铝合金焊接缺陷检验

合集下载

空分冷箱中铝合金管道的焊接及无损检测

空分冷箱中铝合金管道的焊接及无损检测

空分冷箱中铝合金管道的焊接及无损检测化肥厂空分装置大小冷箱的配管材料均采用铝镁合金,主要为LF2、LF4及LF21。

对接接头的焊接质量决定了空分设备的安全运行周期。

铝及其合金在焊接过程中易产生较多的焊接缺陷,常见的有气孔、根部本焊透、内凹以及焊接热裂纹。

其焊接接头X射线无损检测的参数与普通碳钢相比也有不同。

文中根据中石油宁夏石化分公司空分装置大小冷箱改造中,铝镁合金管道对接焊缝的焊接及其X 射线无损检测中的技术问题,讨论了铝合金焊接过程中焊接缺陷的产生和防止,绘出了X射线无损检测的技术参数。

1 焊接缺陷铝及铝镁合金的焊接气孔主要是氢气孔。

铝在液态时能大量吸收和溶解氢,在熔融状态下溶解度为0.0069ml/g,而高温凝固状态下为0.00036ml/g,前后相差近20倍。

铝的导热系数很大,在相同焊接工艺条件下,其冷却速度为钢的4~7倍,使金属结晶加快,焊接熔池在快速冷却过程中,氢的溶解度急剧下降,此时析出大量过饱和气体,氢气来不及选出在焊缝金属中形成气孔①。

焊件组对质量和施焊位置对铝镁合金管件的焊接质量尤为重要。

组对间隙过小、钝边过大、坡口角度太小及错边量超标等,极易在立焊和仰焊位置产生根部未熄透。

空分管道多数是弯头,其厚度多大于直管段厚度,虽然经厚度过渡,但两边单位体积不同,导热量和散热量也有所不同,如果不注意焊枪角度和焊丝位置角度的调整,很容易形成单边根部未焊透。

焊件的焊前表面处理也是影响焊接质量的1个因素,焊件表面氧化膜清除不彻底、存有油污等杂质,焊接电流小、电弧过长、速度过快,都可以使焊接熔化温度不够而造成根部本焊透。

铝及铝镁合金在高温下随温度的不断升高,其抗拉强度会越来越低,在400℃时,它的抗拉强度仅为 9.8N/mm2。

当温度升到熔化温度时,抗拉强度几乎为0,已不能支撑自身的质量。

接近熔化温度时,铝本身几乎没有塑性。

达到熔化状态时,液态铝的流动性又非常强。

这3者并存决定了它必然要产生一定程度的内凹。

关于铝合金焊接缺陷的解释和检测方法

关于铝合金焊接缺陷的解释和检测方法

关于铝合金焊接缺陷的解释和检测方法摘要:根据我多年的工作经验,在铝合金焊接过程中会存在大量的缺陷,那么如何判断这些缺陷的类型和相关的检验标准就成了一个从事焊接操作的操作者的必备知识。

本文根据本人工作经验结合ISO-10042标准以及焊角尺的使用,提出了焊接缺陷类型和检测方法,从而使焊接操作者可以从更深层次了解焊接缺陷和检验。

关键词:铝合金焊接缺陷焊缝检测尺目检焊接质量控制一、前言根据多年的焊接经验,我发现焊接表面的基本缺陷几乎无法避免。

如何确定焊接缺陷的临界值,也是我们焊接操作者突破焊接技能瓶颈的重要指示。

本文通过对标准的了解和个人工作经验结合焊缝检测尺使用,找出缺陷临界值来避免实际生产过程中由于标准不清的重复操作。

二、焊角尺使用及基本缺陷判定1.焊接工件间隙测量图1.焊缝检测尺图 2.焊接前组对间隙测量焊接前组对间隙的可用焊缝检测尺(如图1)插入两焊件之间,测量两焊件的装配间隙(如用图2)。

根据根据EN15085-3中(如表1)关于铝合金焊接间隙的推荐值。

实际操作过程中可按此推荐值执行。

2 b带垫板的V型对接焊缝b3−15− 4a R=t 表1.EN15085-3中的焊接间隙推荐据我的实际焊接经验,当焊接组对间隙过大时会直接造成WPS(焊接工艺规程)中的参数无法实现,以至直接造成焊接接头的强度降低甚至焊缝失效,表面成型根本无法把握。

2.焊接工件角度测量将主尺和多用尺分别靠紧被测角的两个面,其示值即为角度值(如用图4)。

焊接工件中最重要的角度尺寸应是坡口角度尺寸。

坡口角度不足不易焊透,过大则会造成焊接变形过大及表面成型不良等缺陷。

图3.焊缝检测尺图4.焊接前焊件角度测量3.焊接工件错边测量测量错边量,先用主尺靠紧焊缝一边,然后滑动高度尺使之与焊缝另一边接触,高度尺示值即为错边量。

(如图6)。

图5.焊缝检测尺图6.焊接工件错边测量根据ISO10042的规定(如表2),当材料板厚大于0.5mm时,根据B级标准规定错口值h≤0.2t,max 2mm即满足标准要求。

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析

铝合金焊接常见缺陷的产生原因及质量控制分析摘要:铝合金材料在现代装备制造业中应用广泛,铝合金材料的可焊性较差,焊接过程中会出现很多缺陷,主要是气孔和裂纹较多。

分析了铝合金焊接过程中造成气孔和裂纹的因素,提出减少气孔和裂纹的质量控制措施。

关键词:铝合金;焊缝;缺陷;措施1 焊接性能简介(1)氧化能力强。

Al与O2在空气中结合生成致密的Al2O3薄膜,厚度约为0.1μm,熔点高达2050℃,密度大,在焊接过程中氧化膜会阻碍金属之间的良好结合,并且容易造成夹渣,氧化膜还会吸附水分,焊接时易生成焊缝气孔。

