的性质.。
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试卷
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试卷一、选择题1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形连接AC 交EF 于G ,下列结论: ①BE =DF ,②∠DAF =15°,③AC ⊥EF ,④BE+DF =EF ,⑤EC =FG ;其中正确结论有( )个A .2B .3C .4D .52.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .53.如图,菱形ABCD 的周长为24,对角线AC 、BD 交于点O ,∠DAB =60°,作DH ⊥AB 于点H ,连接OH ,则OH 的长为( )A .2B .3C .23D .434.正方形ABCD ,正方形CEFG 如图放置,点B 、C 、E 在同一条直线上,点P 在BC 边上,PA =PF ,且∠APF =90°,连接AF 交CD 于点M .有下列结论:①EC =BP ;②AP =AM :③∠BAP =∠GFP ;④AB 2+CE 2=12AF 2;⑤S 正方形ABCD +S 正方形CGFE =2S △APF ,其中正确的是( )A .①②③B .①③④C .①②④⑤D .①③④⑤5.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个6.如图,在ABCD 中,1234532,,,,AB AD E E E E E =,,依次是CB 上的五个点,并且1122334455CE E E E E E E E E E B =====,在三个结论:(1)33⊥DE AE ;(2)24⊥AE DE ;(3)22AE DE ⊥之中,正确的个数是( )A .0B .1C .2D .37.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为( )A .32B .2C .52D .38.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AD =12AC ,M 、N 、P 分别是OA 、OB 、CD 的中点,下列结论:①CN ⊥BD ;②MN =NP ;③四边形MNCP 是菱形;④ND 平分∠PNM .其中正确的有( )A .1 个B .2 个C .3 个D .4 个9.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.510.如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是( )A .222-B .222+C .252-D .22+二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AC=,则BD的长为_______________.AB=,23△和等14.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.16.如图,在平行四边形ABCD中,AB=6,BC=4,∠A=120°,E是AB的中点,点F在平行四边形ABCD的边上,若△AEF为等腰三角形,则EF的长为_____.17.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.18.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.19.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.20.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.23.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.24.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.25.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.26.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.27.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O .(1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.28.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.29.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。
平行四边形单元 易错题测试提优卷试题
平行四边形单元 易错题测试提优卷试题一、解答题1.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).2.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.3.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.4.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.5.如图①,已知正方形ABCD的边长为3,点Q是AD边上的一个动点,点A关于直线BQ的对称点是点P,连接QP、DP、CP、BP,设AQ=x.(1)BP+DP的最小值是_______,此时x的值是_______;(2)如图②,若QP的延长线交CD边于点M,并且∠CPD=90°.①求证:点M是CD的中点;②求x的值.(3)若点Q是射线AD上的一个动点,请直接写出当△CDP为等腰三角形时x的值.6.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.7.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由8.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.9.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD +=.10.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF是矩形;②2【分析】(1)证明△FCG ≌△EDG(ASA),得到FG=EG即可得到结论;(2)①当AE=3.5时,平行四边形CEDF是矩形.过A作AM⊥BC于M,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM,证明△MBA≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF是矩形;②根据四边形CEDFCEDF是菱形,得到CD⊥EF,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵四边形ABCD是平行四边形,∴ CF∥ED,∴∠FCG=∠EDG,∵ G是CD的中点,∴ CG=DG,在△FCG和△EDG中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCG ≌△EDG(ASA),∴ FG=EG,∵ CG=DG,∴四边形CEDF是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.2.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形; ②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:如图3所示:延长EH 交BC 于点G ;四边形ABCD 是正方形,∴AB=BC ,90D ∠=︒, 又EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=︒设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x , ∴CG=2x ,HG=3x-3,CH=3x-1 在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,然后利用勾股定理求解线段的长即可.3.(1)详见解析;(2)2BH AE =,理由详见解析【分析】1)如图1,连接DF ,根据对称得:△ADE ≌△FDE ,再由HL 证明Rt △DFG ≌Rt △DCG ,可得结论;(2)如图2,作辅助线,构建AM=AE ,先证明∠EDG=45°,得DE=EH ,证明△DME ≌△EBH ,则EM=BH ,根据等腰直角△AEM 得:2EM AE =,得结论;【详解】证明:(1)如图1,连接DF ,∵四边形ABCD 是正方形,∴DA DC =,90A C ∠=∠=︒,∵点A 关于直线DE 的对称点为F ,∴ADE ∆≌FDE ∆,∴DA DF DC ==,90DFE A ∠=∠=︒,∴90DFG ∠=︒,在Rt DFG ∆和Rt DCG ∆中,∵DF DC DG DG =⎧⎨=⎩∴Rt DFG ∆≌Rt DCG ∆(HL ),∴GF GC =;(2)2BH =,理由是:如图2,在线段AD 上截取AM ,使AM AE =,∵AD AB =,∴DM BE =,由(1)知:12∠=∠,34∠=∠,∵90ADC ∠=︒,∴123490∠+∠+∠+∠=︒,∴222390∠+∠=︒,∴2345∠+∠=︒,即45EDG ∠=︒,∵EH DE ⊥,∴90DEH ∠=︒,DEH ∆是等腰直角三角形,∴190AED BEH AED ∠+∠=∠+∠=︒,DE EH =,∴1BEH ∠=∠,在DME ∆和EBH ∆中,1DM BE BEH DE EH =⎧⎪∠=∠⎨⎪=⎩∴DME ∆≌EBH ∆∴EM BH =,Rt AEM ∆中,90A ∠=︒,AM AE =, ∴2EM AE =, ∴2BH AE ; 【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.4.(1)5EF =;(2)见解析;(3)5BE =【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求;(2)在DF 上取一点G ,使得DG=BE , 连接AG ,先用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,且DG=BE ,故EF=DF-DG=DF-BE ;(3)在线段DF 上取BE=DG ,连接AG ,求证∠ABE=∠ADC ,即可用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,设BE=x ,则CE= 7+x ,EF=18-x ,根据勾股定理:222CE CF =EF +,即可求得BE 的长度.【详解】解:(1)证明:如图1所示,在正方形ABCD 中,AB=AD ,∠BAD=90°, 在ABG 和ADF 中,AB=AD ABG=ADF BG=DF ⎧⎪∠∠⎨⎪⎩∴ABG ≌ADF (SAS ),∴AG=AF ,∠BAG=∠DAF ,又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,∴∠EAG=∠FAG-∠EAF=45°=∠EAF , 在GAE 和FAE 中,AG=AF GAE=FAE AE=AE ⎧⎪∠∠⎨⎪⎩∴GAE ≌FAE (SAS ),∴EF=GE=GB+BE=2+3=5;(2)如下图所示,在DF 上取一点G ,使得DG=BE , 连接AG ,∵四边形ABCD 是正方形,故AB=AD ,∠ABE=∠ADG=90°, 在ABE 和ADG 中,AB=AD ABE=ADG=90BE=DG ⎧⎪∠∠︒⎨⎪⎩∴ABE ≌ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,AE=AG EAF=GAF=45AF=AF ⎧⎪∠∠︒⎨⎪⎩∴AEF ≌AGF (SAS ),∴EF=GF ,且DG=BE ,∴EF=DF-DG=DF-BE ;(3)BE=5,如下图所示,在线段DF 上取BE=DG ,连接AG ,∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,∴∠ABE=∠ADC , 在ABE 和ADG 中,AB=AD ABE=ADG BE=DG ⎧⎪∠∠⎨⎪⎩∴ABE ≌ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,AE=AG EAF=GAF=45AF=AF ⎧⎪∠∠︒⎨⎪⎩∴AEF ≌AGF (SAS ),∴EF=GF ,设BE=x ,则CE=BC+BE =7+x ,EF=GF=DC+CF-DG= DC+CF-BE=18-x ,在直角三角形ECF 中,根据勾股定理:222CE CF =EF +,即:222(7+x)5=(18-x)+,解得x=5,∴BE=x=5.