数据结构第7章 图习题
数据结构-期末复习题及参考答案+-+第7章图
![数据结构-期末复习题及参考答案+-+第7章图](https://img.taocdn.com/s3/m/445f0868f121dd36a22d8256.png)
《数据结构》期末复习题及参考答案- 第7章图//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 注意:做复习题时,请结合阅读教材,钻研教材,参考课件////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////一、选择题1、以下数据结构中,哪种具有非线性结构?A.栈B.队列C.双向链表D.十字链表2、下面关于图的存储的叙述中正确的是()。
A.用邻接表法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关。
B.用邻接表法存储图,占用的存储空间大小与图中边数和结点个数都有关。
C.用邻接矩阵法存储图,占用的存储空间大小与图中结点个数和边数都有关。
D.用邻接矩阵法存储图,占用的存储空间大小只与图中边数有关,而与结点个数无关3、在图的邻接表存储结构上执行深度优先搜索遍历类似于二叉树上的()A.先根遍历B.中根遍历C.后根遍历D.按层次遍历4、图的广度优先遍历算法类似于树的()。
A. 中根遍历B. 先根遍历C. 后根遍历D. 按层次遍历5、设无向图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C.n(n+1)/2 D.06、设有n个结点的无向图,该图至少应有( )条边才能确保是一个连通图。
A.n-1 B.n C.n+1 D.nlogn;7、一个含有n个顶点的非连通图,则():A.它的边一定不大于n-1 B.它的边一定不大于nC.它的边一定小于n-1 D.它的边一定大于08、要连通具有n个顶点的有向图,至少需要()条边。
数据结构章节练习题 - 答案第7章 图
![数据结构章节练习题 - 答案第7章 图](https://img.taocdn.com/s3/m/f40f8ad6ec3a87c24028c453.png)
7.1选择题1.对于一个具有n个顶点和e条边的有向图,在用邻接表表示图时,拓扑排序算法时间复杂度为()A)O(n)B)O(n+e)C)O(n*n)D)O(n*n*n)【答案】B2.设无向图的顶点个数为n,则该图最多有()条边。
A)n-1B)n(n-1)/2C)n(n+1)/2【答案】B3.连通分量指的是()A)无向图中的极小连通子图B)无向图中的极大连通子图C)有向图中的极小连通子图D)有向图中的极大连通子图【答案】B4.n个结点的完全有向图含有边的数目()A)n*n B)n(n+1)C)n/2【答案】D5.关键路径是()A)AOE网中从源点到汇点的最长路径B)AOE网中从源点到汇点的最短路径C)AOV网中从源点到汇点的最长路径D)n2D)n*(n-1)D)AOV网中从源点到汇点的最短路径【答案】A6.有向图中一个顶点的度是该顶点的()A)入度B)出度C)入度与出度之和D)(入度+出度)/2【答案】C7.有e条边的无向图,若用邻接表存储,表中有()边结点。
A)e B)2eC)e-1D)2(e-1)【答案】B8.实现图的广度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】B9.实现图的非递归深度优先搜索算法需使用的辅助数据结构为()A)栈B)队列C)二叉树D)树【答案】A10.存储无向图的邻接矩阵一定是一个()A)上三角矩阵B)稀疏矩阵C)对称矩阵D)对角矩阵【答案】C11.在一个有向图中所有顶点的入度之和等于出度之和的()倍A)B)1C)2D)4【答案】B12.在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为(A)O(n)B)O(n+e)C)O(n2)D)O(n3))【答案】B13.下列关于AOE网的叙述中,不正确的是()A)关键活动不按期完成就会影响整个工程的完成时间B)任何一个关键活动提前完成,那么整个工程将会提前完成C)所有的关键活动提前完成,那么整个工程将会提前完成D)某些关键活动提前完成,那么整个工程将会提前完成【答案】B14.具有10个顶点的无向图至少有多少条边才能保证连通()A)9B)10C)11D)12【答案】A15.在含n个顶点和e条边的无向图的邻接矩阵中,零元素的个数为()A)e B)2eC)n2-e D)n2-2e【答案】D7.2填空题1.无向图中所有顶点的度数之和等于所有边数的_____________倍。
数据结构第7章图习题
![数据结构第7章图习题](https://img.taocdn.com/s3/m/ac164275a5e9856a5612607e.png)
、单项选择题1.在一个无向图 G 中,所有顶点的度数之和等于所有边数之和的 _________ 倍A .l/2B .1D .42.在一个有向图中, 所有顶点的入度之和等于所有顶点的出度之和的 ________倍A .l/2 C .2D .43.一个具有 n 个顶点的无向图最多包含 _____ 条边。
A .nB .n +1C .n-1D .n(n-1)/24.一个具有 n 个顶点的无向完全图包含 _____ 条边。
A .n(n-l)B .n(n+l)C .n(n-l)/2D .n(n-l)/25.一个具有 n 个顶点的有向完全图包含 _____ 条边。
A .n(n-1)B .n(n+l)C .n(n-l)/2D .n(n+l)/2 6.对于具有 n 个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为A. nB. n><h C .n-17 .无向图的邻接矩阵是一个 ______A .对称矩阵 C .上三角矩阵8.对于一个具有 n 个顶点和 e 条边的无 (有)向图,若采用邻接表表示,则表头 向量的大小为 。
A .n C . 2nD . 2e 9.对于一个具有 n 个顶点和 e 条边的无 (有)向图,若采用邻接表表示,则所有 顶C .2B .1 D . (n-I)也-I)B .零矩阵 D .对角矩阵 B .e点邻接表中的结点总数为_________ 。