(2)铝的比热大,导热速度快。

因导热快,散热也快,焊接一般采用能量集中功率大的焊接热源,有时还需预热,才能获得高质量的焊接接头。

(3)线膨胀系数大。

铝及铝合金线膨胀系数大,金属凝固时体积收缩率也大,易产生焊接变形。

(4)容易形成气孔。

H2是铝及铝合金焊接时产生气孔的主要原因,H2主要来源于焊接材料(母材、焊丝、保护气体)吸附的水分。

(5)合金元素蒸发和烧损。

铝合金的某些合金元素,在高温下容易蒸发烧损,从而改变了焊缝金属的化学成份,降低了焊接接头的性能。

(6)铝及铝合金熔化时无色泽变化。

铝及铝合金焊接时,由固态转变为液态时,没有明显的颜色变化,给焊接操作带来一定困难。

2 TIG焊常见缺陷及防止措施铝及铝合金TIG焊的各种缺陷,既有与其他电弧焊相同的,也有一些是其特有的。

铝及铝合金TIG焊的焊接质量与焊前准备情况、保护气体纯度、焊接参数的正确性、电极材料的质量、操作技术的熟练程度、焊接电源等因素有关。

其常见缺陷产生原因及对策阐述如下。

2.1气孔在焊接过程中,熔池中的气体未在金属凝固前逸出,残存于焊缝中的空穴被称为气孔。

气孔是比较多见的焊接缺陷,在焊缝的各个位置都可能发现气孔。

铝合金焊接时生成气孔的气体主要是氢气,氢气主要来自电弧周围的空气,母材和焊丝表面的杂质,如油污,水分等的分解燃烧。

气孔是铝合金焊接时最容易出现的一种体积型缺陷,气孔的存在减少了焊缝的受力截面,有些针形气孔会使焊缝疏松,从而降低了接头的强度,还有就是降低了焊缝的力学性能。

常见铝合金焊接缺陷及检验方法

常见铝合金焊接缺陷及检验方法

常见铝合金焊接缺陷及检验方法摘要:本文通过研究铝合金缺陷产生的原因、预防措施,来发现解决缺陷的最佳方法,进一步提高焊接质量。

关键词:焊接,缺陷,检验随着高速动车轻量化、高速化发展,铝合金以其良好的性能得到越来越广泛的应用。

铝合金车体具有耐腐蚀性强、质量轻、造型美观等特点,是今后高速列车车体的主要发展方向。

铝合金焊接时最容易产生气孔、裂纹、夹渣等缺陷,下面将分类介绍缺陷的产生原因和预防措施。

1 缺陷类别1.1 气孔1.1.1 气孔的根源铝合金在焊接时会产生气孔等缺陷,而产生气孔的气体主要是氢气、一氧化碳、氮气。

氮不溶于液态铝,而且铝合金材质中不含碳,所以铝合金在焊接时不会出现氮气和一氧化碳,只会产生氢气孔。

产生气孔的原因一是因为氢在焊缝液态铝中的溶解度为7ml/kg,而在660℃焊缝凝固时,氢的溶解度为0.4ml/kg,使原氢在液态铝中大量析出,会产生气泡。

另一方面是铝合金密度小、导热性很强,焊接时冷却速度快,不利于气泡的逸出。

为此,在焊接铝合金时,为了减少氢的来源,应限制氢溶入母材金属和填充金属,且应该使用纯度较高的保护气体;焊前对铝合金表面、焊材等要认真清除表面氧化膜、水分和油污;焊接过程尽可能连续焊接,以防止产生气孔。

另外在焊接时要选择合理的焊接工艺参数,TIG焊时选择大的焊接电流和较快的焊接速度。

MIG焊时选择大的焊接电流和较慢的焊接速度,以提高熔池的形成时间,有利于氢从过饱和固溶状态铝合金焊接金属中逸出,减少焊接缺陷。

氢的来源主要有:(1)在金属表面和焊接材料中溶解的氢;(2)在金属表面和焊接材料表面附着的水分、有机物和其他杂物;(3)焊接保护气体纯度到不到要求;(4)在焊接区域保护不到位时来自空气中的氢和水分。