【点睛】本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.5.(1)32;323-;(2)①见详解;②x=1;(3)△CDP 为等腰三角形时x 的值为:633-或3或633+.【分析】(1)BP+DP 为点B 到D 两段折线的和.由两点间线段最短可知,连接DB ,若P 点落在BD 上,此时和最短,且为32.考虑动点运动,这种情形是存在的,由AQ=x ,则QD=3-x ,PQ=x .又PDQ=45°,所以QD =2PQ ,即3-x=2x .求解可得答案;(2)由已知条件对称分析,AB=BP=BC ,则∠BCP=∠BPC ,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP .那么若有MP=MD ,则结论可证.再分析新条件∠CPD=90°,易得①结论.②求x 的值,通常都是考虑勾股定理,选择直角三角形QDM ,发现QM ,DM ,QD 都可用x 来表示,进而易得方程,求解即可.(3)若△CDP 为等腰三角形,则边CD 比为改等腰三角形的一腰或者底边.又P 点为A 点关于QB 的对称点,则AB=PB ,以点B 为圆心,以AB 的长为半径画弧,则P 点只能在弧AB 上.若CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDP 为等腰三角形(CD 为腰)的P 点.若CD 为底边,则作CD 的垂直平分线,其与弧AC 的交点即为使得△CDP 为等腰三角形(CD 为底)的P 点.则如图所示共有三个P 点,那么也共有3个Q 点.作辅助线,利用直角三角形性质求之即可.【详解】解:(1)连接DB ,若P 点落在BD 上,此时BP+DP 最短,如图:由题意,∵正方形ABCD 的边长为3,∴223332BD =+=∴BP +DP 的最小值是32由折叠的性质,PQ AQ x ==,则3QD x =-,∵∠PDQ=45°,∠QPD=90°,∴△QPD 是等腰直角三角形,∴22QD QP x ==,∴32x x -=,解得:323x=-;故答案为:32;323-;(2)如图所示:①证明:在正方形ABCD中,有AB=BC,∠A=∠BCD=90°.∵P点为A点关于BQ的对称点,∴AB=PB,∠A=∠QPB=90°,∴PB=BC,∠BPM=∠BCM,∴∠BPC=∠BCP,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP,∴MP=MC.在Rt△PDC中,∵∠PDM=90°-∠PCM,∠DPM=90°-∠MPC,∴∠PDM=∠DPM,∴MP=MD,∴CM=MP=MD,即M为CD的中点.②解:∵AQ=x,AD=3,∴QD=3-x,PQ=x,CD=3.在Rt△DPC中,∵M为CD的中点,∴DM=QM=CM=32,∴QM=PQ+PM=x+32,∴(x+32)2=(3−x)2+(32)2,解得:x=1.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于P1,P3.此时△CDP1,△CDP3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点P2,此时△CDP2以CD为底的等腰三角形.;①讨论P1,如图作辅助线,连接BP1、CP1,作QP1⊥BP1交AD于Q,过点P1,作EF⊥AD 于E,交BC于F.∵△BCP1为等边三角形,正方形ABCD边长为3,∴P1F=332,P1E=333.在四边形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,∴△QEP1为含30°的直角三角形,∴31=9 332.∵AE=32,∴x=AQ=AE-QE=39(33)633 22-=-②讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QG⊥BP2,交AD于Q,连接BQ,过点P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2为等边三角形.在四边形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=33 3∴EG=9 332,∴DG=DE+GE=3933333 22+=,∴QD=33,∴3③对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3⊥QP3,交AD的延长线于Q,连接BQ,过点P1,作EF⊥AD于E,此时P3在EF上,不妨记P3与F重合.∵△BCP 1为等边三角形,△BCP 3为等边三角形,BC=3,∴P 1P 3=33P 1E =3332-, ∴EF =333+. 在四边形ABP 3Q 中∵∠ABF=∠ABC+∠CBP 3=150°,∴∠EQF=30°,∴39332. ∵AE=32, ∴x=AQ=AE+QE=32+9333362=. 综合上述,△CDP 为等腰三角形时x 的值为:633-3633+.【点睛】本题第一问非常基础,难度较低.第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件.其中求边长是勾股定理的重要应用,是很重要的考点.第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P 找全.另外求解各个Q 点也是考察三角函数及勾股定理的综合应用,有着极高的难度.6.(1)①详见解析;②45°-α;③2DF BF CF =+,详见解析;(2)2DF BF CF =,或2BF DF CF =,或2BF DF CF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可;③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出MF=2CF 即可得出结论; (2)分三种情况:①当点E 在线段BC 上时,DF=BF+2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,BF=DF+2CF ,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论;③当点E 在线段CB 的延长线上时,BF+DF=2CF ,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =+.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵ 正方形ABCD ,∴ BC =CD ,∠BDC =∠DBC =45°,∠BCD =90°∴∠CDM =∠CBF =45°-α,∴△CDM ≌△CBF (SAS ).∴ DM =BF , CM =CF ,∠DCM =∠BCF .∴ ∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD =90°,∴ MF =2CF . ∴2.DF DM MF BF CF =+=+(2)分三种情况:①当点E 在线段BC 上时,DF=BF+2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,BF=DF+2CF ,理由如下:在BF 上截取BM=DF ,连接CM ,如图3所示,同(1) ③,得:△CBM ≌△CDF (SAS),∴CM=CF , ∠BCM=∠DCF .∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF 是等腰直角三角形,∴MF=2CF ,∴BF=BM+MF=DF+2CF ;③当点E 在线段CB 的延长线上时,BF+DF=2CF ;理由如下:在DF 上截取DM=BF ,连接CM ,如图4所示,同(1)③得:△CDM ≌△CBF ,∴CM=CF ,∠DCM=∠BCF ,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF 是等腰直角三 角形,∴MF=2CF ,即DM+DF=2CF ,∴BF+DF=2CF ;综上所述,当点E 在直线BC 上时,线段BF ,CF ,DF 之间的数导关系为:2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.7.(1)G (0,32)343y x =-++3)234434366433,,3,(1,423),3333M M M ⎛⎛⎛---+ ⎝⎝⎝. 【解析】【分析】1(1)由F (1,4),B (3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt △AGF 中,利用勾股定理求出223AG GF AF -=,那么OG=OA-AG=4-3,于是G (0,3);(2)先在Rt △AGF 中,由3tan 3AG AFG AF ∠===,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt △BFE ,求出BE=BF tan60°3,那么CE=4-23E (3,3.设直线EF 的表达式为y=kx+b ,将E (3,3F (1,4)代入,利用待定系数法即可求出直线EF 的解析.(3)因为M 、N 均为动点,只有F 、G 已经确定,所以可从此入手,结合图形,按照FG 为一边,N 点在x 轴上;FG 为一边,N 点在y 轴上;FG 为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M 点的坐标.【详解】解:(1)∵F (1,4),B (3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt △AGF 中,由勾股定理得, 223AG GF AF =-= ∵B (3,4),∴OA=4,∴OG=4-3,∴G (0,4-3);(2)在Rt △AGF 中,∵3tan 31AG AFG AF ∠=== , ∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt △BFE 中,∵BE=BF tan60°=23,.CE=4-23,.E (3,4-23).设直线EF 的表达式为y=kx+b ,∵E (3,4-23),F (1,4),∴34234k b k b ⎧+=-⎪⎨+=⎪⎩ 解得343k b ⎧=-⎪⎨=+⎪⎩ ∴343y x =-++ ;(3)若以M 、N 、F 、G 为顶点的四边形是平行四边形,则分如下四种情况: ①FG 为平行四边形的一边,N 点在x 轴上,GFMN 为平行四边形,如图1所示. 过点G 作EF 的平行线,交x 轴于点N 1,再过点N :作GF 的平行线,交EF 于点M ,得平行四边形GFM 1N 1.∵GN 1∥EF ,直线EF 的解析式为343,(0,43)y x G =+∴直线GN 1的解析式为34-3y x =-+, 当y=0时,1433433,,033x N ⎛⎫--= ⎪ ⎪⎝⎭. ∵GFM 1N 1是平行四边形,且G (0,4-3),F (1,4),N 1(4333- ,0), ∴M ,(43 ,3);②FG 为平行四边形的一边,N 点在x 轴上,GFNM 为平行四边形,如图2所示. ∵GFN 2M 2为平行四边形,∴GN ₂与FM 2互相平分.∴G (0,3N2点纵坐标为0∴GN :中点的纵坐标为322-, 设GN ₂中点的坐标为(x ,32. ∵GN 2中点与FM 2中点重合, ∴334322x +=- 439+ ∵.GN 243932+), .∴N 2点的坐标为(393,0). ∵GFN 2M 2为平行四边形,且G (0,3F (1,4),N 2(4393,0), ∴M 24363+③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.∵GFN3M3为平行四边形,.∴GN3与FM3互相平分.∵G(0,4-3),N2点横坐标为0,.∴GN3中点的横坐标为0,∴F与M3的横坐标互为相反数,∴M3的横坐标为-1,-⨯-++=+,当x=-1时,y=3(1)43423∴M3(-1,4+23);④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。