B. eC. 2nD. 2e10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有邻接点。
A .入边B.出边C.入边和出边 D .不是入边也不是出边11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有邻接点。
A .入边B.出边C.入边和出边 D .不是人边也不是出边12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是A .完全图B.连通图C.有回路 D .一棵树13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的算法。
数据结构复习题-第7章答案2014-6-16
![数据结构复习题-第7章答案2014-6-16](https://img.taocdn.com/s3/m/a9f007065ef7ba0d4b733b48.png)
、选择题(每小题 1 分,共 10分)1. 一个 n 个顶点的连通无向图,其边的个数至少为( C )。
A.n+l B.n C.n-l D.2n2. 下列哪一种图的邻接矩阵是对称矩阵( B )。
A. 有向图 B. 无向图 C.AOV 网 D.AOE 网5. 无 向 图 G=(V,E ), 其 中 : V={a,b,c,d,e,f}, E={(a,b ),(a,e ),(a,c ),(b,e ),(c,f ), (f,d ),(e,d )} ,由顶点 a 开始对该图进行深度优先遍历, 得到的顶点序列正确的是 ( D )。
A. a,b,e,c,d,f B. a,c,f,e,b,d C. a,e,b,c,f,d D. a,e,d,f,c,b6. 用邻接表表示图进行广度优先遍历时,通常是采用( B )来实现算法的。
A. 栈 B. 队列 C. 树 D. 图7. 以下数据结构中,哪一个是线性结构( D )。
A. 广义表 B. 二叉树 C. 图 D. 栈8. 下面哪一方法可以判断出一个有向图是否有环(回路) ( B )。
A. 最小生成树B. 拓扑排序C. 求最短路径D. 求关键路径 9. 在一个图中,所有顶点的度数之和等于图的边数的( C )倍。
10. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的(B )倍。
A. 1/2B. 1C. 2D. 411. 有 8 个顶点无向图最多有( B )条边。
A. 14 B. 28 C. 56 D. 11212. 有 8 个顶点无向连通图最少有( C )条边。
A. 5 B. 6 C. 7 D. 813. 有 8个顶点有向完全图有( C )条边。
A. 14 B. 28 C. 56 D. 11214. 下列说法不正确的是( A )。
A. 图的遍历是从给定的源点出发每一个顶点仅被访问一次 C. 图的深度遍历不适用于有向图B. 遍历的基本算法有两种:深度遍历和广度遍历 D •图的深度遍历是一个递归过程 二、判断题(每小题 1 分,共 10分)1. n 个顶点的无向图至多有 n (n-1) 条边。
图习题及标准答案
![图习题及标准答案](https://img.taocdn.com/s3/m/c5ac8ebe4693daef5ef73d56.png)
图习题及标准答案————————————————————————————————作者:————————————————————————————————日期:第7章图一、选择题1.对于一个具有n个顶点和e条边的有向图,在用邻接表表示图时,拓扑排序算法时间复杂度为()A) O(n) B) O(n+e) C) O(n*n) D) O(n*n*n)【答案】B2.设无向图的顶点个数为n,则该图最多有()条边。
A)n-1 B)n(n-1)/2 C) n(n+1)/2 D)n2【答案】B3.连通分量指的是()A)无向图中的极小连通子图B)无向图中的极大连通子图C)有向图中的极小连通子图D)有向图中的极大连通子图【答案】B4.n个结点的完全有向图含有边的数目()A)n*n B)n(n+1)C)n/2 D)n*(n-1)【答案】D5.关键路径是()A) AOE网中从源点到汇点的最长路径B) AOE网中从源点到汇点的最短路径C) AOV网中从源点到汇点的最长路径D) AOV网中从源点到汇点的最短路径【答案】A6.有向图中一个顶点的度是该顶点的()A)入度 B)出度 C)入度与出度之和 D)(入度+出度)/2 【答案】C7.有e条边的无向图,若用邻接表存储,表中有()边结点。
A) e B) 2e C) e-1 D) 2(e-1)【答案】B8.实现图的广度优先搜索算法需使用的辅助数据结构为()A)栈 B)队列 C)二叉树 D)树【答案】B9.实现图的非递归深度优先搜索算法需使用的辅助数据结构为()A)栈 B)队列 C)二叉树 D)树【答案】A10.存储无向图的邻接矩阵一定是一个()A)上三角矩阵 B)稀疏矩阵 C)对称矩阵 D)对角矩阵【答案】C11.在一个有向图中所有顶点的入度之和等于出度之和的()倍A) 1/2 B)1 C) 2 D) 4【答案】B12.在图采用邻接表存储时,求最小生成树的 Prim 算法的时间复杂度为()A) O(n) B) O(n+e) C) O(n2) D) O(n3)【答案】B13.下列关于AOE网的叙述中,不正确的是()A)关键活动不按期完成就会影响整个工程的完成时间B)任何一个关键活动提前完成,那么整个工程将会提前完成C)所有的关键活动提前完成,那么整个工程将会提前完成D)某些关键活动提前完成,那么整个工程将会提前完成【答案】B14.具有10个顶点的无向图至少有多少条边才能保证连通()A) 9 B)10 C) 11 D) 12【答案】A15.在含n个顶点和e条边的无向图的邻接矩阵中,零元素的个数为()A) e B)2e C) n2-e D)n2-2e【答案】D16.对于一个具有n个顶点和e条边的无向图,如果采用邻接表来表示,则其表头向量的大小为。
数据结构 第7章习题答案
![数据结构 第7章习题答案](https://img.taocdn.com/s3/m/93563c2567ec102de2bd891f.png)
第7章 《图》习题参考答案一、单选题(每题1分,共16分)( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。