1.1.2 预防措施(1)焊前清理。

保证铝合金焊接质量的工艺措施是焊前清理。

由于铝合金在存放和焊接过程中及易被氧化,母材表面易生成致密而坚硬的氧化膜,该薄膜很容易吸收水分,它不但妨碍焊缝与母材的良好熔合,也是产生气孔和夹渣的主要来源。

铝合金结构焊接质量缺陷及处理方法

铝合金结构焊接质量缺陷及处理方法

铝合金结构焊接质量缺陷及处理方法铝合金结构在工程领域中被广泛应用,而焊接是制造铝合金结构中常用的连接方法之一。

然而,焊接过程中可能会出现质量缺陷,影响结构的强度和稳定性。

本文将介绍一些常见的焊接质量缺陷及其处理方法。

1. 焊缝裂纹:焊缝裂纹是焊接过程中常见的质量缺陷之一。

裂纹可能出现在焊缝中或与焊缝平行。

裂纹的形成可能是由于焊接过程中的应力集中、材料的变形或焊缝设计不当等原因引起的。

处理方法包括优化焊接参数、使用合适的焊接材料和设计合理的焊缝形状。

2. 焊接变形:焊接过程中,热量会引起材料的膨胀和收缩,导致结构产生变形。

焊接变形可能会导致尺寸偏差、强度降低或导致零件之间的不匹配。

为了减少焊接变形,可以采取以下措施:使用预热、控制焊接速度、合理排布焊接顺序和使用局部焊接等方法。

3. 焊接气孔:焊接气孔是焊接过程中可能出现的气体残留物。

气孔的存在会降低焊缝的强度和密封性。

避免气孔的方法包括:保证焊接材料和焊接区域的清洁、使用适当的焊接电流和气体保护、控制焊接速度等。

4. 焊接夹渣:焊接夹渣是指焊缝中残留的金属或非金属夹杂物。

夹渣的存在会降低焊缝的强度和质量。

为了避免焊接夹渣,应选择合适的焊接材料和填充材料,并确保焊接区域干净。

5. 焊接缩孔:焊接缩孔是指焊缝中存在的空洞或孔洞。

焊接缩孔可能是由于焊接过程中的材料收缩过程中产生的缺陷引起的。

控制焊接工艺参数、选择合适的填充材料和使用适当的焊接技术可以减少焊接缩孔的发生。

综上所述,了解铝合金结构焊接质量缺陷及其处理方法对于确保结构的质量和稳定性至关重要。

通过优化焊接参数、合理设计焊缝和采取适当的焊接技术,可以有效地减少焊接质量缺陷的发生。

铝合金焊接验收标准

铝合金焊接验收标准

铝合金焊接验收标准铝合金焊接是一种常见的焊接工艺,广泛应用于航空航天、汽车制造、建筑等领域。

为了确保焊接质量,提高产品的可靠性和安全性,制定了一系列的验收标准。

本文将介绍铝合金焊接验收标准的相关内容,以便工程师和操作人员能够更好地掌握焊接质量的要求。

首先,铝合金焊接验收标准包括了焊接工艺规范、焊接接头形式、焊缝外观质量、焊接材料和焊接工艺参数等方面的要求。

在进行焊接前,必须对焊接工艺进行严格的规范,包括焊接设备的选择、预热温度、焊接电流和焊接速度等参数的确定。

同时,对于不同的焊接接头形式,也有相应的验收标准,例如对角接、对接和搭接等接头形式的要求是不同的。

其次,焊缝外观质量是铝合金焊接验收的重要指标之一。

焊缝应该均匀、光滑,无气孔、裂纹和夹渣等缺陷。

同时,焊接材料的选择和质量也对焊缝外观质量有着直接的影响。

因此,在验收过程中,必须对焊缝的外观进行仔细的检查,确保其符合标准要求。

另外,焊接材料和焊接工艺参数也是铝合金焊接验收的重点内容。

焊接材料的质量直接影响着焊接接头的强度和耐腐蚀性能,因此必须选择符合要求的焊接材料,并严格控制其质量。

同时,焊接工艺参数的选择也是至关重要的,包括焊接电流、焊接速度、预热温度和焊接气体等参数的确定,必须严格按照规范执行,以确保焊接质量的稳定性和可靠性。

最后,铝合金焊接验收标准的执行需要严格按照相关规范和标准进行。

在验收过程中,必须严格按照规范要求进行检查和测试,并对不符合要求的焊接接头进行修复或重新焊接。

同时,还需要对焊接工艺进行记录和归档,以便日后的追溯和分析。

总之,铝合金焊接验收标准是确保焊接质量和产品可靠性的重要保障。

只有严格执行相关标准和规范,才能够保证焊接质量的稳定性和可靠性,提高产品的质量和性能,满足不同行业的需求。

希望本文的介绍能够帮助大家更好地理解铝合金焊接验收标准的要求,提高焊接质量和工作效率。

铝合金焊接工艺与焊接缺陷分析研究

铝合金焊接工艺与焊接缺陷分析研究

铝合金焊接工艺与焊接缺陷分析研究铝合金是一种广泛应用的材料,它具有轻便、韧性好、耐腐蚀、导热性能良好等优点。

因此,在工业生产中,铝合金焊接工艺已经成为一项非常重要的工艺。

然而,铝合金焊接过程中常常会出现一些焊接缺陷,这些缺陷不仅会影响焊缝的强度和密封性,还可能导致零件失效。

因此,对于铝合金焊接工艺及其缺陷的研究,具有重要的理论和实际意义。

一、铝合金焊接工艺铝合金的焊接工艺一般包括氩弧焊、气保焊、激光焊等。

在氩弧焊中,需要用到直流电源和氩气,焊接过程中,要使用直流电流,以避免交流电的电流变换所引起的电弧不稳定现象;氩气的主要作用是保护焊缝,防止氧气和氮气等对焊缝的污染。

在气保焊中,需要用到氩气和焊丝,焊接过程中,将焊丝通过喷嘴弯折加热熔化,再加上氩气的保护,形成焊缝。

在激光焊中,激光束要通过透镜进行聚焦,然后聚焦在铝合金材料表面,使其熔化,然后快速冷却,形成焊缝。

二、焊接缺陷焊接缺陷是指在焊接过程中产生的不良现象和局部缺陷,这些缺陷会对焊缝的性能造成不良影响。

铝合金焊接缺陷的种类繁多,包括气孔、夹杂、缩孔、裂纹等。

其中最常见的缺陷是气孔和夹杂。

气孔是指焊缝中存在的气体孔洞,它们会使焊缝的密封性和强度下降。

气孔产生的原因主要有气体包裹在熔池中、杂质对焊接过程的干扰、焊接材料不洁净等。

避免气孔的产生,需要保证焊接过程中气体环境的洁净度,对焊接材料进行充分的清洗处理,以及控制焊接电流的大小。

夹杂是指焊缝内或焊接金属与基板间存在的杂质或氧化物,它们会降低焊缝的耐腐蚀性、密封性和力学性能。

夹杂的产生主要与材料的质量和焊接过程中的干扰有关。

避免夹杂的方法包括对焊接材料进行充分的清洗、使用适当的焊接参数以及控制焊接过程中的干扰因素。

三、焊接缺陷的分析及处理方法对于铝合金焊接中出现的缺陷,需要开展全面的分析,确定其产生的原因,然后针对性地采取相应的处理方法。

1. 气孔的分析及处理方法气孔是铝合金焊接中常见的焊接缺陷,其处理方法主要有以下几种:(1)采用合适的焊接工艺参数进行焊接,如控制焊接电流、预热温度等。

铝合金激光焊缺陷标准

铝合金激光焊缺陷标准

铝合金激光焊缺陷标准
铝合金激光焊缺陷主要分为以下几种:
1. 气孔:由于焊接过程中铝合金材料表面吸收了大量气体,导
致气泡在焊缝内形成的缺陷。

2. 烧孔:高温下铝合金材料表面烧化,形成的孔洞缺陷。

3. 裂纹:焊接过程中铝合金材料异向性大,易发生热应力,进而导致
表面及内部出现了裂纹缺陷。

4. 喷溅:激光焊接时出现的飞溅粒子可能会附着在焊缝表面或焊枪上。

5. 缺边:因为焊接能量不够或焊缝位置不当,导致焊接区域没有完全
融合,出现缺口或者残留。

以上缺陷可以对铝合金激光焊接的制造标准进行严格检测和控制。

例如,裂纹检测可以采用X射线或超声波检测方法;气孔和缺边可以
通过外观质量标准和焊接缺陷表进行评估。

在铝合金激光焊接过程中,必须严格遵守相关的制造标准,以保障焊缝品质和使用安全。

铝及铝合金对接焊接接头的超声检测方法

铝及铝合金对接焊接接头的超声检测方法

铝及铝合金对接焊接接头的超声检测方法1.1铝及铝合金对接焊接接头的特点及常见缺陷与钢焊接接头相比,铝焊缝的重要特点是熔点低、导热率大、热膨胀系数大、材质衰减系数小、塑性好、强度低。

此外,铝中纵波声速比钢大,横波声速比钢小。

铝对接焊接接头中常见缺陷也与钢焊接接头类似,有气孔、夹渣、未焊透、未熔合、裂纹等。

为了检测出上述几种危害性缺陷,一般采用横波单斜探头检测法。

1.2检测条件的选择1.2.1探头由于铝对超声波的衰减较小,所以宜选择较高的频率,一般选用频率为5MHz,探头的横波折射角有700、600、450等几种,当板厚较厚时,常用450;当板厚较薄时,常用600或700。

如有必要也可以选择其他参数的探头。

1.2.2标准试块、对比试块1.标准试块检测铝对接焊接接头,也可以采用CSK-IA标准试块测量探头的入射点(L0)以及调整仪器时基扫描线比例(但需进行声速换算)。

2.对比试块用与被检测铝对接焊接接头相同或相近似的铝材,制作具有横孔的对比试块,主要用以时基扫描线的校准和距离—波幅曲线的绘制。

对比试块中不得有大于或等于Φ2mm平底孔当量直径的缺陷存在。

试块尺寸、形状见图1.37所示和表1.9所示。

图1.37 对比试块形状表1.9 对比试块尺寸mm试块号试块长度L 试块厚度T 试块的测定适用范围1 300 25 8 ~ 402 500 50 >40 ~ 801.2.3 耦合剂的选择与钢焊接接头超声检测一样,铝对接焊接接头检测耦合剂也可以采用机油、变压器油、甘油或浆糊等。

为避免对铝造成腐蚀,注意不要使用碱性耦合剂。

1.3检测准备工作1.3.1检测面检测前,应清除探头移动区域的飞溅、锈蚀、油垢等。

焊接接头外观及检测表面经检查合格后,方可进行检测。

1.3.2探头入射点测定采用CSK-IA标准试块测定,方法同钢试块测定方法。

1.3.3探头折射角的测定采用与被检测的铝对接焊接接头一样或相近的母材制作试块,在其上钻上Φ2mm横孔,它距检测面的深度应为被检测焊接接头厚度的1~2倍,如图1.38所示。