八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试题
一、选择题1.如图所示,等边三角形ABC 沿射线BC 向右平移到DCE ∆的位置,连接AD 、BD ,则下列结论:(1)AD BC =(2)BD 与AC 互相平分(3)四边形ACED 是菱形(4)BD DE ⊥,其中正确的个数是( )A .1B .2C .3D .42.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .23.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④4.已知四边形ABCD 中,对角线BD 被AC 平分,那么再加上下述中的条件( ) 可以得到结论: “四边形ABCD 是平行四边形”.A .AB =CD B .∠BAD=∠BCDC .∠ABC=∠ADCD .AC= BD5.如图,正方形ABCD (四边相等、四内角相等)中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE =DF =3,则EF 的平方为( )A .2B .125C .3D .46.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,2)D .(0,16)7.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,则t 的值为( )A .34B .43C .32D .538.已知,如图,在菱形ABCD 中.(1)分别以C ,D 为圆心,大于12CD 长为半径作弧,两弧分别交于点E ,F ;(2)作直线EF ,且直线EF 恰好经过点A ,且与边CD 交于点M ;(3)连接BM .根据以上作图过程及所作图形,判断下列结论中错误..的是( )A .∠ABC =60°B .如果AB =2,那么BM =4C .BC =2CMD .2ABM ADM S S △△ 9.如图,在正方形ABCD 中,AB =4,E 是CD 的中点,将BCE 沿BE 翻折至BFE ,连接DF ,则DF 的长度是( )A .5B .25C .355D .45510.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④二、填空题11.如图,菱形ABCD 的BC 边在x 轴上,顶点C 坐标为(3,0)-,顶点D 坐标为(0,4),点E 在y 轴上,线段//EF x 轴,且点F 坐标为(8,6),若菱形ABCD 沿x 轴左右运动,连接AE 、DF ,则运动过程中,四边形ADFE 周长的最小值是_______.12.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.13.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).15.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .16.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.19.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.20.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 22.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积.23.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..24.如图,在平行四边形ABCD 中,AB ⊥AC ,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC ,AD 于点E ,F ,连接BF .(1)如图1,在旋转的过程中,求证:OE =OF ;(2)如图2,当旋转至90°时,判断四边形ABEF 的形状,并证明你的结论;(3)若AB =1,BC =5,且BF =DF ,求旋转角度α的大小.25.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.26.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)27.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.28.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.29.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.30.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE能否是菱形?若可为菱形,请求出BD的长,若不可能为菱形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;再结合①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.【详解】解:如图:∵△ABC,△DCE是等边三角形∴∠ACB=∠DCE=60°,AC=CD∴∠ACD=180°-∠ACB-∠DCE=60°∴△ACD是等边三角形∴AD=AC=BC,故①正确;由①可得AD=BC∵AB=CD∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE故四边形ACED是菱形,即③正确∵四边形ABCD是平行四边形,BA=BC∴.四边形ABCD是菱形∴AC⊥BD,AC//DE∴∠BDE=∠COD=90°∴BD⊥DE,故④正确综上可得①②③④正确,共4个.故选:D【点睛】此题主要考查了菱形的判定与性质,以及平移的性质,关键是掌握菱形四边相等,对角线互相垂直.2.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B作BQ⊥PH,垂足为Q.证明△ABP≌△QBP(AAS),以及△BCH≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.3.A解析:A【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【详解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵AD CDADM CDM DM DM⎧⎪∠∠⎨⎪⎩===,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵90CBF CDEBC CDBCF DCE∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,3AN x =,DN=MN=x , ∴AD=AB= 3(31)x x x +=+,∴DE=BF=AB-AF=(31)2(31)x x x +-=-,∴ 22(31)26BF MD x x x +=-+=,∵BC=AD= (31)6x x +≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.4.B解析:B【分析】设BD 与AC 交于O 点,已知条件为BO=DO ,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.【详解】解:A 、BO=DO ,∠AOB=∠COD, AB=CD 不能证出四边形ABCD 是平行四边形, 反例如图,故本选项错误;B 、如图,在直线AC 上任取一点C ´,使OA=OC ´,∵BO=DO ,∴四边形ABC ´D 是平行四边形,∴AD ∥BC ´,AB ∥C ´D,∴∠BC´A=∠C´AD, ∠AC´D=∠BAC´,∴∠BC´A+∠AC´D=∠C´AD+∠BAC´,即∠BC´D=∠BAD,∵∠BAD=∠BCD∴∠BC´D=∠BCD,∴点C与点C´重合,∴四边形ABCD是平行四边形.故本选项正确;C、当BO=DO,∠ABC=∠ADC不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误;D、当BO=DO,AC=BD, 不能证出四边形ABCD是平行四边形, 反例如图,故本选项错误.故选:B.【点睛】本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.5.A解析:A【分析】根据AB=5,AE=4,BE=3,可以确定△ABE为直角三角形,延长BE构建出直角三角形,在利用勾股定理求出EF的平方即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,如图,延长BE交CF于点G,∵AB=5,AE=4,BE=3,∴AE2+BE2=AB2,∴△ABE是直角三角形,同理可得△DFC是直角三角形,∵AE=FC=4,BE=DF=3,AB=CD=5,∴△ABE≌△CDF,∴∠BAE=∠DCF,∵∠ABC=∠AEB=902,∴∠CBG=∠BAE,同理可得,∠BCG=∠CDF=∠ABE,△ABE≌△BCG,∴CG=BE=3,BG=AE=4,∴EG=4-3=1,GF=4-3=1,∴E F 2=EG 2+GF 2=1+1=2故选择:A【点睛】此题考查三角形的判定,勾股定理的运用,根据已知条件构建直角三角形求值是解题的关键.6.D解析:D【分析】根据题意和图形可看出每经过一次变化,都顺时针旋转45°2,可求出从A 到A 3变化后的坐标,再求出A 1、A 2、A 3、A 4、A 5,继而得出A 8坐标即可.【详解】解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°2 ∵从A 到3A 经过了3次变化,∵45°×3=135°,1×32=2,∴点3A 所在的正方形的边长为2,点3A 位置在第四象限,∴点3A 的坐标是(2,-2),可得出:1A 点坐标为(1,1),2A 点坐标为(0,2),3A 点坐标为(2,-2),4A 点坐标为(0,-4),5A 点坐标为(-4,-4),6A (-8,0),A 7(-8,8),8A (0,16),故选D.本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.7.D解析:D【分析】连接BD,证出△ADE≌△BDF,得到AE=BF,再利用AE=t,CF=2t,则BF=BC-CF=5-2t求出时间t的值.【详解】解:连接BD,∵四边形ABCD是菱形,∠ADC=120°,∴AB=AD,∠ADB=12∠ADC=60°,∴△ABD是等边三角形,∴AD=BD,又∵△DEF是等边三角形,∴∠EDF=∠DEF=60°,又∵∠ADB=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,AD BDA DBCADE BDF=⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE≌△BDF(ASA),∴AE=BF,∵AE=t,CF=2t,∴BF=BC−CF=5−2t,∴t=5−2t∴t=53,故选:D.【点睛】本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.8.B【分析】连接AC ,根据线段重直平分线的性质及菱形的性质即可判断A 选项正确;根据线段垂直平分线的性质及菱形的性质求出∠BAM=90°,利用三角函数求出AM ,即可利用勾股定理求出BM ,由此判断B 选项;根据线段垂直平分的性质和菱形的性质可得BC=2CM ,由此判断C 选项;利用同底等高的性质证明△ABM 的面积=△ABC 的面积=△ACD 的面积,再利用线段垂直平分线的性质即可判断D 选项.