【经典线代课件】线性代数课件.ppt
合集下载
线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
《线性代数讲义》课件
在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
线性代数 线代复习ppt课件
解
14
解:
R(A)=2
15
例5 1,2,3,4, 1, 1 , 1 , 1 , A T ,
2 3 4
B T ,求A, B, An, R(An ), n N
1
1
1
1
解
1
A
T
432
1
B T 1 1
2
1 2
1 3
1 3
1 4 1
2 3 4
1 4
2 3 4
26
定理2 设有非齐次线性方程组(1) Amn X , 0
设rA r,如果rA rA r n,则 1方程组AX 必有无穷多解; 2设是AX 的一个特解, 设1,2, ,nr是AX 0的基础
则AX 的通解为:
X k11 k22 knrnr ,k1,k2, ,knr R
).
2.设Ak=0,k是正整数,则A的特征值为( 0 ) .
3.若A2=A,则A的特征值为( 0, 1 ) .
31
4.设A是3阶方阵,已知方阵E-A,E+A,3E-A 都不可逆,则A的特征值为( 1, -1, 3 ).
5.已知三阶矩阵A的特征值为1,—1,2,
则|A-5E|=( -72 )。
6、单位矩阵E 的特征值,特征向量(
4
2 1 3 2 2
3 2 3
1
4 3
4 1
2
3
4 1
An (T )n1( T ) 4n1 A.
R( An ) 1 16
向量组的线性相关性
一. 向量组的线性相关性
1. 向量间的线性运算:加法、数乘。 2. 线性组合、线性表示
(1) 判断向量 可由向量组 1,2 ,L ,m 线性表示的常用方法
14
解:
R(A)=2
15
例5 1,2,3,4, 1, 1 , 1 , 1 , A T ,
2 3 4
B T ,求A, B, An, R(An ), n N
1
1
1
1
解
1
A
T
432
1
B T 1 1
2
1 2
1 3
1 3
1 4 1
2 3 4
1 4
2 3 4
26
定理2 设有非齐次线性方程组(1) Amn X , 0
设rA r,如果rA rA r n,则 1方程组AX 必有无穷多解; 2设是AX 的一个特解, 设1,2, ,nr是AX 0的基础
则AX 的通解为:
X k11 k22 knrnr ,k1,k2, ,knr R
).
2.设Ak=0,k是正整数,则A的特征值为( 0 ) .
3.若A2=A,则A的特征值为( 0, 1 ) .
31
4.设A是3阶方阵,已知方阵E-A,E+A,3E-A 都不可逆,则A的特征值为( 1, -1, 3 ).
5.已知三阶矩阵A的特征值为1,—1,2,
则|A-5E|=( -72 )。
6、单位矩阵E 的特征值,特征向量(
4
2 1 3 2 2
3 2 3
1
4 3
4 1
2
3
4 1
An (T )n1( T ) 4n1 A.
R( An ) 1 16
向量组的线性相关性
一. 向量组的线性相关性
1. 向量间的线性运算:加法、数乘。 2. 线性组合、线性表示
(1) 判断向量 可由向量组 1,2 ,L ,m 线性表示的常用方法
线性代数ppt
A 其中A是A的伴随阵.
推论 设A、B 都是n阶方阵,若AB E(或
BA E) , 则B A1.
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶可逆矩阵,则AB也可逆,且 1
1 1
4 若A可逆,则AT也可逆 ,且 A A .
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22
a12a21.
三阶行列式的计算方法——沙路法
一些常用的行列式结果:
a11 a12 a1n
1.
0 a22 a2n
a11a22
ann
0 0 ann
1
2.
2
12 n
1
n
3.
(其中 为数);
3 AB C AB AC, B C A BA CA;
方阵的幂运算: (1) Ak Al Akl (2) ( Ak )l Akl
注意:ABk AkBk .