铝及铝合金焊接中常见焊接缺陷及其对策

铝及铝合金焊接中常见焊接缺陷及其对策

铝及铝合金焊接中常见焊接缺陷及其对策摘要:铝及铝合金的应用范围随着社会经济的发展在不断扩大,在轨道交通、建筑、桥梁、船舶中都有被应用。

又随着近些年来更高效率和更高想能的焊接技术的推广,铝及铝合金被运用得越来越广泛,相应的技术也得到了一定的发展。

不过,在铝及铝合金的实际运用过程中,由于其存在着容易氧化、熔点低、导热性高、热容量大以及膨胀系数大的特点,也给其焊接工艺造成了一定的影响,容易出现一些焊接缺陷。

本文主要对铝及铝合金焊接中的常见缺陷进行分析,并提出相应的解决措施。

希望能够对铝及铝合金的焊接行业有所帮助,提高焊接效率与焊接质量。

关键词:铝及铝合金;焊接缺陷;对策引言:铝及铝合金耐腐性较好,并且轻度较高,还具有导电性以及导电性好的特点,因此,铝及铝合金在工业中得到了广泛应用。

因此,相关焊接人员在进行铝及铝合金焊接时,对其性能、焊接方式、焊接材料、焊接缺陷等都需要有充分的把握。

只有对相应的焊接知识熟练掌握之后才能够更好的开展铝及铝合金的焊接工作。

1铝及铝合金的焊接性能要想充分掌握铝及铝合金的焊接技巧,就需要对其的焊接性能有所掌握。

铝及铝合金具有以下焊接性能:1)比热大、导热快。

由于铝及铝合金导热较快,其散热速度也相对较快,在进行焊接工作时,一般使用功率较大的焊接热源,有时候焊接热源的热度不够,还需要对热源进行预热。

2)膨胀系数大。

由于具有膨胀系数大的特点,在焊接之后,金属凝固后的收缩率也较大。

因此,在焊接中容易出现变形的情况。

3)容易形成气孔。

氢气是铝及铝合金焊接时容易出现气孔的主要原因,其中主要来自于焊接材料中含有的水分。

2铝及铝合金中常见焊接缺陷铝及铝合金在我国工业中被应用得十分广泛,虽具有许多的优势,但是也有一些常见的焊接缺陷,要想提高铝及铝合金的焊接效率和焊接质量,就需要对相应的焊接缺陷进行充分的把握,在把握相应焊接缺陷的基础上,再提出相应的解决措施。

铝及铝合金焊接中的常见缺陷主要有裂纹、凹陷、烧穿、气孔凹陷等,以下是对这些缺陷的分点阐述。

铝合金焊接表面缺陷的检验方法及判定标准

铝合金焊接表面缺陷的检验方法及判定标准
冷 热 工 艺
文章 编 号 :0 7 6 3 ( 0 1 0 - 2 - 1 0 -0 4 2 1 ) 30 20 0 2
机 车车辆工 艺 第 3期 2 1 年 6, 01 e l
铝 合 金 焊 接 表 面 缺 陷 的检 验 方 法 及 判 定 标 准
孙 德 伟
( 道 部 驻 长 春 车 辆 验 收 室 , 林 长 春 10 6 ) 铁 吉 302
焊接前组对间隙检验可用 焊缝检测尺 ( 如图 1 插 ) 入两焊接件之间 , 测量两焊件 的装配 间隙( 如图 2 。 )
图 l 焊 缝检 测 尺
图 2 焊 接 前 组对 间隙 测 量
欧 洲 标 准 E 10 5— N 5 8 3中 关 于 铝 合 金 焊 接 间 隙 的 推 荐 值 见 表 l 实 际操 作 过 程 可 按 照 此 标 准 执 行 。 ,
1 2 焊 接 工 件 角 度 测 量 及 影 响 .
1 1 焊 接 间 隙 测 量 及 判 定 .
将 主 尺和 多用 尺 分别 靠 紧 被测 角 的 2个 面 , 其 示值 即为角度 值 , 图 3所 示 。 见 焊接 工件 中最 重要 的角度 尺寸应 是坡 口角度 尺
寸 。坡 口角 度 不 足 不 易 焊 透 , 大 则 会 造 成 焊 接 变 过 形及表 面成 型不 良等缺 陷。 图 4为 铝 合 金 T型 接 头 实 验 , 于 坡 口 角 度 小 由 于 5 。打底焊 时 由于喷 嘴干 涉使 焊 枪 角度 错 误 , 0, 焊 丝干伸长 度过 长 , 成根部 未焊透 。 造
当 焊 接 组 对 间 隙 过 大 时 会 直 接 造 成 WP ( 接 S焊
3 焊 搓 前 焊 件 角 度 测 量 图 4 坡 口 角 度 不 足 造 成 根 邵 未 焊 透

薄板铝合金焊缝中缺陷超声波探伤

薄板铝合金焊缝中缺陷超声波探伤

薄板铝合金焊缝中缺陷超声波探伤摘要:现行国家标准规定超声波探伤薄板铝合金的厚度应大于8 mm,对于厚度小于8 mm的薄板铝合金,超声波探伤始终存在一定的问题。

因此,本文采用K值研究薄板铝合金焊缝中缺陷超声波探伤,以斜探头对铝合金焊缝进行超声波检测,薄板铝合金的厚度为5 mm,同时,对焊缝中检测到的问题进行了相应的试验,确认厚度为小于8mm,因此,可以得出,在薄板铝合金焊缝中使用超声波探伤是可行的。

此外,本文对焊接的定量问题通过自制的特殊铝合金焊接缺陷对比,旨在实现利用薄板铝合金焊缝中利用超声波对缺陷进行研究。

关键词:薄板铝合金焊缝;缺陷超声波;探伤在车辆重量较小的情况下,将薄板铝合金用于车辆中是目前车辆在量产过程中常用的设施。

随着全球经济的不断发展,车辆铝合成为了主流。

相对应钢材来讲,铝合金往往密度较低,同时具有较硬的强度,相比于钢材塑性较强。

因此,铝合金在铸造、锻造和冲压工艺中广泛应用,同时,由于其耐腐蚀性较强以及易回收的特点,已经逐步取代了钢材,成为了市场中常用的钣金材料。

根据对市场材料用量的研究目前,市场已经开始使用铝合金材料并且逐渐淘汰钢材,这种做法不仅能够大大提高车的质量,同时能够将车辆制造业的成本降低30%至40%,将发动机成本降低30%,同时,使用铝合金能够加降低材料中的化学物理对人们的身体健康的影响和环境的损坏。

在薄板铝合金焊缝中缺陷超声波探伤的过程中,利用超声波探伤试验能够将薄板铝合金焊缝中的缺陷进行缺陷,在探伤的过程中,探头的选择以及对比试样的制作十分重要,在探索的过程中,本文选择了K值和短边斜角探头并进行了特殊的对比测试。

1 具体实验内容薄板铝合金焊缝中缺陷超声波探伤原理是在探伤的过程中,将超声波折射在铝合金的薄板中。

若超声波在铝合金板中发生折射现象,这就表明焊缝中存在缺陷。

反之,若超声波在铝合金板中并没有发生折射现象,这就表明焊缝中不存在缺陷。

在超声波探伤的过程中,首先探头应当接收超声波并将超声波显示在荧光屏上,根据反射的弧度、角度以及振幅的大小,判断焊缝中存在缺陷的形状、大小和位置,同时根据以上特点判断该缺陷的等级。