A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。
A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。
A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。
A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。
A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图 ()8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2C. 0 4 2 3 1 6 5D. 0 1 2 34 6 5 ( D )10. 已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是( A )11. 已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 1 3 4 2 5 6D. 0 3 6 1 5 4 2⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110A .0 1 3 2 B. 0 2 3 1 C. 0 3 2 1 D. 0 1 2 3(A)12. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)13. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)14. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。
数据结构章节练习题2
![数据结构章节练习题2](https://img.taocdn.com/s3/m/1225040e90c69ec3d5bb75a1.png)
第七章图一、选择题1.图中有关路径的定义是()。
A.由顶点和相邻顶点序偶构成的边所形成的序列B.由不同顶点所形成的序列C.由不同边所形成的序列D.上述定义都不是2.设无向图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C.n(n+1)/2 D.0 E.n23.一个n个顶点的连通无向图,其边的个数至少为()。
A.n-1 B.n C.n+1 D.nlogn;4.要连通具有n个顶点的有向图,至少需要()条边。
A.n-l B.n C.n+l D.2n5.一个有n个结点的图,最少有(B )个连通分量,最多有(D )个连通分量。
A.0 B.1 C.n-1 D.n6. 下列说法不正确的是()。
A.图的遍历是从给定的源点出发每一个顶点仅被访问一次C.图的深度遍历不适用于有向图B.遍历的基本算法有两种:深度遍历和广度遍历D.图的深度遍历是一个递归过程7.无向图G=(V,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是()。
A.a,b,e,c,d,f B.a,c,f,e,b,d C.a,e,b,c,f,d D.a,e,d,f,c,b8. 在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为( )。
A. O(n)B. O(n+e)C. O(n2)D. O(n3)9. 求解最短路径的Floyd算法的时间复杂度为( )。
A.O(n) B. O(n+c) C. O(n*n)D. O(n*n*n)10.已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>},G的拓扑序列是()。
数据结构课后习题答案第七章
![数据结构课后习题答案第七章](https://img.taocdn.com/s3/m/2e873e4e767f5acfa1c7cd94.png)
第七章图(参考答案)7.1(1)邻接矩阵中非零元素的个数的一半为无向图的边数;(2)A[i][j]= =0为顶点,I 和j无边,否则j和j有边相通;(3)任一顶点I的度是第I行非0元素的个数。
7.2(1)任一顶点间均有通路,故是强连通;(2)简单路径V4 V3 V1 V2;(3)0 1 ∞ 1∞ 0 1 ∞1 ∞ 0 ∞∞∞ 1 0邻接矩阵邻接表(2)从顶点4开始的DFS序列:V5,V3,V4,V6,V2,V1(3)从顶点4开始的BFS序列:V4,V5,V3,V6,V1,V27.4(1)①adjlisttp g; vtxptr i,j; //全程变量② void dfs(vtxptr x)//从顶点x开始深度优先遍历图g。
在遍历中若发现顶点j,则说明顶点i和j间有路径。
{ visited[x]=1; //置访问标记if (y= =j){ found=1;exit(0);}//有通路,退出else { p=g[x].firstarc;//找x的第一邻接点while (p!=null){ k=p->adjvex;if (!visited[k])dfs(k);p=p->nextarc;//下一邻接点}}③ void connect_DFS (adjlisttp g)//基于图的深度优先遍历策略,本算法判断一邻接表为存储结构的图g种,是否存在顶点i //到顶点j的路径。
设 1<=i ,j<=n,i<>j.{ visited[1..n]=0;found=0;scanf (&i,&j);dfs (i);if (found) printf (” 顶点”,i,”和顶点”,j,”有路径”);else printf (” 顶点”,i,”和顶点”,j,”无路径”);}// void connect_DFS(2)宽度优先遍历全程变量,调用函数与(1)相同,下面仅写宽度优先遍历部分。
第七章∶图练习题
![第七章∶图练习题](https://img.taocdn.com/s3/m/55b5636b5ef7ba0d4a733baf.png)
第七章:图练习题一、选择题1、一个有n个顶点的无向图最多有()条边。
A、nB、n(n-1)C、n(n-1)/2D、2n2、具有6个顶点的无向图至少有()条边才能保证是一个连通图。
A、5B、6C、7D、83、具有n个顶点且每一对不同的顶点之间都有一条边的图被称为()。