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
M
M
M
an1
an2
ann
则D等于下列两个行列式之和:
a11 a12 a1n
a11 a12 a1n
MMM
bi 2 bin ci1
M
M
M
ci 2 cin
M
M
an1 an2 ann
an1 an2 ann
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行列 式不变. (倍加运算)
推论 设A、B 都是n阶方阵,若AB E(或
BA E) , 则B A1.
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶可逆矩阵,则AB也可逆,且 1
1 1
4 若A可逆,则AT也可逆 ,且 A A .
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22
a12a21.
三阶行列式的计算方法——沙路法
一些常用的行列式结果:
a11 a12 a1n
1.
0 a22 a2n
a11a22
ann
0 0 ann
1
2.
2
12 n
1
n
3.
(其中 为数);
3 AB C AB AC, B C A BA CA;
方阵的幂运算: (1) Ak Al Akl (2) ( Ak )l Akl
注意:ABk AkBk .
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
M
M
M
an1
an2
ann
则D等于下列两个行列式之和:
a11 a12 a1n
a11 a12 a1n
MMM
bi 2 bin ci1
M
M
M
ci 2 cin
M
M
an1 an2 ann
an1 an2 ann
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行列 式不变. (倍加运算)
线性代数完整版ppt课件
a11x1 a12x2 b1 a21x1 a22x2 b2
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !
线性代数ppt课件
例如 排列32514 中, 逆序
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中,
0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
计算排列逆序数的方法
a11
0 00
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4(第7页例5) 证明对角行列式
1 2
12 n;
n
2
1
nn1
1 2 12 n .
n
1 2
证明 第一式是显然的,下面证第二式.
n
若记 i ai,ni1, 则依行列式定义
2
1
a1n
a2,n1
n
an1
其中 p1 p2 pn 为自然数1,2,,n 的一个排列, t 为这个排列的逆序数.
a11 a12 a1n
D
a21 a22 a2n
an1 an2 ann
1
a a a t p1 p2pn
1 p1 2 p2
npn
p1 p2 pn
说明 1、行列式是一种特定的算式;
2、 n 阶行列式是 n! 项的代数和;
3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
4、 a1 p1a2 p2 anpn 的符号为 1t .
5、 一阶行列式 a a 不要与绝对值记号相混淆;
(补充例题)例1 计算对角行列式
0001 0020 0300 4000
32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中,
0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
计算排列逆序数的方法
a11
0 00
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4(第7页例5) 证明对角行列式
1 2
12 n;
n
2
1
nn1
1 2 12 n .
n
1 2
证明 第一式是显然的,下面证第二式.
n
若记 i ai,ni1, 则依行列式定义
2
1
a1n
a2,n1
n
an1
其中 p1 p2 pn 为自然数1,2,,n 的一个排列, t 为这个排列的逆序数.
a11 a12 a1n
D
a21 a22 a2n
an1 an2 ann
1
a a a t p1 p2pn
1 p1 2 p2
npn
p1 p2 pn
说明 1、行列式是一种特定的算式;
2、 n 阶行列式是 n! 项的代数和;
3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
4、 a1 p1a2 p2 anpn 的符号为 1t .