浅谈铝合金焊接表面缺陷的检验方法及判定标准

浅谈铝合金焊接表面缺陷的检验方法及判定标准

此 必须用科 学的办法来对其进行检验 和判断。笔者讨论 了 铝 合金 焊接表 面缺 陷的检验 方法和判定标准 , 希望能为y - . 大的相关工作者提供一些 参 考依据 。 【 关键词 】 铝合金 ; 焊接 ; 缺陷; 检验 性
1 . 1 本身性能 铝合金本 身的融化潜 能高 . 机械性 能也很好 。 很多工业 生产都用 的是这种材料 同时铝合金材料又被分为铸造铝合金和变形铝合金两 种类型。铝合金的密度 ( k g / m) 为2 7 0 5 , 弹性模量 ( k N / c m) 6 9 0 0 , 导热系 数为 2 1 4 , 纵向热胀系数为 2 4 x 1 0  ̄ , 熔点 为 6 5 0 ℃。 1 . 2焊接特性 在化工企业 中.常用 到的两种铝合 金有铝锰合 金与铝镁合 金两 种. 这两种材料都是非热处理强化型的铝合金。 其特点是性能好 、 防腐 蚀、 硬度合适 、 能够防锈等 , 因此在焊接的时候会提高质量。 尽管如此 , 焊接过程却有一定的难度 . 具体如下 : 1 . 2 . 1氧 化 能 力 铝合金具有一定的氧化能力 。 因为铝与氧结合之后会 生成 三氧化 二铝的薄膜 . 这种薄膜的不但 熔点极 其的高 , 密度也远远大 于铝合 金。 此外 . 空气中还有一部分水分 , 在与水分充分接触 以后 , 铝合金会 出现 气孔和废渣之类的焊接缺陷 1 . 2 . 2 导 电性 高 铝合金 的导电性 非常的高 , 甚至比钢高出一半 。 进行焊接的时候 , 大部 分的热能通 过空气输入 到铝合 金材 料里 . 所以焊接 的过程会 消耗 热能 . 这 种热能会 影响焊接的质量。 为了防止这种情 况发生 , 可以采取 些 手段 和措施来进行 预热
◇ 科技论坛◇
科技 一向导
2 0 1 3 年2 3 期

铝及铝合金焊接缺陷原因分析及探伤检测

铝及铝合金焊接缺陷原因分析及探伤检测

铝及铝合金焊接缺陷原因分析及探伤检测作者:田海林王立国艾启文唐亮来源:《科学导报·科学工程与电力》2019年第24期【摘; 要】铝合金焊接是一门重要的金属加工技术,特别是在铝合金车体生产过程中,底架工序重要的焊缝需要进行射线探伤(RT)。

确保焊缝内部没有裂纹、未融合、夹渣、气孔、焊瘤、咬边等缺陷,如果存在任何缺陷,都会对结构的质量和使用寿命产生严重的影响。

【关键词】铝及铝合金;焊接缺陷;A型车RT探伤引言:射线探伤(RT)室一种采用X射线或γ射线照射焊接接头,检查内部缺陷的无损检验的方法,目前应用的主要有射线照相法,透视法(荧光屏直接观察法)和工业X射线电视法,其中应用最广泛、灵敏度较高的是射线照相法。

一、焊前准备1.1 检查焊机工作状态及面板是否正确。

1.2 特别注意气体流量。

1.3; 送丝机出丝情况。

1.4 风动工具:铣刀、不锈钢碗刷、直磨机、角磨机。

注意不锈钢碗刷要更换新的,以免有油污腐蚀焊缝坡口。

1.5 烤枪的使用方法二、焊接坡口钝边及根部间隙2.1 坡口钝边为1-2mm。

在A型车牵枕框架组队时,牵引梁、枕梁上车前就需要铆工把坡口预留钝边为1-2mm,否则上车后无法测量。

2.2 根部间隙2-4mm用铣刀配合直磨机把根部间隙修到2-4mm即可。

三、焊接过程及注意事项例如城轨底架焊接牵引梁与枕梁的焊缝。

3.1 此焊缝为V型坡口,特点为背板是自行点固,注意点固背板必须和牵引梁枕梁紧密的连接在一起。

3.2 进行预热(预热温度100-120摄氏度)后焊接打底,电流为190-200A電压21-22V,压低电弧,使熔池进行充分的气体保护。

完成焊接后,对打底焊接进行清根处理,确保无缺陷后进行后续焊接。

3.3 后续焊接一定要控制层间温度(80-100摄氏度),电流:210-230A电压:22-24V,整体焊接完成后去除引弧板、收弧板,对端部进行渗透探伤,保证无缺陷的情况下进行射线探伤(RT)。

四、常见缺陷及修补方法4.1裂纹下图14.2 弧坑裂纹产生原因:弧坑裂纹是由于收弧的时候没有把弧坑填满,在焊接过程中焊接停止后没有用直磨机作清除处理或处理不干净所产生的。

铝合金焊接缺陷原因与解决措施

铝合金焊接缺陷原因与解决措施

铝合金焊接缺陷原因与解决措施1、焊接外观检验标准对比图焊接外观检验标准对比图焊缝不合格焊缝合格焊缝咬边焊缝搭接不够到位且发黑焊缝凹坑。

处理:补焊。

焊缝合格焊缝不合格,熔合不良。

焊缝未搭接焊缝不合格焊缝直线度超差焊缝鱼鳞纹不够密实焊缝接头过宽焊缝反面焊漏、焊瘤焊前清理不彻底,焊缝发黑焊缝不合格焊缝高凸较大焊缝气孔电流大、速度快。

焊缝不合格起弧时钨极触及工件发黑,收弧时停止较慢,焊缝高凸,焊缝不合格焊缝凹陷字头不合格有烧钨隐患焊缝不合格焊接缺陷的成因与解决措施焊接缺陷的成因与解决措施缺陷种类成因解决措施增加爱护气体流量,排除焊接区的空气〔爱护缺乏〕。

减小爱护气体流量或增大喷嘴2、尺寸,以防卷入空气。

消除气体喷嘴内壁的飞溅。

避开周边环境的空气流淌太大破坏气体爱护。

降低焊接速度。

适当减小喷嘴到焊件的距离。

1.爱护气体覆盖缺乏焊接结束时应在熔池凝固之后再移开焊枪喷嘴。

提高气体纯度。

2.爱护气体不纯不得使用压力达不到要求的气体。

使用清洁和枯燥的焊丝。

3.焊丝污染消除焊丝在送丝装置中或导管中黏附上的润滑剂。

气孔 4.焊件污染焊前去除焊件外表的油脂、漆和尘土等杂质。

5.电弧电压太高或焊接速度太快减小电弧电压或降低焊接速度。

6.焊件距离太大减小焊丝伸出长度。

7.环境湿度较大工作环境不要潮湿,做好雨季防护,掌握湿度。

8.环境风速较大3、做好挡风装置。

1.焊缝的深宽比太大增大电弧电压或减小焊接电流以加宽焊道而减小熔深。

2.焊道太窄〔特殊是角焊缝和底层焊道减慢行走速度以加大焊道的宽度和焊道的横截面。

利用衰减掌握以减小冷却速度。

适当的填充弧坑。

3.焊道末端的弧坑冷却过快在完成焊缝顶部焊道时,采纳分段退焊技术。

裂纹 4.焊丝化学成分与工件不匹配选择与线材匹配的焊丝。

1.焊缝有杂质在焊后续焊道之前去除掉焊缝的渣子。

夹渣 2.行走速度过大〔氧化膜型减小行走速度。

夹渣物〕3.熔池流淌性差、深渣浮不出来选择较大电流。

1.电弧电压过低或过高依据焊接电流认真调整电弧电压。

铝合金焊接缺陷

铝合金焊接缺陷

上海承久金属制品有限公司关于铝合金焊接缺陷分析1.铝合金焊接缺陷的种类?铝及其铝合金MIG焊时,罕见的焊接缺陷可分为外部缺陷和内部缺陷两大类外部缺陷位于焊缝外表面,罕见的有表面气孔、裂纹、咬边、未焊透和烧穿等;内部缺陷位于焊缝的内部,需要用破坏性试验或无损探伤等方法才干发现,如内部气孔、裂纹、夹渣及未熔合等。