【详解】如图,连接AC ,由题意知:EF 垂直平分CD ,∴AC=CD ,∵四边形ABCD 是菱形,∴AD=AB=BC=CD ,∴AC=AD=CD=AB=BC ,∴△ABC 和△ACD 都是等边三角形,∴∠BAC=∠CAD=∠ABC=60°,故A 正确;∵AM 垂直平分CD ,∴∠CAM=∠DAM=30°,∴∠BAM=90°,∴S △ABM =S △ABC =S △ABD =2S △ADM ,故D 项正确;∵AB=2,∴AC=CD=2,∴AM=AC ·cos30°=233, ∴22AB AM +()222+37B 项错误;由AM 垂直平分CD 可得CM=12CD , 又∵BC=CD ,∴CM=12BC ,即BC=2CM ,故C 项正确; 故选:B .【点睛】本题考查线段垂直平分线的作图,线段垂直平分线的性质,等边三角形的判定及性质,菱形的性质,三角函数,勾股定理,是一道综合题,掌握知识点是解题关键.9.D解析:D【分析】由勾股定理可求BE的长,由折叠的性质可得CE=EF=2,BE⊥CF,FH=CH,由面积法可求CH=455,由勾股定理可求EH的长,由三角形中位线定理可求DF=2EH=455.【详解】解:如图,连接CF,交BE于H,∵在正方形ABCD中,AB=4,E是CD的中点,∴BC=CD=4,CE=DE=2,∠BCD=90°,∴BE2216425BC CE+=+=∵将△BCE沿BE翻折至△BFE,∴CE=EF=2,BE⊥CF,FH=CH,∵S△BCE=12×BE×CH=12×BC×CE,∴CH 45,∴22165 455CE CH-=-=,∵CE=DE,FH=CH,∴DF=2EH=55,故选:D.【点睛】本题考查了翻折变换,正方形的性质,全等三角形的判定与性质,掌握折叠的性质是本题的关键.10.C解析:C【分析】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.①正确.只要证明△AME≌△NMF即可;②正确.只要证明△AOM≌△MPN即可;③错误.只要证明∠ADQ≌△ABH,由此推出△ANQ≌△ANH即可;④正确.只要证明△AME≌△NMF,证得四边形EMFB是正方形即可解决问题;【详解】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.∵四边形ABCD是正方形,∴AC⊥BD,222,∠DBA=∠DBC=45°,∴ME=MF,∵∠MEB=∠MFB=∠EBF=90°,∴四边形EMFB是矩形,∵ME=MF,∴四边形EMFB是正方形,∴∠EMF=∠AMN=90°,∴∠AME=∠NMF,∵∠AEM=∠MFN=90°,∴△AME≌△NMF(ASA),∴AM=MN,故①正确;∵∠OAM+∠AMO=90°,∠AMO+∠NMP=90°,∴∠AMO=∠MNP,∵∠AOM=∠NPM=90°,∴△AOM≌△MPN(AAS),∴2,故②正确;∵DQ=BH,AD=AB,∠ADQ=∠ABH=90°,∴∠ADQ≌△ABH(SAS),∴AQ=AH,∠QAD=∠BAH,∴∠BAH+∠BAQ=∠DAQ+∠BAQ=90°,∵AM=MN,∠AMN=90°,∴∠MAN=45°,∴∠NAQ=∠NAH=45°,∴△ANQ≌△ANH(SAS),∴NQ=NH=BN+BH=BN+DQ,∴△CNQ 的周长=CN+CQ+BN+DQ=4,故③错误;∵BD+2BP=2BO+2BP=2AO+2BP=2PM+2BP ,∴BD+2BP=2BM ,故④正确.故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、填空题11.18【分析】由题意可知AD 、EF 是定值,要使四边形ADFE 周长的最小,AE +DF 的和应是最小的,运用“将军饮马”模型作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,此时AE +DF 的和即为E 1F 1,再求四边形ADFE 周长的最小值.【详解】在Rt △COD 中,OC =3,OD =4,CD =22OC +OD =5,∵ABCD 是菱形,∴AD =CD =5,∵F 坐标为(8,6),点E 在y 轴上,∴EF =8,作点E 关于AD 的对称点E 1,同时作DF ∥AF 1,则E 1(0,2),F 1(3,6),则E 1F 1即为所求线段和的最小值,在Rt △AE 1F 1中,E 1F 122211EE +EF =-+(8-5)2(62), ∴四边形ADFE 周长的最小值=AD +EF +AE +DF = AD +EF + E 1F 1=5+8+5=18.【点睛】本题考查菱形的性质、“将军饮马”作对称点求线段和的最小值,比较综合,难度较大.12.①③④【分析】由“AAS”可证△AOE≌△COF,△AHO≌△CGO,可得OE=OF,HO=GO,可证四边形EGFH 是平行四边形,由EF⊥GH,可得四边形EGFH是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA”可证△BOG≌△COF,可得OG=OF,可证四边形EGFH是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD是菱形,∴AO=CO,AD∥BC,AB∥CD,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.13.5【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=12 x,BN=FN=5,最后利用勾股定理计算x的值,可得BC的长.【详解】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.14.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得2a ,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中 AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC ×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC , 由勾股定理得AE=22AB BE =52a , 设DG=x ,则CG=a-x ,FG=x ,EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.15.25【分析】作BE ⊥AD 于E ,BF ⊥CD 于F ,则四边形BEDF 是矩形,证明△ABE ≌△CBF (AAS ),得出BE=BF ,△ABE 的面积=△CBF 的面积,则四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,求出BE=10,即可求得BD 的长.【详解】解:作BE ⊥AD 交DA 延长线于E ,BF ⊥CD 于F ,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF 是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF ,在△ABE 和△CBF 中,ABE CBF AB CB ⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴BE=10(cm),∴BD=2BE=25(cm).故答案为:25.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.16.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AO FOACO FBO ⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×22=72. 故答案为72.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.17.9或9(31)+.【分析】分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.【详解】解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC 是等边三角形,∴∠BAC=60°,当EA ⊥BA 时,△ABE 是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3, 则△ACE 的面积为:12AE×CF=12×6×3=9;②如图2,过点A 作AF ⊥EC 于点F ,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,∴AF=12AE ,AC= ∵AB=BE=6,∴AE=∴=∴EC=EF+FC=则△ACE 的面积为:12EC×AF=11)2⨯⨯=. 故答案为:9或1).【点睛】本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.18.65【分析】先由正方形的性质得到∠ABF 的角度,从而得到∠AEB 的大小,再证△AEB ≌△AED ,得到∠AED 的大小【详解】∵四边形ABCD 是正方形∴∠ACB=∠ACD=∠BAC=∠CAD=45°,∠ABC=90°,AB=AD∵∠FBC=20°,∴ABF=70°∴在△ABE 中,∠AEB=65°在△ABE 与△ADE 中45AB AD BAE EAD AE AE =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△ADE∴∠AED=∠AEB=65°故答案为:65°【点睛】本题考查正方形的性质和三角形全等的证明,解题关键是利用正方形的性质,推导出∠AEB 的大小.19.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD 为矩形∴DF=FB∴EF 垂直平分DB∴ED=EB在△DEF 和△BEF 中DF=BF EF=EF ED=EB∴△DEF ≌△BEF∴△AEB ≌△FEB ≌△DEF ∴13666AEB FEB DEF ABCD S S S S ∆∆∆====⨯=矩形. 故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB ≌△FEB ≌△DEF 是解题的关键. 20.207【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =5-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+32=(5-x )2,∴x =67 ∴AF =2+67=207 故答案为:207 【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题21.(1)①6;②结论://P EC A ;(2)为4和16.【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD ,AB=BF ,∠CBD=∠ABF=90°,求出∠ABD=∠CBF ,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC ,AD=FC=6,求出AD ⊥CF ,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG 、BCED 是正方形,AB FB ∴=,CB DB =,90ABF CBD ∠=∠=︒,ABF ABC CBD ABC ∴∠+∠=∠+∠,即ABD CBF ∠=∠在ABD ∆和FBC ∆中,AB FB ABD CBF DB CB =⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS ∴∆≅∆;图1 图2(2)ABD FBC ∆≅∆,BAD BFC ∴∠=∠,6AD FC ==,180AMF BAD CNA ∴∠=︒-∠-∠ 180()BFC BNF =︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.23.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,3【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是263∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,。