5、 一阶行列式 a a 不要与绝对值记号相混淆;
(补充例题)例1 计算对角行列式
0001 0020 0300 4000
线性代数ppt课件同济
05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。
线性代数-课件ppt
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2、数乘矩阵的运算规律
(设 A、B为 m n 矩阵, ,为数)
1 A A; 2 A A A;
3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
3 2 7 5
例1:已知
A
1 6
线性代数
• 矩阵的概念 • 矩阵的基本运算 • 矩阵的初等变换与矩阵的秩 • 逆矩阵 • 线性方程组解的判定
矩阵的概念
• 一、矩阵概念的引入 • 二、矩阵的定义 • 三、几种特殊的矩阵 • 四、同型矩阵和矩阵相等
一、矩阵概念的引入
B
某航空公司在A,B,C,D四城市之间
开辟了若干航线 ,如图所示表示了 四城市间的航班图,如果从A到B有
13 6 19 7
7 10
2 28
2 2
21 24
三、矩阵的乘法
引例:某校明后两年计划建筑教学楼和宿舍楼。建筑面积及材料耗用量如表:
建筑面积(单位:100平方米)
教学楼 宿舍楼
材料(每100平方米耗用量,单位:吨)
钢材 水泥 铝材
明年 20
10
教学楼
2
18
0.4
后年 30
20
宿舍楼 1.5
1 2 3 4
解:设A
4 3 2
1 4 3
2 1 4
123 ,
x1
X
x x x
2 3 4
,
1
B
2 2 1
,
所以方程组可表示为 :
1 2 3 4 x1 1
线性代数ppt课件
VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03
法
行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。
线性代数课件
a11 a21 a31 a12 a22 a32 a13 a23 a33
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1
目
录
行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义
j1 j2 jn
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1
目
录
行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义
j1 j2 jn
线性代数第一章第一节PPT课件
01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。
线性代数课本PPT课件
是对应于l1 2的全部特征向量
1 1 0
例
求矩阵
A
4 1
3 0
0 2
的特征值和特征向量.
解 特征值为 l1 2,l2 l3 1
当l2 l3 1时,齐次线性方程组为 A I x O
系数矩阵
2 1 0 1 0 1
A
I
4 1
2 0
0 1
0 0
1 0
2 0
1
得基础解系
1
l
A . 且x仍然是矩阵
kA, Am , A1 , A
分别对应于
kl , l m ,l 1, 1 A 的特征向量. l
证 (3) 当A可逆时, l 0, 由Ax l x可得
A1 Ax A1 l x l A1x A1 x l 1 x
故l 1是矩阵A1的特征值,且x是A1对应于l 1的特征向量.
1
1
1 1
x1 x2
0 0
x1 x
x2 1 x
0 0
2
解得 x1 x2 ,
所以对应的特征向量可取为
p 1
1 1
.
当l1 =4时,
34
1
1 34
x1 x2
0 0
即
1
1
1 1
x1 x2
0 0
解得 x1 x2 ,
所以对应的特征向量可取为
n
(2) li l1l2 ln= A i 1
性质2 若A的特征值是l, X是A的对应于l的特征向量,
(1) kA的特征值是kl; (k是任意常数)
(2) Am的特征值是l m;(m是正整数)
证 2因为Ax l x 所以 A Ax Al x l Ax l l x
1 1 0
例
求矩阵
A
4 1
3 0
0 2
的特征值和特征向量.
解 特征值为 l1 2,l2 l3 1
当l2 l3 1时,齐次线性方程组为 A I x O
系数矩阵
2 1 0 1 0 1
A
I
4 1
2 0
0 1
0 0
1 0
2 0
1
得基础解系
1
l
A . 且x仍然是矩阵
kA, Am , A1 , A
分别对应于
kl , l m ,l 1, 1 A 的特征向量. l
证 (3) 当A可逆时, l 0, 由Ax l x可得
A1 Ax A1 l x l A1x A1 x l 1 x
故l 1是矩阵A1的特征值,且x是A1对应于l 1的特征向量.
1
1
1 1
x1 x2
0 0
x1 x
x2 1 x
0 0
2
解得 x1 x2 ,
所以对应的特征向量可取为
p 1
1 1
.
当l1 =4时,
34
1
1 34
x1 x2
0 0
即
1
1
1 1
x1 x2
0 0
解得 x1 x2 ,
所以对应的特征向量可取为
n
(2) li l1l2 ln= A i 1
性质2 若A的特征值是l, X是A的对应于l的特征向量,
(1) kA的特征值是kl; (k是任意常数)
(2) Am的特征值是l m;(m是正整数)
证 2因为Ax l x 所以 A Ax Al x l Ax l l x
《线性代数》PPT课件幻灯片PPT
特别当矩阵A与对角阵=diag(1, 2,···, n )相似时,
那么
Am = PmP-1; (A)= P()P-1.