A、线性图B、无向完全图C、无向图D、简单图4、具有4个顶点的无向完全图有()条边。
A、6B、12C、16D、205、G是一个非连通无向图,共有28条边,则该图至少有()个顶点A、6B、7C、8D、96、存储稀疏图的数据结构常用的是()。
A、邻接矩阵B、三元组C、邻接表D、十字链表7、对一个具有n个顶点的图,采用邻接矩阵表示则该矩阵的大小为()。
A、nB、(n-1)2C、(n+1)2D、n28、设连通图G的顶点数为n,则G的生成树的边数为()。
A、n-1B、nC、2nD、2n-19、n个顶点的无向图的邻接表中结点总数最多有()个。
A、2nB、nC、n/2D、n(n-1)10、对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表向量的大小为(),所有顶点邻接表的结点总数为()。
A、nB、n+1C、n-1D、2nE、e/2F、eG、2eH、n+e11、在有向图的邻接表存储结构中,顶点v在表结点中出现的次数是()。
A、顶点v的度B、顶点v的出度C、顶点v 的入度D、依附于顶点v的边数12、已知一个图,若从顶点a出发进行深度和广度优先搜索遍历,则可能得到的顶点序列分别为()和()(1)A、abecdf B、acfebd C、acebfd D、acfdeb(2)A、abcedf B、abcefd C、abedfc D、acfdeb13、采用邻接表存储的图的深度和广度优先搜索遍历算法类似于二叉树的()和()。
A、中序遍历B、先序遍历C、后序遍历D、层次遍历14、已知一有向图的邻接表存储结构如下图所示,分别根据图的深度和广度优先搜索遍历算法,从顶点v1出发,得到的顶点序列分别为()和()。
数据结构习题与答案图
![数据结构习题与答案图](https://img.taocdn.com/s3/m/57a76a083b3567ec112d8a47.png)
第7章图一、单选题01、在一个图中,所有顶点的度数之和等于图的边数的倍。
A.1/2 B.1C.2D.402、在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A.1/2B.1 C.2 D.403、有8个结点的无向图最多有条边。
A.14 B.28 C.56 D.11204、有8个结点的无向连通图最少有条边。
A.5 B.6 C.7 D.805、有8个结点的有向完全图有条边。
A.14 B.28 C.56 D.11206、用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A.栈 B.队列 C.树 D.图07、用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A.栈 B.队列 C.树 D.图08、一个含n个顶点和e条弧的有向图以邻接矩阵表示法为存储结构,则计算该有向图中某个顶点出度的时间复杂度为。
A.O(n)B.O(e)C.O(n+e)D.O(n2)09、已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是。
A.0 2 4 3 1 5 6 B.0 1 3 6 5 4 2C.0 1 3 4 2 5 6 D.0 3 6 1 5 4 210、已知图的邻接矩阵同上题,根据算法,则从顶点0出发,按广度优先遍历的结点序列是。
A.0 2 4 3 6 5 1 B.0 1 2 3 4 5 6C.0 4 2 3 1 5 6 D.0 1 3 4 2 5 611、已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是。
A.0 1 3 2 B.0 2 3 1 C.0 3 2 1 D.0 1 2 3 12、已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是。
A.0 3 2 1 B.0 1 2 3 C.0 1 3 2 D.0 3 1 2 13、图的深度优先遍历类似于二叉树的。
A.先序遍历 B.中序遍历 C.后序遍历 D.层次遍历14、图的广度优先遍历类似于二叉树的。
数据结构第七章课后习题答案 (1)
![数据结构第七章课后习题答案 (1)](https://img.taocdn.com/s3/m/67f0c6b0caaedd3382c4d34c.png)
7_1对于图题7.1(P235)的无向图,给出:(1)表示该图的邻接矩阵。
(2)表示该图的邻接表。
(3)图中每个顶点的度。
解:(1)邻接矩阵:0111000100110010010101110111010100100110010001110(2)邻接表:1:2----3----4----NULL;2: 1----4----5----NULL;3: 1----4----6----NULL;4: 1----2----3----5----6----7----NULL;5: 2----4----7----NULL;6: 3----4----7----NULL;7: 4----5----6----NULL;(3)图中每个顶点的度分别为:3,3,3,6,3,3,3。
7_2对于图题7.1的无向图,给出:(1)从顶点1出发,按深度优先搜索法遍历图时所得到的顶点序(2)从顶点1出发,按广度优先法搜索法遍历图时所得到的顶点序列。
(1)DFS法:存储结构:本题采用邻接表作为图的存储结构,邻接表中的各个链表的结点形式由类型L_NODE规定,而各个链表的头指针存放在数组head中。
数组e中的元素e[0],e[1],…..,e[m-1]给出图中的m条边,e中结点形式由类型E_NODE规定。
visit[i]数组用来表示顶点i是否被访问过。
遍历前置visit各元素为0,若顶点i被访问过,则置visit[i]为1.算法分析:首先访问出发顶点v.接着,选择一个与v相邻接且未被访问过的的顶点w访问之,再从w 开始进行深度优先搜索。
每当到达一个其所有相邻接的顶点都被访问过的顶点,就从最后访问的顶点开始,依次退回到尚有邻接顶点未曾访问过的顶点u,并从u开始进行深度优先搜索。
这个过程进行到所有顶点都被访问过,或从任何一个已访问过的顶点出发,再也无法到达未曾访问过的顶点,则搜索过程就结束。
另一方面,先建立一个相应的具有n个顶点,m条边的无向图的邻接表。
第7章-图练习题及标准答案
![第7章-图练习题及标准答案](https://img.taocdn.com/s3/m/9569ee48f18583d0496459b2.png)