八年级初二数学第二学期平行四边形单元 易错题难题提优专项训练试卷
八年级初二数学第二学期平行四边形单元 易错题难题提优专项训练试卷一、解答题1.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..2.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF . (1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).3.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.4.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)5.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =6=BC OAC 的面积;(3)如果30B ∠=︒,23AB =AED 是直角三角形时,求BC 的长.6.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).7.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.8.如图,等腰直角三角形OAB 的三个定点分别为(0,0)O 、(0,3)A 、(3,0)B -,过A 作y 轴的垂线1l .点C 在x 3D 在1l 上以每秒3322+的速度同时从点A 出发向右运动,当四边形ABCD 为平行四边形时C 、D 同时停止运动,设运动时间为t .当C 、D 停止运动时,将△OAB 沿y 轴向右翻折得到△1OAB ,1AB 与CD 相交于点E ,P 为x 轴上另一动点.(1)求直线AB 的解析式,并求出t 的值.(2)当PE+PD 取得最小值时,求222PD PE PD PE ++⋅的值.(3)设P 的运动速度为1,若P 从B 点出发向右运动,运动时间为x ,请用含x 的代数式表示△PAE 的面积.9.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE的长度最小时,ADAC=_______;(2)如图3,延长DA到点F,使AF DA=.以DF,DB为边作FDBE,求对角线DE的最小值及此时ADAC的值.10.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D→→→路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①120°;② BC=CD+CF;(2)不成立,见解析;(3)8,3【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF≌△ABD,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD,再根据BD+CD=BC,即可得出CF+CD=BC;(2)依据△ABD≌△ACF,即可得到∠ACF+∠BAC=180°,进而得到AB∥CF;依据△ABD≌△ACF可得BD=CF,依据CD-BD=BC,即可得出CD-CF=BC;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-= ∴222725213AD AH DH ++=∴132221321326322AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.2.(1)证明见解析;(2)①当AE=3.5时,平行四边形CEDF 是矩形;②2【分析】(1)证明△FCG ≌△EDG (ASA ),得到FG=EG 即可得到结论;(2)①当AE=3.5时,平行四边形CEDF 是矩形.过A 作AM ⊥BC 于M ,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM ,证明△MBA ≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF 是矩形;②根据四边形CEDFCEDF 是菱形,得到CD ⊥EF ,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.【详解】(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DG CGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ △FCG ≌△EDG (ASA ),∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形;(2)解:①当AE=3.5时,平行四边形CEDF 是矩形,理由是:过A 作AM ⊥BC 于M ,∵∠B=60°,∴∠BAM=30°,∵AB=3,∴BM=1.5,∵四边形ABCD 是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM ,在△MBA 和△EDC 中,BM DE B CDE AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△MBA ≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF 是平行四边形,∴四边形CEDF 是矩形;②∵四边形CEDFCEDF 是菱形,∴CD ⊥EF ,DG=CG=1212CD=1.5,∵∠CDE=∠B=60∘∠B=60∘,∴∠DEG=30°,∴DE=2DG=3,∴AE=AD-DE=5-3=2,故答案为:2.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的性质定理,直角三角形30度角所对的直角边等于斜边的一半,三角形全等的判定及性质定理,熟练掌握各定理并运用解答问题是解题的关键.3.(1)(3,32);(2)存在,点D 的坐标为(0,3)或(23,1)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=132OB =∴2232OB BD -=∴点B 332) 332); (2)在图2的基础上继续将直角三角板绕点O 顺时针60︒,此时点A 落在y 轴上,点B 落在x 轴上∴点A的坐标为(0,1),点B的坐标为(3,0)∵△ABC为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C的坐标为(3,2)设点D的坐标为(a,b)如图所示,若四边形ABCD为菱形,连接BD,与AC交于点O ∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3 ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O ∴点O既是AD的中点,也是BC的中点∴03322 12022ab⎧+=⎪⎪⎨++⎪=⎪⎩解得:31ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(231);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴03310222ab⎧++=⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=3∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM-∠FPB=30°∴∠BMP=∠BPM∴BM=BP=3 2在Rt△OBM中,2221 2OB BM+=;综上:OM=32或212.【点睛】此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.4.【发现与证明..】结论1:见解析,结论2:见解析;【应用与探究】AC2或2.【分析】【发现与证明..】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【详解】【发现与证明..】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB ′,∴AE=CE ,即△ACE 是等腰三角形;∴DE=B ′E ,∴∠CB ′D=∠B ′DA=12(180°−∠B ′ED),∵∠AEC=∠B ′ED ,∴∠ACB ′=∠CB ′D ,∴B ′D ∥AC ;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB ′是正方形,∴∠CAB ′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=22BC =; ②如图2所示:AC=BC=2;综上所述:AC 2或2.【点睛】本题考查平行四边形的性质, 正方形的性质, 翻折变换(折叠问题).【发现与证明..】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论2:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明..】的关键是根据已知条件找到对应角之间的关系. 【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA 和AB ’共线和BC 和B’C 两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.5.(1)见解析;(2)928;(3)4或6 【分析】(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;(2)证四边形ABCD 是矩形,则90CDO ∠=︒,==CD ABAD BC ==OA OC x ==,则OD x ,在Rt OCD ∆中,由勾股定理得出方程,求出OA =,由三角形面积公式即可得出答案;(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30角的直角三角形的性质,即可得到BC 的长.【详解】解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,ACB ACE ∴∠=∠,BC EC =,四边形ABCD 是平行四边形,AD BC ∴=,//AD BC .EC AD ∴=,ACB CAD ∠=∠,ACE CAD ∴∠=∠,OA OC ∴=,OD OE ∴=,ODE OED ∴∠=∠,AOC DOE ∠=∠,CAD ACE OED ODE ∴∠=∠=∠=∠,//AC DE ∴;(2)平行四边形ABCD 中,90B ∠=︒,∴四边形ABCD 是矩形,90CDO ∴∠=︒,==CD AB AD BC ==由(1)得:OA OC =,设OA OC x ==,则OD x =,在Rt OCD ∆中,由勾股定理得:222)x x +=,解得:x =OA ∴=,OAC ∴∆的面积1122OA CD =⨯=; (3)分两种情况:①如图3,当90EAD ∠=︒时,延长EA 交BC 于G ,AD BC =,BC EC =,AD EC ∴=,//AD BC ,90EAD ∠=︒,90EGC ∴∠=︒,30B ∠=︒,23AB=,30AEC ∴∠=︒,1122GC EC BC ∴==, G ∴是BC 的中点,在Rt ABG ∆中,33BG AB ==, 26BC BG ∴==;②如图4,当90AED ∠=︒时AD BC =,BC EC =,AD EC ∴=,由折叠的性质得:AE AB =,AE CD ∴=,在ACE ∆和CAD ∆中,AE CD CE AD AC CA =⎧⎪=⎨⎪=⎩,()ACE CAD SSS ∴∆≅∆,ECA DAC ∴∠=∠,OA OC ∴=,OE OD ∴=,OED ODE ∴∠=∠,AED CDE ∴∠=∠,90AED ∠=︒,90CDE ,//AE CD ∴,又//AB CD ,B ∴,A ,E 在同一直线上,90BAC EAC ∴∠=∠=︒,Rt ABC ∆中,30B ∠=︒,23AB =32AC AB ∴==,24BC AC ==; 综上所述,当AED ∆是直角三角形时,BC 的长为4或6.