2.铝合金MIG焊焊接缺陷发生的原因1气孔焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。

MIG焊接过程中,气孔是不可防止的只能尽量减少它存在培训的过程中,仰角焊、立向上焊气孔傾向尤为明显,根据DIN30042规范规定,单个气孔的直径最大不能超过0.25(为板厚)密集气孔的单个直径最大不超过0.25+0.01(为板厚)氢是铝及铝合金熔化焊产生气孔的主要原因。

氮不溶于液态铝,铝又不含碳,因此铝合金中不会发生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在所以也不会发生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。

但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,有利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。

氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的发生经常占有突出的地位。

一:防止措施1厂房环境湿度>70% 及空气的对流空气中的湿度影响弧柱气氛。

MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的由于弧柱温度最高,熔滴比外表积很大,故有利于熔滴金属吸收氢,发生气孔的倾向也更大些。

弧柱中的氢之所以能够形成气,与它铝合金中的溶解度变化有。

如前段所说,凝固点时氢的溶解度从0.69突降到0.036ml/100g相差约20倍(钢中只相差不到2倍)这是氢容易使焊缝产生气孔的重要原因之一。

控制了弧柱气氛中的水分后,母材和焊丝所带的氧化膜所吸附的水分成为生成焊缝气孔的主要原因另外,维护气体流量缺乏或过量也会引起气孔的呈现。

铝合金部件焊接接头焊接缺陷分析

铝合金部件焊接接头焊接缺陷分析

铝合金部件焊接接头焊接缺陷分析摘要:在某实验件试制生产中,接地端子与型材处角焊缝连接部位出现焊接缺陷。

本文结合具体的焊接结构和现车生产工艺,通过对影响焊接缺陷产生的各项因素分别进行分析,最终确定了导致焊接缺陷产生的主要因素,并提出了避免该部位产生焊接焊接缺陷的措施。

关键词:铝合金;焊接接头;焊接缺陷1 序言6005A是中等强度的A l-M g-S i系铝合金,具有良好的热挤压性和耐蚀性,被用于高速列车、地铁列车、双层列车和汽车车体所需的薄壁中空大型铝合金壁板型材以及其他工业用结构型材,欧洲大量采用6005A铝合金制造高速列车的车体。

这就给车辆的电气设备提出了新的要求:若采用铜合金材料作为接地点,则铜材料如何与铝材料连接的问题不好解决;若采用铝合金材料作为接地点,则影响导电性能,且存在电化学腐蚀。

在此背景下,铜包铝复合材料接地块作为接地材料被广泛应用在铝合金车辆上。

2 试验材料及方法2.1 试验材料试验采用实际工件所用的原材料,同时接头形式与实际焊接接头相同。

该焊接接头形式为角接接头,角焊缝尺寸为a3。

焊接接头左右两侧均是其他部件焊接组成的长大约束结构。

该接头附近有两种焊缝:一是型材对接焊缝,焊缝形式为4V;二是型材插接角焊缝,焊缝尺寸为a5。

型材为铝合金长大中空型材,型号为6005A,内设加强筋,上侧壁厚 2.5mm,下侧壁厚3mm。

T6供货状态,即挤压成形后进行固溶处理和水淬,之后再进行175℃人工时效。

接地端子材质采用铜包裹铝芯,并在铜基体外镀锡合金。

基体铝芯中的铝含量(质量分数,下同)≥99.5%,基体铜采用CU-E T P(C W004A),镀层锡合金中锡含量为60%~65%。

因为镀层为单质镀层,所以焊接作业前需采用角磨机将接地端子施焊区的镀层清理干净。

2.2 试验方法该焊接接头采用熔化极气体保护焊半自动焊进行焊接,焊机型号为Fronius500,焊丝型号为E R5087、φ1.2m m,使用三元焊接保护气体I SO14175-Z-A r H e N2-30/0.015,焊接保护气体流量为25L/min。

第五节 铝及铝合金焊接缺陷与检验

第五节  铝及铝合金焊接缺陷与检验

第五节:铝及铝合金焊接缺陷与检验铝及铝合金焊接时,由于其特殊的物理和化学特性以及焊接过程操作的难度,容易出现焊接缺陷。

作为焊工,必须了解焊接缺陷产生的原因,掌握防止和消除焊接缺陷的对策和方法,才能实现保证焊接质量、制造优良焊件的目的。

相比钢铁的焊接,铝及铝合金焊接缺陷也存在同样多的种类,导致缺陷产生的原因也更复杂。

铝及铝合金焊接缺陷主要为未熔合、气孔、下塌、热裂纹、夹杂等。

一、未熔合1.导致产生未熔合的原因未熔合通常表现为焊丝熔化、母材未熔化或是同一焊缝上一侧母材熔化、另一侧母材未熔化而形成的焊接接头。

铝及铝合金的导热系数大,约是钢的2~3倍;其比热也很大。

这样,要使铝及铝合金接头熔化后焊到一起,必须使用能量集中、功率大的热源。

在焊接方法确定的条件下,结构的形状、尺寸、位置、表面状态的差异,以及焊工操作的熟练程度都可以产生未熔合的缺陷。

未熔合的产生与焊件的坡口形状和焊接规范有很大关系。

尤其当采用MIG 焊进行厚板多层焊时,常常会在图2-5-1所示的部位产生未熔合,即:图2-5-1 MIG多层焊时易产生未熔合的典型情况a一坡口侧面的未熔合b一清根后的焊道根部未熔合(1)在焊根或第二层焊道以下的坡口面上,由于焊接规范的变化而产生未熔合。

(2)清根处理后在封底焊的根部焊道金属中产生未熔合。

焊接规范对产生未熔合的影响,首先取决于焊件的坡口根部形状和尺寸,焊接电流的影响也很大。

通过对厚度为50 mm的板材在不同大小坡口根部半径和焊接电流下产生未熔合的影响的研究可知:未熔合随坡口根部半径和焊接电流的增大而减小。

U形坡口比V形坡口产生未熔合的可能性要小,横焊时的实测结果是这样,立焊时也可以得到同样的结果。

电弧电压对产生未熔合的影响没有焊接电流和坡口根部半径变化对其的影响那么明显。

焊接电流对焊缝熔深的影响非常直接,熔深随坡口根部半径和焊接电流的增大而增大。

通过用断面检验法我们掌握了未熔合与熔深的关系。

当熔深小于1 mm时,很容易产生未熔合;当熔深大于l mm时,则不产生未熔合。

铝及铝合金焊接常见缺陷

铝及铝合金焊接常见缺陷

铝及铝合金焊接常见缺陷铝及铝合金焊丝的选择主要根据母材的种类,对接头抗裂性能、力学性能及耐蚀性等方面的要求综合考虑。

有时当某项成为主要矛盾时,则选择焊丝就着重从解决这个主要矛盾入手,兼顾其它方面要求。

一般情况下,焊接铝及铝合金都采用与母材成分相同或相近牌号的焊丝,这样可以获得较好的耐蚀性;但焊接热裂倾向大的热处理强化铝合金时,选择焊丝主要从解决抗裂性入手,这时焊丝的成分与母材的差别就很大。