第七章 图一、单选题( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。
A .1/2 B. 1 C. 2 D. 42. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的( B )倍。
A .1/2 B. 1 C. 2 D. 4 (B )3. 有8个结点的无向图最多有 条边。
A .14 B. 28 C. 56 D. 112 ( A )一个n 个顶点的连通无向图,其边的个数至少为( )。
A .n-1B .nC .n+1D .nlogn ; ( C )5. 有8个结点的有向完全图有 条边。
A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列 C. 树 D. 图8. 下面关于求关键路径的说法不正确的是( C )。
A .求关键路径是以拓扑排序为基础的B .一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同C .一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差D .关键活动一定位于关键路径上9. 已知图的邻接矩阵如下,根据算法思想,则从顶点0出发,按深度优先遍历的结点序列是( D )A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2 C. 0 4 2 3 1 6 5 D. 0 ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡01000111011000010110101100110010001100100110111101 3 42 5 610、设数据结构A=(D,R),其中D={1,2,3,4},R={r},r={<1,2>,<2,3>,<3,4>,<4,1>,<4,2>},则数据结构A是(C )。
数据结构-第7章图答案
![数据结构-第7章图答案](https://img.taocdn.com/s3/m/49ef43f7b8f67c1cfad6b821.png)
7.3 图的遍历 从图中某个顶点出发游历图,访遍图中其余顶点, 并且使图中的每个顶点仅被访问一次的过程。 一、深度优先搜索 从图中某个顶点V0 出发,访问此顶点,然后依次 从V0的各个未被访问的邻接点出发深度优先搜索遍 历图,直至图中所有和V0有路径相通的顶点都被访 问到,若此时图中尚有顶点未被访问,则另选图中 一个未曾被访问的顶点作起始点,重复上述过程, 直至图中所有顶点都被访问到为止。
void BFSTraverse(Graph G, Status (*Visit)(int v)) { // 按广度优先非递归遍历图G。使用辅助队列Q和访问标志数组 visited。 for (v=0; v<G.vexnum; ++v) visited[v] = FALSE; InitQueue(Q); // 置空的辅助队列Q for ( v=0; v<G.vexnum; ++v ) if ( !visited[v]) { // v尚未访问 EnQueue(Q, v); // v入队列 while (!QueueEmpty(Q)) { DeQueue(Q, u); // 队头元素出队并置为u visited[u] = TRUE; Visit(u); // 访问u for ( w=FirstAdjVex(G, u); w!=0; w=NextAdjVex(G, u, w) ) if ( ! visited[w]) EnQueue(Q, w); // u的尚未访问的邻接顶点w入队列Q
4。邻接多重表
边结点
mark ivex
顶点结点
ilink
jvex
jlink
info
data
firstedge
#define MAX_VERTEX_NUM 20 typedef emnu {unvisited, visited} VisitIf; typedef struct Ebox { VisitIf mark; // 访问标记 int ivex, jvex; // 该边依附的两个顶点的位置 struct EBox *ilink, *jlink; // 分别指向依附这两个顶点的下一条 边 InfoType *info; // 该边信息指针 } EBox; typedef struct VexBox { VertexType data; EBox *firstedge; // 指向第一条依附该顶点的边 } VexBox; typedef struct { VexBox adjmulist[MAX_VERTEX_NUM]; int vexnum, edgenum; // 无向图的当前顶点数和边数 } AMLGraph;
数据结构第七章--图(严蔚敏版)
![数据结构第七章--图(严蔚敏版)](https://img.taocdn.com/s3/m/95431a3083c4bb4cf7ecd1f4.png)
8个顶点的无向图最多有 条边且该图为连通图 个顶点的无向图最多有28条边且该图为连通图 个顶点的无向图最多有 连通无向图构成条件:边 顶点数 顶点数-1)/2 顶点数*(顶点数 连通无向图构成条件 边=顶点数 顶点数 顶点数>=1,所以该函数存在单调递增的单值反 顶点数 所以该函数存在单调递增的单值反 函数,所以边与顶点为增函数关系 所以28个条边 函数 所以边与顶点为增函数关系 所以 个条边 的连通无向图顶点数最少为8个 所以28条边的 的连通无向图顶点数最少为 个 所以 条边的 非连通无向图为9个 加入一个孤立点 加入一个孤立点) 非连通无向图为 个(加入一个孤立点
28
无向图的邻接矩阵为对称矩阵
2011-10-13
7.2
图的存储结构
Wij 若< vi,vj > 或<vj,v i > ∈E(G)
若G是网(有权图),邻接矩阵定义为 是网(有权图), ),邻接矩阵定义为
A [ i,j ] = , 0或 ∞
如图: 如图:
V1
若其它
V2
3 4
2
V3
2011-10-13
C
A
B
D 2011-10-13 (a )
3
Königsberg七桥问题
• Königsberg七桥问题就是说,能否从某点出发 通过每桥恰好一次回到原地?