【点睛】本题是四边形综合题目,考查了翻折变换的性质、平行四边形的性质、平行线的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握翻折变换的性质和平行四边形的性质是解题的关键.6.(1)见解析;(2)7PA =4217BH 3)①(423,23)M +2635 【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=43PB=23AP=7,再利用面积法计算BH 即可;(3)①求出直线PM 的解析式为y=32x-3,再利用两点间的距离公式计算即可; ②易得直线BC 的解析式为y=33-x+4,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴AD=12OB ,OD=BD=12OB , ∴DO=DA , ∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC 为等边三角形,∴∠BCO=∠AEO=60°,∴BC ∥AE ,∵∠BAO=∠COA=90°,∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE是平行四边形,∴PB=PE,PC=PA,∴PB=∴PC PA===∴1122ABCS AC BH AB BE∆=⋅⋅=⋅⋅,即114 22BH⨯=⨯⨯∴BH(3)①∵C(0,4),设直线AC的解析式为y=kx+4,∵P(0),∴0=,解得,k=,∴y=3-x+4,∵∠APM=90°,∴直线PM的解析式为,∵P(0),∴,解得,m=-3,∴直线PM的解析式为,设M(x),∵AP=∴(x-2+)2=(2,化简得,x2x-4=0,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,y=2×(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:43y x =-+,联立3243y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G ,161=4252PBG PBA S S S ∆∆∴+=⨯+⨯=阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.7.(1)①详见解析;②45°-α;③DF BF =+,详见解析;(2)DF BF =,或BF DF =,或BF DF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可;③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出即可得出结论;(2)分三种情况:①当点E 在线段BC 上时,,理由同(1)③; ②当点E 在线段BC 的延长线上时,,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出,即可得出结论;③当点E 在线段CB 的延长线上时,,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =+.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵ 正方形ABCD ,∴ BC =CD ,∠BDC =∠DBC =45°,∠BCD =90°∴∠CDM =∠CBF =45°-α,∴△CDM ≌△CBF (SAS ).∴ DM =BF , CM =CF ,∠DCM =∠BCF .∴ ∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD =90°,∴ MF 2CF . ∴2.DF DM MF BF CF =+=+(2)分三种情况:①当点E 在线段BC 上时,2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,2CF ,理由如下: 在BF 上截取BM=DF ,连接CM ,如图3所示,同(1) ③,得:△CBM ≌△CDF (SAS),∴CM=CF , ∠BCM=∠DCF .∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF 是等腰直角三角形,∴2CF ,∴BF=BM+MF=DF+2CF ; ③当点E 在线段CB 的延长线上时,BF+DF=2CF ;理由如下: 在DF 上截取DM=BF ,连接CM ,如图4所示,同(1)③得:△CDM ≌△CBF ,∴CM=CF ,∠DCM=∠BCF ,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF 是等腰直角三 角形,∴MF=2CF ,即DM+DF=2CF ,∴BF+DF=2CF ;综上所述,当点E 在直线BC 上时,线段BF ,CF ,DF 之间的数导关系为:2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.8.(1)2t =;(2)222=2433PD PE PD PE ++⋅-; (3)①当06x ≤≤时,S △PAE =(6)(33)x -+,②当6x ≥时, S △PAE =(6)(33)x -+. 【解析】【分析】(1)设直线AB 为3y kx =+,把B(-3,0)代入,求得k ,确定解析式;再设设t 秒后构成平行四边形,根据题意列出方程,求出t 即可;(2)过E 作关于x 轴对于点E ',连接EE′交x 轴于点P ,则此时PE+PD 最小.由(1)得到当t=2时,有C (3,0),D(33+,3),再根据AB ∥CD ,求出直线CD 和AB 1的解析式,确定E 的坐标;然后再通过乘法公式和线段运算,即可完成解答.(3)根据(1)可以判断有06x ≤≤和6x ≥两种情况,然后分类讨论即可.【详解】(1)解:设直线AB 为3y kx =+,把B(-3,0)代入得:033k =-+∴1k =∴3y x由题意得:设t 秒后构成平行四边形,则3333222t t ⎛⎫+=+ ⎪ ⎪⎝⎭解之得:2t =,(2)如图:过E 作关于x 轴对于点E ',连接EE′交x 轴于点P ,则此时PE+PD 最小.由(1)t=2得:∴C 0),D(3,3)∵AB ∥CD∴设CD 为1y x b =+把C 0)代入得b 1=∴CD 为:y x =-易得1AB 为:3y x =-+∴3y x y x ⎧=-⎪⎨=-+⎪⎩解之得:E(32+∴222222332()32422PD PE PD PE PD PE E D '⎛⎛++⋅=+==++=- ⎝⎭⎝⎭(3)①当06x ≤≤时S △PAE =S △PAB1-S △PEB1=13(6)(3(6)3224x x ⎛⎫---= ⎪ ⎪⎝⎭②当6x ≥时:S △PAE =S △PAB1-S △PEB1=1(6)32x ⎛--= ⎝⎭【点睛】本题是一次函数的综合题型,主要考查了用待定系数求一次函数的关系式,点的坐标的确定,动点问题等知识点.解题的关键是扎实的基本功和面对难题的自信.9.(1)12;(2)13AD AC =. 【分析】(1)易证四边形CDEB 是矩形,由条件“四边形ADBE 是平行四边形可得AD =EB =DC ,从而得到AD AC的值. (2)由题可知当DE AC ⊥时,DE 最短,可以证到四边形DCBE 是矩形.从而可以得到各边关系从而求出AD AC 的值. 【详解】解:(1)∵四边形ADBE 是平行四边形,∴AD ∥BE ,AD =BE .∵DE ⊥AC ,∠ACB =90°,∴∠ADE =∠C =90°.∴DE ∥BC .∵DC ∥BE ,DE ∥BC ,∠C =90°,∴四边形DCBE 是矩形.∴EB =DC .∴AD =DC . ∴AD AC ==12. 故答案为:12.(2)如图,由题可知当DE AC ⊥时,DE 最短.最小值是6.∵四边形FDBE 是平行四边形,∴//DF BE ,DF BE =.∵DE AC ⊥,90C ∠=︒,∴90ADE C ∠=∠=︒.∴//DE BC .∴四边形CDEB 是平行四边形,又∵90C ∠=︒,∴四边形CDEB 是矩形.∴BE CD =,6DE BC ==.∴DF CD =.∵AF AD =,∴2DC DF AD ==.∴3AC AD DC AD =+=. ∴13AD AC =. 【点睛】 本题考查了平行线之间的距离、平行线的判定、矩形的判定与性质、平行四边形的性质等知识,具有一定的综合性;本题还考查了阅读能力,体现了自主探究与合作交流相结合的新课程理念,是一道好题.10.(1)254秒或252秒;(2)15秒 【分析】(1)Q 点必须在BC 上时,A ,Q ,F ,P 为顶点的四边形才能是平行四边形,分Q 点在BF 和Q 点在CF 上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q 点在AB 、BC 、CD 之间时逐个讨论即可求解.【详解】解:(1)∵以A 、Q 、F 、P 为顶点的四边形是平行四边形,且AP 在AD 上,∴Q 点必须在BC 上才能满足以A 、Q 、F 、P 为顶点的四边形是平行四边形∵四边形ABCD 是平行四边形,∴AD=BC=30,AB=CD=10,∵点F 是BC 的中点,∴BF=CF=12BC=15,AB+BF=25, 情况一:当Q 点在BF 上时,AP=FQ ,且AP=t ,FQ=35-3t ,故t =25-3t ,解得254t =; 情况二:当Q 点在CF 上时,AP=FQ ,且AP=t ,FQ=3t-35,故t =3t -25,解得t=252; 故经过254或252秒,以A 、Q 、B 、P 为顶点的四边形是平行四边形; (2)情况一:当Q 点在AB 上时,0<t<103,此时P 点还未运动到AD 的中点位置, 故四边形AQFP 面积小于平行四边形ABCD 面积的一半,情况二:当Q 点在BC 上且位于BF 之间时,102533t , 此时AP+FQ=t+35-3t=35-2t ,∵102533t ,∴35-2t <30, 四边形AQFP 面积小于平行四边形ABCD 面积的一半, 情况三:当Q 点在BC 上且位于FC 之间时,254033t 此时AP+FQ=t+3t-35=4t-35∵254033t,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,4050 33t<<当AP=BF=15时,t=15,1122 APF ABFP PFQ DCFP S S S S且∴1+2APF PFQ AFPQ ABCDS S S S,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.。
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试卷