而对于对角阵, 有
1k
k =
k2
;
kn
()=
(1)
(2)
(n).
利用上述结论可以很方便地计算矩阵A的多项式
(A). 结论: 假设f( )为矩阵A的特征多项式, 那么矩阵
A的多项式 f(A)=O. 此结论的一般性证明较困难, 但当矩阵A与对角
因此, 当a = –1时矩阵A能对角化.
三、小 结
1. 相似矩阵 相似是矩阵之间的一种关系, 它具有很多良好的 性质, 除了课堂内介绍的以外, 还有: (1) 假设A与B相似, 那么det(A)=det(B); (2) 假设A与B相似, f(x)为多项式, 那么f(A)与f(B) 相似; (3) 假设A与B相似, 且A可逆, 那么B也可逆, 且A1与B2-1. 相相似似.变换与相似变换矩阵 相似变换是对方阵进展的一种运算, 它把A变成 P-1AP, 可逆矩阵P称为进展这一变换的相似变换矩阵.
-2
P1AP
1 1.
矩阵P的列向量和对角矩阵中特征值的位置要相
互对应.
例3:设A= 110
0 1 0
a10,当a为何值时, 矩阵A能对角化?
0 1 解: | A –E | = 1 1 a = –(–1)2(+1).
1 0
得矩阵A的特征值 1 = –1, 2 = 3 = 1. 对应单根1 = –1, 恰好可求得一个线性无关的特
阵 相似时很容易证明即.
f(A)=Pf()P=POP-1=O.
二、利用相似变换将方阵对角化
n阶方阵A是否与对角阵 =diag( 1, 2,···, n ) 相似, 那么我们需要解决如下两个问题:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x12 x22 , x32
对矩阵( AB)施行初等行变换,若A能变为E,
则a1 ,a2 ,a3为R3的一个基,且当A变为E时,B变为
X A1B.
(
A
B)
2 2
2 1 1 2
1 0
4 3
1 2 2 4 2
1 3 (r1
r2
~
r3 )
1 1 1 2 1 2 1 2 2
1 0 4
kx1 (k1 )a (k1 )b V .
这个向量空间称为由向量a, b所生成的向量空 间.
一般地,由向量组a1, a2 ,, am所生成的向量空 间为
V x 1a1 2a2 mam 1,2 ,,m R
例5 设向量组a1 ,,am与向量组b1 ,,bs等价, 记
V1 x 1a1 2a2 mam 1 ,2 ,,m R V2 x 1b1 2b2 sbs 1 , 2 , s R
线性表示.
解 要证a1, a2 , a3是R3的一个基,只要证a1, a2 , a3 线性无关,即只要证A ~ E.
设
b1 x11a1 x21a2 x31a3 ,
b2 x12a1 x22a2 x32a3,
即
x11 (b1 ,b2 ) (a1 ,a2 ,a3 ) x21
x31 记作B AX .
(3)若向量组
1
,
2
,
,
是向量空间
r
V
的一
个基,则 V 可表示为
V x 11 22 rr 1 ,,r R
例6 设矩阵
2 2 1
A (a1 ,a2 ,a3 ) 2 1 2 ,
1 2 2
1 4
B (b1 ,b2 ) 0 3,
4 2
验证a1 ,a2 ,a3 ,是R3的一个基,并把b1 ,b2用这个基
思考题
设V x (a, b)T a, b R ,定义加法与数乘
运算如下: 加法 : (a,b) (c,d ) (a c,bd ), 数乘 : k (a, b) (lg a, bk),k R
V是不是向量空间?为什么?
思考题解答
解 V不是向量空间. 显然,V对加法封闭,因为两个正实数的和与积
因为对于V1的任意两个元素
0, a2 ,, an T , 0, b2 ,, bn T V1 ,
有 0,a2 b2 ,,an bn T V1
0, a2 ,, an T V1 .