C
C
A B
.
A D
B
D (a)
2011-10-13
(b)
4
第七章 图
7.1 图的定义 7.2 图的存储结构 7.3 图的遍历 7.4 图的连通性问题 7.5 有向无环图及其应用 7.6 最短路径
2011-10-13
数据结构 习题 第七章 图 答案
![数据结构 习题 第七章 图 答案](https://img.taocdn.com/s3/m/fca75c2dcfc789eb172dc8aa.png)
第7章图二.判断题部分答案解释如下。
2. 不一定是连通图,可能有若干连通分量 11. 对称矩阵可存储上(下)三角矩阵14.只有有向完全图的邻接矩阵是对称的 16. 邻接矩阵中元素值可以存储权值21. 只有无向连通图才有生成树 22. 最小生成树不唯一,但最小生成树上权值之和相等26. 是自由树,即根结点不确定35. 对有向无环图,拓扑排序成功;否则,图中有环,不能说算法不适合。
42. AOV网是用顶点代表活动,弧表示活动间的优先关系的有向图,叫顶点表示活动的网。
45. 能求出关键路径的AOE网一定是有向无环图46. 只有该关键活动为各关键路径所共有,且减少它尚不能改变关键路径的前提下,才可缩短工期。
48.按着定义,AOE网中关键路径是从“源点”到“汇点”路径长度最长的路径。
自然,关键路径上活动的时间延长多少,整个工程的时间也就随之延长多少。
三.填空题1.有n个顶点,n-1条边的无向连通图2.有向图的极大强连通子图3. 生成树9. 2(n-1) 10. N-1 11. n-1 12. n 13. N-1 14. n15. N16. 3 17. 2(N-1) 18. 度出度 19. 第I列非零元素个数 20.n 2e21.(1)查找顶点的邻接点的过程 (2)O(n+e) (3)O(n+e) (4)访问顶点的顺序不同 (5)队列和栈22. 深度优先 23.宽度优先遍历 24.队列25.因未给出存储结构,答案不唯一。
本题按邻接表存储结构,邻接点按字典序排列。
25题(1) 25题(2) 26.普里姆(prim )算法和克鲁斯卡尔(Kruskal )算法 27.克鲁斯卡尔28.边稠密 边稀疏 29. O(eloge ) 边稀疏 30.O(n 2) O(eloge) 31.(1)(V i ,V j )边上的权值 都大的数 (2)1 负值 (3)为负 边32.(1)n-1 (2)普里姆 (3)最小生成树 33.不存在环 34.递增 负值 35.16036.O(n 2) 37. 50,经过中间顶点④ 38. 75 39.O(n+e )40.(1)活动 (2)活动间的优先关系 (3)事件 (4)活动 边上的权代表活动持续时间41.关键路径 42.(1)某项活动以自己为先决条件 (2)荒谬 (3)死循环 43.(1)零 (2)V k 度减1,若V k 入度己减到零,则V k 顶点入栈 (3)环44.(1)p<>nil (2)visited[v]=true (3)p=g[v].firstarc (4)p=p^.nextarc45.(1)g[0].vexdata=v (2)g[j].firstin (3)g[j].firstin (4)g[i].firstout (5)g[i].firstout (6)p^.vexj (7)g[i].firstout (8)p:=p^.nexti (9)p<>nil (10)p^.vexj=j(11)firstadj(g,v 0) (12)not visited[w] (13)nextadj(g,v 0,w)46.(1)0 (2)j (3)i (4)0 (5)indegree[i]==0 (6)[vex][i] (7)k==1 (8)indegree[i]==047.(1)p^.link:=ch[u ].head (2)ch[u ].head:=p (3)top<>0 (4)j:=top (5)top:=ch[j].count(6)t:=t^.link48.(1)V1 V4 V3 V6 V2 V5(尽管图以邻接表为存储结构,但因没规定邻接点的排列,所以结果是不唯一的。
数据结构第7章图习题
![数据结构第7章图习题](https://img.taocdn.com/s3/m/3b035ef54afe04a1b071de6c.png)
第七章图习题1 单项选择题1、图中有关路径的定义是()。
A、由顶点和相邻顶点序偶构成的边所形成的序列B、由不同顶点所形成的序列C、由不同边所形成的序列D、上述定义都不对2、设无向图的顶点个数为n,则该图最多有()条边。
A、n– 1B、n (n– 1)/2C、n (n+1)/2D、n23、一个n个顶点的连通无向图,其边的个数至少为()。
A、n– 1B、nC、n+1D、n log n4、下面结构中最适于表示稀疏无向图的是()。
A、邻接矩阵B、逆邻接表C、邻接多重表D、十字链表5、下列哪一种图的邻接矩阵是对称矩阵?()A、有向图B、无向图C、AOV网D、AOE网6、当一个有N个顶点的图用邻接矩阵A表示时,顶点V i的度是()。
A、第j列所有元素之和B、第i行所有元素之和C、不确定D、第j列所有元素之和+第i行所有元素之和7、下面哪一方法可以判断出一个有向图是否有环(回路)()。