人教版八年级初二数学第二学期平行四边形单元 易错题难题测试提优卷试卷一、解答题1.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).2.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______; ②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 3.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.4.如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A D 、不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE ∆≅∆;(2)若PB PQ =,点F 是BP 的中点,连结EF AF 、,①求证:四边形AFEP 是平行四边形;②求PE 的长.5.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .6.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).7.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.8.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.9.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点E 是AC 的一点,连接EB ,过点A 做AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .(1)猜想:如图(1)线段OE 与线段OF 的数量关系为 ;(2)拓展:如图(2),若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 、DB 的延长线相交于点F ,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.10.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF 上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l1:y=443x-+与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF 的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值=()222na 1a n +=+•a ,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a an +⋅=21n +, 故答案为:21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED≌△BEH(ASA),∴AD=BH=2kn,∴CH=4kn,∵∠ADE=∠EDF,∠ADE=∠H,∴∠H=∠EDF,∴FD=FH,设DF=FH=x,在Rt△DCF中,∵CD2+CF2=DF2,∴(2k)2+(4kn-x)2=x2,∴2142nx kn+=⋅,∴221441422n nCF kn k kn n+-=-⋅=⋅,241222n kBF kn kn n-=-⋅=,∴22412412nkCF nnkBFn-⋅==-,故答案为:241n-.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.2.(1)①6;②结论://PEC A;(2)为4和16.【分析】()1①如图1中,以A为圆心AB为半径画弧交CD于E,作EAB∠的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC//PA.只要证明PA BE⊥,EC BE⊥即可解决问题.()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A为圆心AB为半径画弧交CD于E,作EAB∠的平分线交BC于点P,点P即为所求.在Rt ADE中,90D∠=,10AE AB==,8AD=,22221086DE AE AD ∴=-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥, //EC PA ∴. ()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG =DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH =HD ,再根据线段间的关系即可得出HG =HD +DG =OH +BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形,再根据正方形的性质以及点B 的坐标可得出点G 的坐标,设H 点的坐标为(x ,0),由此可得出HO =x ,根据勾股定理即可求出x 的值,即可得出点H 的坐标,结合点H 、G 的坐标利用待定系数法即可求出直线DE 的解析式.【详解】(1)∵正方形ABCO 绕点C 旋转得到正方形CDEF ,∴CD =CB ,∠CDG =∠CBG =90°.在Rt △CDG 和Rt △CBG 中,∵CG CGCD CB=⎧⎨=⎩,∴Rt△CDG≌Rt△CBG(HL),∴∠DCG=∠BCG,即CG平分∠DCB.(2)由(1)证得:Rt△CDG≌Rt△CBG,∴BG=DG.在Rt△CHO和Rt△CHD中,∵CH CHCO CD=⎧⎨=⎩,∴Rt△CHO≌Rt△CHD(HL),∴OH=HD,∴HG=HD+DG=OH+BG.(3)假设四边形AEBD可为矩形.当G点为AB中点时,四边形AEBD为矩形,如图所示.∵G点为AB中点,∴BG=GA12=AB,由(2)证得:BG=DG,则BG=GA=DG12=AB12=DE=GE,又AB=DE,∴四边形AEBD为矩形,∴AG=EG=BG=DG.∵AG12=AB=3,∴G点的坐标为(6,3).设H点的坐标为(x,0),则HO=x,∴HD=x,DG=3.在Rt△HGA中,HG=x+3,GA=3,HA=6﹣x,由勾股定理得:(x+3)2=32+(6﹣x)2,解得:x=2,∴H点的坐标为(2,0).设直线DE的解析式为:y=kx+b(k≠0),将点H(2,0)、G(6,3)代入y=kx+b中,得:2063k bk b+=⎧⎨+=⎩,解得:3432kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线DE的解析式为:y3342x=-.故四边形AEBD能为矩形,此时直线DE的解析式为:y33 42x=-.【点睛】本题考查了矩形的性质、旋转的性质、全等三角形的判定及性质、待定系数法求函数解析式以及勾股定理.解题的关键是:(1)证出Rt△CDG≌Rt△CBG;(2)找出BG=DG、OH=HD;(3)求出点H、G的坐标.本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边和角是关键.4.(1)见解析;(2)①见解析;②13 PE=【分析】(1)由四边形ABCD 是正方形知∠D=∠ECQ=90°,由E 是CD 的中点知DE=CE ,结合∠DEP=∠CEQ 即可得证;(2)①由PB=PQ 知∠PBQ=∠Q ,结合AD ∥BC 得∠APB=∠PBQ=∠Q=∠EPD ,由△PDE ≌△QCE 知PE=QE ,再由EF ∥BQ 知PF=BF ,根据Rt △PAB 中AF=PF=BF 知∠APF=∠PAF ,从而得∠PAF=∠EPD ,据此即可证得PE ∥AF ,从而得证;②设AP x =,则1PD x =-,1CQ x =-,2BQ x =-,利用三角形中位线定理得到()122EF x =-,由EF AP =,构造方程即可求得23x =,在Rt PDE ∆中,利用勾股定理即可求解.【详解】(1)∵四边形ABCD 是正方形,∴∠D=∠ECQ=90°,∵E 是CD 的中点,∴DE=CE ,又∵∠DEP=∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①∵PB=PQ ,∴∠PBQ=∠Q ,∵AD ∥BC ,∴∠APB=∠PBQ=∠Q=∠EPD ,∵△PDE ≌△QCE ,∴PE=QE ,∵PF=BF ,∴EF 是PBQ ∆的中位线,∴EF ∥BQ ,∴在Rt △PAB 中,AF=PF=BF ,∴∠APF=∠PAF ,∴∠PAF=∠EPD ,∴PE ∥AF ,∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP x =,则1PD x =-,∴1CQ x =-,∴2BQ x =-,∵EF 是PBQ ∆的中位线, ∴()122EF x =-, ∵EF AP =,∴()122xx -=, ∴23x =, 在Rt PDE ∆中,222PD DE PE +=,即22221(1)()32PE -+=,∴13PE =. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、平行四边形的判定和性质以及勾股定理等知识点.掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.5.(1)①见解析;②GFC 是等腰三角形,证明见解析;(2)4+25或4﹣25.【分析】(1)①只要证明△DAH ≌△DCH ,即可解决问题;②只要证明∠CFG=∠FCG ,即可解决问题;(2)分两种情形解决问题:①当点F 在线段CD 上时,连接DE .②当点F 在线段DC 的延长线上时,连接DE .分别求出EC 即可解决问题.【详解】(1)①证明:∵四边形ABCD 是正方形,∴∠ADB =∠CDB =45°,DA =DC ,在△DAH 和△DCH 中,DA DC ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩,∴△DAH ≌△DCH ,∴∠DAH =∠DCH ;∵∠ECG=∠DAH ,∴∠ECG=∠DCH ,∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH ⊥CG.②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形-.(2)BE的长为 4+25或425①如图①当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,又∵在Rt△FCG中,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∴G是EF的中点,∴GM是△DEF的中位线∴DE=2MG=6,在Rt△DCE中,CE=22-=25,64DE DC-=22∴BE=BC+CE=4+25.②当点F在线段DC的延长线上时,连接DE.同法可知GM 是△DEC 的中位线,∴DE =2GM =5,在Rt △DCE 中,CE∴BE =BC ﹣CE =4﹣综上所述,BE 的长为4+4﹣【点睛】本题考查正方形的性质、全等三角形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(1)见解析;(2)FG=EP ,理由见解析;(3【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,由勾股定理得BC=CF=,由等腰三角形的性质得BH=CH=12BC=HF=4-,OH=12OB=2,由勾股定理得OF=,进而得出答案. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ODE=∠OBF ,∠OED=∠OFB ,∵AE=CF ,∴AD-AE=BC-CF ,即DE=BF ,在△ODE 和△OFB 中, ODE OBF DE BFOED OFB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODE ≌△OFB (ASA ),∴OE=OF ;(2)FG=EP ,理由如下:连AC ,如图②所示:由(1)可知:OE=OF ,OB=OD ,∵四边形ABCD 是平行四边形,∴AC 过点O ,OA=OC ,∠BAD=∠BCD ,∠D=∠B ,在△AOE 和△COF 中,OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴AE=CF ,由折叠性质得:AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,∴∠D=∠B 1,∵∠A 1PE=∠DPH ,∠PHD=∠B 1HG ,∴∠DPH=∠B 1GH ,∵∠B 1GH=∠CGF ,∴∠A 1PE=∠CGF ,在△A 1PE 和△CGF 中,111A PE CGF A FCG A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1PE ≌△CGF (AAS ),∴FG=EP ;(3)作OH ⊥BC 于H ,如图③所示:∵△AOB 是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∴AC=BD ,∴四边形ABCD 是矩形,∴∠ABC=90°,∴∠OBC=∠OCB=30°,∵AB=OB=BF=4,∴AC=BD=2OB=8,由勾股定理得:2222=84AC AB --3∴CF=43,∵OB=OC ,OH ⊥BC ,∴BH=CH=12BC=23, ∴HF=4-23,OH=12OB=2, 在Rt △OHF 中,由勾股定理得:OF=22OH HF +=()222423+-=2622-,∴4342226222CF OF -===-, 故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题.7.(1)见解析;(2)FH+FE=2DF ,理由见解析;(3)22【分析】(1)如图1中,证明△AFB ≌△DGA (AAS )可得结论.