例3 判别下列集合是否为向量空间.
V2 x 1, x2 ,, xn T x2 ,, xn R
分量全为实数的向量称为实向量.
分量全为复数的向量称为复向量.
n维向量写成列的形式, 称为列向量,即
(2)V中任一向量都可由1,2 ,,r线性表示.
那末,向量组 1 ,2 ,,r 就称为向量 V 的一个
基,r 称为向量空间 V 的维数,并称 V 为 r 维向量
空间.
说明
(1)只含有零向量的向量空间称为0维向量 空间,因此它没有基.
(2)若把向量空间 V看作向量组,那末V的基
就是向量组的最大无关组, V 的维数就是向量组的 秩.
解 V2不是向量空间.
因为若 1,a2 ,,an T V2 , 则2 2,2a2 ,,2an T V2 .
例4 设a,b为两个已知的n维向量,集合
V x a b , R
试判断集合是否为向量空间.
解 V是一个向量空间.因为若x1 1a 1b x2 2a 2b, 则有
x1 x2 (1 2 )a (1 2 )b V ,
r2r3~(
3) 3
1 1 1 1 3
0
1
0
2
1
3
0
1
1
5 3
5 3
r2r3~(
3) 3
~ r1 r3
r3 r2
1 1 1 1 3
0
1
0
2
1
3
0
1
1
5 3
5 3
1 0 0 2 4
0
1
0
3 2
3 1
3
0
0
1
1
2 3
1 0 0 2 4
3 3
~ ( A B)初等行变换 0
试证:V1 V2 .
证 设x V1,则x可由a1,, am线性表示. 因a1 ,,am可由b1 ,,bs线性表示,故x可由b1 ,, bs线性表示,所以x V2 .
这就是说,若x V1,则x V2, 因此V1 V2 .
类似地可证 : 若x V2 ,则x V1 , 因此V2 V1 .
因为V1 V2,V2 V1,所以V1 V2 .
二、子空间
定义2 设有向量空间 V1及V2,若向量空间V1 V2, 就说 V1 是 V2 的子空间. 实例
设V 是由 n 维向量所组成的向量空间, 显然V Rn 所以V总是 Rn的子空间.
三、向量空间的基与维数
定义3 设 V是向量空间,如果 r 个向量 1,2 , ,r V,且满足
(1) 1, 2 ,, r线性无关;
还是正实数. 但V对乘法不封闭. 比如V中的元素(1, b),对任意实数k, k (1, b) (lg1, bk) (0, bk)V .
1 向量的定义
定义 n个有次序的数 a1 , a2 ,, an 所组成的 数组称为n维向量.这n个数称为该向量的分量, 第i个数 ai 称为第i个分量.
3 3 2
1
3 (r1
r2
~
r3 )
1 1 1 2 1 2 1 2 2
1 0 4
3 3 2
~ r2 2r1
r3 r1
1 1 1 1 3 0 3 0 2 3 0 3 3 5 5
~ r2 2r1
r3 r1
1 1 1 1 3 0 3 0 2 3 0 3 3 5 5
1
1
1
2 3
因有A ~ E,故a1 ,a2 ,a3为R3的一个基,且
2 4
3 3
b1
, b2
(a1
,a2
,a3
)
2 3
1 .
1
2 3
四、小结
1.向量空间的概念: 向量的集合对加法及数乘两种运算封闭; 由向量组生成的向量空间.
2.子空间的概念.
3.向量空间的基和维数: 求向量空间基和维数的方法.
例1 3 维向量的全体R3 ,是一个向量空间.
因为任意两个3维向量之和仍然是3维向量, 数
乘3维向量仍然是3维向量,它们都属于R3 .
类似地,n维向量的全体Rn,也是一个向量空 间.
例2 判别下列集合是否为向量空间.
V1 x 0, x2 ,, xn T x2 ,, xn R
解 V1是向量空间 .