A、深度优先遍历B、拓扑排序C、求最短路径D、求关键路径8、在图采用邻接表存储时,求最小生成树的Prim 算法的时间复杂度为( )。
A、O(n)B、O(n+e)C、O(n2)D、O(n3)9、求解最短路径的Floyd算法的时间复杂度为( )。
A、O(n)B、O(n+e)C、O(n2)D、O(n3)10、已知有向图G=(V, E),其中V={v1, v2, v3, v4, v5, v6, v7},E={<v1,v2>, <v1,v3>, <v1,v4>, <v2,v5>, <v3,v5>, <v3,v6>, <v4,v6>, <v5,v7>, <v6,v7>}, G的拓扑序列是()。
A、v1,v3,v4,v6,v2,v5,v7B、v1,v3,v2,v6,v4,v5,v7C 、v 1,v ,v 4,v 5,v 2,v 6,v 7D 、v 1,v 2,v 5,v 3,v 4,v 6,v 711、在用邻接表表示图时,拓扑排序算法时间复杂度为( )。
数据结构第7章图习题
![数据结构第7章图习题](https://img.taocdn.com/s3/m/df2bc738aeaad1f347933fcb.png)
第7章图一、单项选择题1.在一个无向图G中,所有顶点的度数之和等于所有边数之和的______倍。
A.l/2 B.1C.2 D.42.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的______倍。
A.l/2 B.1C.2 D.43.一个具有n个顶点的无向图最多包含______条边。
A.n B.n+1C.n-1 D.n(n-1)/24.一个具有n个顶点的无向完全图包含______条边。
A.n(n-l) B.n(n+l)C.n(n-l)/2 D.n(n-l)/25.一个具有n个顶点的有向完全图包含______条边。
A.n(n-1) B.n(n+l)C.n(n-l)/2 D.n(n+l)/26.对于具有n个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为______。
A.nB.n×nC.n-1 D.(n-l)×(n-l)7.无向图的邻接矩阵是一个______。
A.对称矩阵B.零矩阵C.上三角矩阵D.对角矩阵8.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则表头向量的大小为______。
A.n B.eC.2n D.2e9.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则所有顶点邻接表中的结点总数为______。
A.n B.eC.2n D.2e10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。
A.入边B.出边C.入边和出边D.不是入边也不是出边11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。
A.入边B.出边C.入边和出边D.不是人边也不是出边12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是______。
A.完全图B.连通图C.有回路D.一棵树13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的______算法。
A.先序遍历B.中序遍历C.后序遍历 D.按层遍历14.采用邻接表存储的图的广度优先遍历算法类似于二叉树的______算法。
中国农业大学_821数据结构_《数据结构》习题(7)
![中国农业大学_821数据结构_《数据结构》习题(7)](https://img.taocdn.com/s3/m/407d92647e21af45b307a842.png)
第7章图及应用一、问答题1. 在一个图中,所有顶点的度数之和等于所有边数的多少倍?2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的多少倍?3. 对图7-1(a)和(b)所示的有向图,试回答:(1) 每个顶点的入度和出度是多少;(2) 给出它们的邻接矩阵、邻接表、逆邻接表和十字链表表示。
图7-1 有向图4. 对图7-2所示的无向图,试回答:(1) 给出邻接矩阵和邻接表的表示;(2) 根据邻接表,给出从顶点v1作深度优先和广度优先遍历图中顶点的次序。
图7-2 无向图5. 对图7-3(a)和(b)所示的无向图,画出其深度优先生成树和广度优先生成树。
图7-3 无向图6. 对图7-4所示的带权无向图:(1) 按照普里姆算法,从顶点v1出发生成最小生成树,按生成次序写出各条边;(2) 按照克鲁斯卡尔算法,生成最小生成树,按生成次序写出各条边;(3) 画出其最小生成树,并求出它的权值。
图7-4 带权无向图7. 对图7-5所示的带权有向图,用迪杰斯特拉(Dijkstra)算法,试回答:(1) 带权邻接矩阵arcs是什么?(2) 从顶点v1到其他各顶点之间的最短路径是多少?并写出Dist数组的变化过程。