(2)结论:FH+FE=2DF .如图2中,过点D 作DK ⊥AE 于K ,DJ ⊥BF 交BF 的延长线于J ,证明四边形DKFJ 是正方形,可得结论.(3)如图3中,取AD 的中点J ,连接PJ ,延长JP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K .设PT=b .证明△KPJ 是等腰直角三角形,推出点P 在线段JR 上运动,求出JR 即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=12CD,CD=AD,∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴DF=2FJ,∴FH+FE=FJ-HJ+FK+KE=2FJ=2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH≌△DAE,∴AH=DE,∵∠EDH=90°,HP=PE,∴PD=PH=PE,∵PK⊥DH,PT⊥DE,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK是矩形,∴PT=DK=b,PK=DT,∵PH=PD=PE,PK⊥DH,PT⊥DE,∴DH=2DK=2b,DE=2DT,∴AH=DE=1-2b,∴PK=12DE=12-b,JK=DJ-DK=12-b,∴PK=KJ,∵∠PKJ=90°,∴∠KJP=45°,∴点P在线段JR上运动,∵2DJ=22,∴点P 2.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.8.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒-αα︒-, 在△CEB 中,CE =CB ,∠BCE =90α︒-,∴∠CEB =∠CBE =1804522BCE α︒-∠=︒+, ∴∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD =∠BGF =90°,∠BPF =∠APD ,∴∠ABG =∠ADH .又∵∠AGB =∠AHD =90°,AB =AD ,∴△ABG ≌△ADH .∴AG =AH ,∴矩形AGFH 是正方形.∴∠AFH =∠FAH =45°,∴AH =AF∵∠DAH +∠ADH =∠CDI +∠ADH =90°∴∠DAH =∠CDI又∵∠AHD =∠DIC =90°,AD =DC ,∴△AHD ≌△DIC∴AH =DI ,∵DE =2DI ,∴DE =2AH =2AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.(1)OE OF =;(2)成立.理由见解析.【解析】【分析】(1)根据正方形的性质对角线垂直且平分,得到OB=OA ,又因为AM ⊥BE ,所以∠MEA+∠MAE=90°=∠AFO+∠MAE ,从而求证出Rt △BOE ≌Rt △AOF ,得到OE=OF. (2)根据第一步得到的结果以及正方形的性质得到OB=OA ,再根据已知条件求证出Rt △BOE ≌Rt △AOF ,得到OE=OF.【详解】解:(1)正方形ABCD 的对角线AC 、BD 相交于点O ,AM ⊥BE ,∴∠AOB=∠BOE=∠AMB=90°,∵∠AFO=∠BFM (对顶角相等),∴∠OAF=∠OBE (等角的余角相等),又OA=OB (正方形的对角线互相垂直平分且相等),∴△BOE ≌△AOF (ASA ),∴OE=OF.故答案为:OE=OF ;(2)成立.理由如下:证明:∵四边形ABCD 是正方形,∴90BOE AOF ∠=∠=︒,OB OA =又∵AM BE ⊥,∴90F MBF ∠+∠=︒,90E OBE ∠+∠=︒,又∵MBF OBE ∠=∠∴F E ∠=∠∴BOE AOF ∆≅∆,∴OE OF =【点睛】本题是四边形的综合题,考查了正方形的性质、三角形全等的性质和判定,并运用了类比的思想,两个问题都是证明BOE AOF ∆≅∆解决问题.10.【变式探究】:详见解析;【结论运用】:4;【迁移拓展】:P 1的坐标为(12- ,3)或(12,5) 【解析】 试题分析:【变式探究】按照【问题情境】的证明思路即可解决问题.【结论运用】过E 作EQ BF ⊥,利用问题情境中的结论可得PG PH EQ +=,易证EQ DC BF DF ==,,只需求即可.【迁移拓展】分成两种情况进行讨论.试题解析:【变式探究】:连接,AP∵PD ⊥AB ,PE ⊥AC ,CF ⊥AB ,ABC ACP ABP S S S ∴=-,111222AB CF AC PE AB PD ∴⨯=⨯-⨯, AB AC =,.CF PE PD ∴=-【结论运用】过E 作EQ BF ⊥,垂足为Q ,如图④,∵四边形ABCD 是长方形,90AD BC C ADC ∴=∠=∠=︒,.835AD CF BF BC CF AD CF ==∴=-=-=,,.由折叠可得:DF BF BEF DEF =∠=∠,.590DF C ∴=∠=︒.,222253 4.DC DF CF ∴=-=-= 90EQ BC C ADC ⊥∠=∠=︒,, 90EQC C ADC ∴∠=︒=∠=∠.∴四边形EQCD 是长方形.4EQ DC ∴==.∵AD ∥BC ,DEF EFB ∴∠=∠.BEF DEF BEF EFB BE BF ∠=∠∴∠=∠∴=,..由问题情境中的结论可得:4PG PH EQ PG PH +=∴+=.. PG PH ∴+的值为4.【迁移拓展】由题意得:(04),?(30),(20).A B C -,,, 2234 5.AB =+=5.BC = .AB BC ∴=(1)由结论得:1111 +?4,PD PE OA ==11111 3.PD PE =∴=,即点1P 的纵坐标为3,又点1P 在直线l 2上 ∴24y x =+=3 ,∴12x =-. 即点1P 的坐标为1,3.2⎛⎫-⎪⎝⎭ (2) 由结论得:22224,P E P D OA -== 22221 5.P D P E =∴=, 即点2P 的纵坐标为5, 又点2P 在直线l 2上 ∴24y x =+=5. ∴12x =. 即点2P 的坐标为1,5.2⎛⎫ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)结论:AG2=GE2+GF2.
理由:连接CG.
∵四边形ABCD是正方形,
∴A、C关于对角线BD对称,
∵点G在BD上,
∴GA=GC,
∵GE⊥DC于点E,GF⊥BC于点F,
∴∠GEC=∠ECF=∠CFG=90°,
∴四边形EGFC是矩形,
∴CF=GE,
在Rt△GFC中,∵CG2=GF2+CF2,
(2)若AB=2 ,AE=2,试求线段PH的长;
(3)如图②,连结CP并延长交AD于点Q,若点H是BP的中点,试求 的值.
5.矩形ABCD中,AB=3,BC=4.点E,F在对角线AC上,点M,N分别在边AD,BC上.
(1)如图1,若AE=CF=1,M,N分别是AD,BC的中点.求证:四边形EMFN为矩形.
(3)若AG= ,请直接写出此时DE的长.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)AG2=GE2+GF2,理由见解析;(2)
【分析】
(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN= x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+ x)2,解得x= ,推出BN= ,再根据BG=BN÷cos30°即可解决问题.
∴AG2=GF2+GE2.
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.
∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,
∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,
∴∠AMN=30°,
∴AM=BM=2x,MN= x,
在Rt△ABN中,∵AB2=AN2+BN2,
(3)在 轴正半轴上存在点 ,使得 是等腰三角形,请直接写出不少于4个符合条件的点 的坐标(用 的式子表示)
10.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.
(1)如图1,当点E与点D重合时,AG=;
(2)如图2,当点E在线段CD上时,DE=2,求AG的长;
(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.
8.如图,四边形 为正方形.在边 上取一点 ,连接 ,使 .
(1)利用尺规作图(保留作图痕迹):分别以点 、 为圆心, 长为半径作弧交正方形内部于点 ,连接 并延长交边 于点 ,则 ;
(2)在前面的条件下,取 中点 ,过点 的直线分别交边 、 于点 、 .
平行四边形单元 易错题难题测试提优卷试题
一、解答题
1.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.
(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.
2.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连结CH、CG.
(2)由(1)的Rt△CDG≌Rt△CBG可得出BG=DG,根据全等直角三角形的判定定理(HL)即可证出Rt△CHO≌Rt△CHD,即OH=HD,再根据线段间的关系即可得出HG=HD+DG=OH+BG;
(3)根据(2)的结论即可找出当G点为AB中点时,四边形AEBD为矩形,再根据正方形的性质以及点B的坐标可得出点G的坐标,设H点的坐标为(x,0),由此可得出HO=x,根据勾股定理即可求出x的值,即可得出点H的坐标,结合点H、G的坐标利用待定系数法即可求出直线DE的解析式.
(2)如图2,若AE=CF=0.5, ,且四边形EMFN为矩形,求x的值.
6.直线 是同一平面内的一组平行线.
(1)如图1.正方形 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点 ,点 分别在直线 和 上,求正方形的面积;
(2)如图2,正方形 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为 .
(1)求证:CG平分∠DCB;
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;
(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.
3.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形;
(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.
4.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.
(1)求证:AF∥CH;
∴1=x2+(2x+ x)2,
解得x= ,
∴BN= ,
∴BG=BN÷cos30°= .
【点睛】
本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.
2.(1)见解析;(2)HG=OH+BG;(3)能成矩形,y .
【分析】
(1)根据旋转和正方形的性质可得出CD=CB,∠CDG=∠CBG=90,根据全等直角三角形的判定定理(HL)即可证出Rt△CDG≌Rt△CBG,即∠DCG=∠BCG,;
②当 时,延长 , 交于 点,猜想 与 的数量关系,并说明理由.
9.如图,在四边形 是边长为4的正方形点P为OA边上任意一点(与点 不重合),连接CP,过点P作 ,且 ,过点M作 ,交 于点 联结 ,设 .
(1)当 时,点 的坐标为(,)
(2)设 ,求出 与 的函数关系式,写出函数的自变量的取值范围.
①求证: ;
②设正方形 的面积为 ,求证 .
7.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.
(1)如图1,当点E与点D重合时,BF的长为;
(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)