1、烧穿产生原因:a、热输入量过大;b、坡口加工不当,焊件装配间隙过大;c、点固焊时焊点间距过大,焊接过程中产生较大的变形量。

防止措施:a、适当减小焊接电流、电弧电压,提高焊接速度;b、大钝边尺寸,减小根部间隙;c、适当减小点固焊时焊点间距。

2、气孔产生原因:a、母材或焊丝上有油、锈、污、垢等;b、焊接场地空气流动大,不利于气体保护;c、焊接电弧过长,降低气体保护效果;d、喷嘴与工件距离过大,气体保护效果降低;e、焊接参数选择不当;f、重复起弧处产生气孔;g、保护气体纯度低,气体保护效果差;h、周围环境空气湿度大。

防止措施:a、焊前仔细清理焊丝、焊件表面的油、污、锈、垢和氧化膜,采用含脱氧剂较高的焊丝;b、合理选择焊接场所;c、适当减小电弧长度;d、保持喷嘴与焊件之间的合理距离范围;e、尽量选择较粗的焊丝,同时增加工件坡口的钝边厚度,一方面可以允许使用大电流,另一方面也使焊缝金属中焊丝比例下降,这对降低气孔率是行之有效的;f、尽量不要在同一部位重复起弧,需要重复起弧时要对起弧处进行打磨或刮除;一道焊缝一旦起弧要尽量焊长些,不要随意断弧,以减少接头量,在接头处需要有一定焊缝重叠区;g、换保护气体;h、检查气流大小;i、预热母材;j、检查是否有漏气现象和气管损坏现象;k、在空气湿度较低时焊接,或采用加热系统。

3、电弧不稳产生原因:电源线连接、污物或者有风。

防止措施:a、检查所有导电部分并使表面保持清洁;b、将接头处的脏物清除掉;c、尽量不要在能引起气流紊乱的地方进行焊接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章:焊接缺陷及焊接质量检验学习要求:掌握焊接中各种焊接缺陷,了解焊接缺陷产生的原因及预防措施,掌握各种焊接检验方法。

掌握公司焊缝外观检验标准,课时:4课时基本内容前言:随着科学技术的发展,焊接在工业生产中的地位更加重要。

从大量结构的事故原因分析结果可以看出,很多是由于焊接质量不好造成的,而焊工的责任心和操作技能直接影响到焊接质量。

为提高焊工的素质,保证焊接结构的使用安全、可靠,对焊工进行培训与考核是十分必要的。

第一节焊接缺陷焊接缺陷:焊接接头中产生的不符合设计或工艺文件要求的缺陷一、焊接缺陷的分类按焊接缺陷在焊缝中的位置,可分为外部缺陷与内部缺陷两大类。

外部缺陷位于焊缝区的外表面,肉眼或用低倍放大镜即可观察到。

例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。

内部缺陷位于焊缝内部,需用破坏性实验或探伤方法来发现。

例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。

二、常见电焊缺陷(1)焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不足或过高等。

焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。

焊接坡口角度不当或装配间隙不均匀,焊接电流过大或过小,运条方式或速度及焊角角度不当等均会造成焊缝尺寸不符合要求。

(2)咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。

咬边使母材金属的有效截面减小,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。

产生咬边的原因操作方式不当,焊接规范选择不正确,如焊接电流过大,电弧过长,焊条角度不当等。

咬边超过允许值,应予补焊。

(3)焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤即为焊瘤。

焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。

对于管道接头来说,管道内部的焊瘤还会使管内的有效面积减少,严重时使管内产生堵塞。

焊瘤常在立焊和仰焊时发生。

焊缝间隙过大,焊条角度和运条方法不正确,焊条质量不好,焊接电流过大或焊接速度太慢等均可引起焊瘤的产生。

(4)烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。

烧穿常发生于打底焊道的焊接过程中。

发生烧穿,焊接过程难以继续进行,是一种不允许存在的焊接缺陷。

造成烧穿的主要原因是焊接电流太大或焊接速度太低;坡口和间隙太大或钝边太薄以及操作不当等。

为了防止烧穿,要正确设计焊接坡口尺寸,确保装配质量,选用适当的焊接工艺参数。

单面焊可采用加铜垫板或焊剂垫等办法防止熔化金属下塌及烧穿。

手工电弧焊焊接薄板时,可采用跳弧焊接法或断续灭弧焊接法。

(5)未焊透焊接时接头根部未完全熔透的现象称为未焊透。

未焊透常出现在单面焊的根部和双面焊的中部。

未焊透不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。

未焊透产生的原因是焊接电流太小;焊接速度太快;焊条角度不当或电弧发生偏吹;坡口角度或对口间隙太小,焊件散热太快;氧化物和熔渣等阻碍了金属间充分的熔合等。

凡是造成焊条金属和基本金属不能充分熔合的因素,都会引起来焊透的产生。

防止未焊透的措施包括:①正确选择坡口形式和装配间隙,并清除掉坡口两侧和焊层间的污物及熔渣;②选用适当的焊接电流和焊接速度;③运条时,应随时注意调整焊条的角度,特别是遇到磁偏吹和焊条偏心时,更要注意调整焊条角度,以使焊缝金属和母材金属得到充分熔合;④对导热快、散热面积大的焊件,应采取焊前预热或焊接过程中加热的措施。

(6)未熔合未熔合指焊接时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。

未熔合的危害大致与未焊透相同。

产生未熔合的原因有:焊接线能量太低;电弧发生偏吹;坡口侧壁有锈垢和污物;焊层间清渣不彻底等。

(7)凹坑、塌陷及未焊满凹坑指:在焊缝表面或焊缝背面形成的低于母材表面的局部低洼部分塌陷:单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,使焊缝正面塌陷,背面凸起的现象。

未焊满:由于填充金属不足,在焊缝表面形成的连续或断续的沟槽,这种现象。

上述缺陷削弱了焊缝的有效截面,容易造成应力集中,并使焊缝的强度严重减弱。

塌陷常在立焊和仰焊时产生,特别是管道的焊接,往往由于熔化金属下坠出现这种缺陷。

氩弧焊应注意在收弧的过程中,使焊条在熔池处作短时间的停留,或作环形运条,以避免在收弧处出现凹坑。

(8)、夹钨形成原因和防止措施形成原因⑴在焊接过程中焊接操作不当而使钨极接触工件熔入焊缝金属中,⑵钨极直径小而焊接电流大,⑶焊丝触及了钨极尖端,⑷钨极烧损严重,钨极夹过热。

⑸保护气体保护不良,钨极氧化严重。

防止措施:⑴采用高频高压引弧,防止接触引弧法引弧⑵根据实际所需焊接电流,选择钨极直径。

⑶加强操作技能培训,勿使填丝与钨极相碰⑷钨极端部出现裂纹烧损严重后应立即修磨钨极,更换钨极夹。

⑸钨极伸出长度要合适,加大气体流量和增加滞后停气时间防止钨极氧化(9)气孔①气孔的形成及危害焊接时,熔池中的气泡在凝固时未能逸出,而残留下来形成的空穴称为气孔。

气孔可分为密集气孔、针状气孔等。

焊缝中形成气孔的气体主要是氢气。

焊接区的氢可来自于各个方面,弧柱气氛中水分、焊接材料及母材表面氧化膜吸附的水分都是主要来源,这些水分在电弧高温作用下形成气泡于熔池中,来不及浮出便形成气孔。

气孔对焊缝的性能有较大影响,它不仅使焊缝的有效工作截面减小,使焊缝机械性能下降,而且破坏了焊缝的致密性,容易造成泄漏。

气孔的边缘有可能发生应力集中,致使焊缝的塑性降低。

因此在重要的焊件中,对气孔应严格地控制。

②气孔产生的原因。

①氩气纯度低,杂质太多或氩气管路内有水分以及氩气管路漏气。

②焊丝或母材坡口附近焊前未清理干净,或清理后又被污物,水分等污染。

③氩弧焊时氩气保护不良,电弧不稳,电弧过长,钨极伸出长度过长。

④焊接参数选择不当,焊接速度过快或过慢。

⑤周围环境潮湿,风速较大防止措施:①保证保护气体纯度。

②焊丝和母材坡口处要清理干净。

③正确选择焊接参数。

④焊前采用预热。

⑤工作环境不要潮湿,有防风装置。

(10)裂纹在焊接应力及其他致脆因素共同作业下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面而产生的缝隙称为焊接裂纹。

铝及铝合金焊接裂纹属热裂纹。

裂纹时最危险的焊接缺陷,严重地影响着焊接结构的使用性能和安全可靠性,而且是许多焊接结构破坏事故的主要原因。

①焊丝选用不当,当焊缝中的(Mg)含量小于3%或时Fe、Si杂质含量超出规定时,裂纹倾向就增大,当焊接温度偏高时,引起热影响区液化裂纹。

②焊接顺序选择不当。

③焊接结束或是中断时,如果热源撤离过快,或时弧坑未填好,常常容易出现弧坑裂纹。

④焊缝过于集中或是受热区温度过高,变形应力过大。

⑤溶剂、焊丝保护气体含杂质过多。

⑥结构设计不合理,焊缝过于集中,造成焊接接头拘束应力过大;防止措施:①正确选择焊丝,控制焊缝成分与母材成分良好匹配。

②选择合理的焊接顺序。

③焊接结束或中断时,收弧电流应调小,哀减时间稍长,并在收弧处填加焊丝。

,或是在焊缝终端处装收弧板,在收弧板上收弧。

④控制好受热区的温度以及变形,必要时应采取预热措施。

⑤注意减小焊接结构的刚性,焊缝应尽量避免应力集中处。

第二节焊接缺陷检验焊接检验的重要性焊接检验时保证产品质量优良,防止报废出厂的重要措施。

在新产生试制过程中,通过检验可以发现试制过程中发生质量问题,找出原因,消除缺陷。

使新产品或新工艺得到运用,质量得到保证。

一、非破坏性检验非破坏性检验是指在不损坏被检查材料或成品的性能、完整性的条件下进行检测缺陷的方法。

它包括外观检验、致密性检验和无损探伤检验。

1、外观检验焊接接头的外观检验是一种简便而又应用广泛的检验方法。

一般用肉眼或用5~10倍放大镜检查。

主要检查焊缝表面有无裂纹、气孔、咬边、焊瘤、烧穿和凹坑等缺陷,检查焊缝成形是否良好、余高是否符合图样要求、焊缝向母材过渡是否圆滑等。

2、致密性检验这种检验方法主要用来检验不受压或受压较低的容器、管道焊缝的穿透性缺陷。

常用的致密性检查方法有:水压试验、气压试验。

(1)水压试验水压试验常被用来检查壳体强度及焊缝致密性。

具体作法如下:①选择合格的压力表,精度不低于1.5级;②将容器内灌满水,试验时应彻底排尽容器内的空气,并堵塞好容器上的一切孔和眼,加压水泵,将容器内的压力提高到工作压力的 1.25~1.5倍。

③在升压过程中,应按规定逐级上升,中间应作短暂停压,不得一次升到试验压力,在该压力下维持一定时间。

此后再将压力缓慢降至工作压力,加压后对焊缝仔细检查,当发现焊缝有水珠、细水流或有潮湿现象时,表明该焊缝不致密,应把它标注出来,待容器卸载后作返修处理,直至产品水压试验合格为止。

④水压试验也可以做破坏试验,检查产品的承载能力。

(2)气压试验气压试验是比水压试验更为灵敏和迅速的试验,同时试验后的产品不需作排水处理。

但是,气压试验的危险性比水压试验大。

试验时,先将气压加压到产品技术条件的规定值,然后关闭进气阀,停止加压,用测量仪移动到焊缝周围,检查焊缝是否漏气,(也可以涂肥皂水检测)或检查工作压力表数值是否下降。

若测量仪发出报警则表明该焊接接头不致密,待卸压后进行返修、补焊,直至再检验合格后方能出厂。

3、无损探伤检验无损探伤检查主要用于发现焊缝表面的细微缺陷以及存在于焊缝内部的缺陷。

例如夹渣、气孔、裂纹、未熔合等。

这类检验方法已在重要的焊接结构中被广泛应用。

常见的探伤方法有:着色检验、超声波检验、射线检验。

(1)着色检验它也是用来发现焊件表面缺陷的一种方法,但对焊件表面光洁度要求较高,检验时,将焊件用清洗剂擦洗干净,然后喷上着色剂;流动性和渗透性良好的着色剂便渗入到焊缝表面的细微裂纹中,随后将焊件表面用清洗剂擦净并涂以显像剂,浸入裂纹的着色剂遇到显像剂,便会显现出缺陷的位置、形状和大小。

(2)超声波检验它是用来检测大厚度焊件焊缝内部缺陷的。

适用于检测厚度一般为8~120mm的任何部位的气孔、夹杂、裂纹等缺陷,但它对缺陷的辨别能力差,且没有直观性。

检测时要求工件表面平滑光洁,并涂上一层机油为媒介。

检验时,超声波由工件表面传入,并在工件内部传播,当在其传播方向上遇到内部缺陷、工件表面、工件底面时就会引起反射,由探头将超声波变成电信号,由缺陷脉冲与始脉冲及底脉冲间的距离,可知缺陷的深度,并由缺陷脉冲讯号的高度可确定缺陷的大小。

(3)射线检验它是用来检测焊缝内部缺陷的准确而又可靠的方法之一。

常用的射线有Х射线,射线它适用于2~65厚度的焊件内部的气孔、夹杂物、未焊透、未溶合、裂缝等缺陷。

X射线都能直观、准确地反映缺陷的位置、形状、大小及分布情况。

相关文档
最新文档