图7-5 带权有向图8. 对图7-6所示的带权有向图,用弗洛伊德(Floyd)算法,试回答:每一对顶点之间的最短路径试多少,并写出计算过程。
图7-6 带权有向图9. 已知有m个顶点的无向图,采用邻接矩阵结构存储,试回答:(1) 图中有多少边?(2) 任意两个顶点i和j之间是否有边相连?(3) 任意一个顶点的度是多少?10. 已知一个无向图,采用邻接表结构存储,试回答:(1) 图中有多少边,(2) 任意两个顶点i和j之间是否有边相连?(3) 任意一个顶点的度是多少?11. 对图7-7所示的AOE网所代表的一项计划,试回答:(1) 每一事件的最早开始时间和最迟开始时间是多少?(2) 该计划最早完成的时间是多少?图7-7 代表一项计划的AOE网12. 对图7-8所示的AOE网所代表的一项工程,试回答:(1) 每项活动的最早开始时间是多少?(2) 每项活动的最迟开始时间是多少?(3) 工程完成的最短时间是多少?(4) 关键活动是什么?图7-8 代表一项工程的AOE网二、填空题1. 在无权图G的邻接矩阵A中,若(i, j)或<i, j>属于图G的边集合,则对应元素A [i, j]等于、否则等于。
算法与数据结构答案第7章图
![算法与数据结构答案第7章图](https://img.taocdn.com/s3/m/89a5dd68f01dc281e53af0b3.png)
第7 章图一、基础知识题7.1设无向图的顶点个数为n,则该图最多有多少条边?【解答】n(n-1)/27.2一个n个顶点的连通无向图,其边的个数至少为多少?【解答】n-17.3要连通具有n个顶点的有向图,至少需要多少条弧?【解答】n7.4 n个顶点的完全有向图含有弧的数目是多少?【解答】n(n-1)7.5一个有n个顶点的无向图,最少有多少个连通分量,最多有多少个连通分量。
【解答】1, n7.6图的BFS生成树的树高要小于等于同图DFS生成树的树高,对吗?【解答】对7.7无向图G=(V,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},写出对该图从顶点a出发进行深度优先遍历可能得到的全部顶点序列。
【解答】abedfc, acfdeb, aebdfc, aedfcb7.8 在图采用邻接表存储时,求最小生成树的 Prim 算法的时间复杂度是多少?【解答】O(n+e)7.9若一个具有n个顶点,e条边的无向图是一个森林,则该森林中必有多少棵树?【解答】n-e7.10 n个顶点的无向图的邻接矩阵至少有多少非零元素?【解答】07.11证明:具有n个顶点和多于n-1条边的无向连通图G一定不是树。
【证明】具有n个顶点n-1条边的无向连通图是自由树,即没有确定根结点的树,每个结点均可当根。
若边数多于n-1条,因一条边要连接两个结点,则必因加上这一条边而使两个结点多了一条通路,即形成回路。
形成回路的连通图不再是树。
7.12证明对有向图顶点适当编号,使其邻接矩阵为下三角形且主对角线为全零的充要条件是该图是无环图。
【证明】该有向图顶点编号的规律是让弧尾顶点的编号大于弧头顶点的编号。
由于不允许从某顶点发出并回到自身顶点的弧,所以邻接矩阵主对角元素均为0。
先证明该命题的充分条件。
由于弧尾顶点的编号均大于弧头顶点的编号,在邻接矩阵中,非零元素(A[i][j]=1)自然是落到下三角矩阵中;命题的必要条件是要使上三角为0,则不允许出现弧头顶点编号大于弧尾顶点编号的弧,否则,就必然存在环路。
数据结构第7章 图习题
![数据结构第7章 图习题](https://img.taocdn.com/s3/m/f27c333583c4bb4cf7ecd1dc.png)
习题7 图7.1 单项选择题1.在一个图中,所有顶点的度数之和等于所有边数的____倍。
A. 1/2B. 1C. 2D. 42.任何一个无向连通图的最小生成树。
A.只有一棵B.有一棵或多棵C.一定有多棵D.可能不存在3.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的____倍。
A. 1/2B. 1C. 2D. 44.一个有n个顶点的无向图最多有____条边。
A. nB. n(n-1)C. n(n-1)/2D. 2n5.具有4个顶点的无向完全图有____条边。
A. 6B. 12C. 16D. 206.具有6个顶点的无向图至少应有____条边才能确保是一个连通图。
A. 5B. 6C. 7D. 87.在一个具有n个顶点的无向图中,要连通全部顶点至少需要____条边。
A. nB. n+1C. n-1D. n/28.对于一个具有n个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小是____。
A. nB. (n-1)2C. n-1D. n29.对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表头向量的大小为_①___;所有邻接表中的接点总数是_②___。
①A. n B. n+1 C. n-1 D. n+e②A. e/2 B. e C.2e D. n+e10.已知一个图如图7.1所示,若从顶点a出发按深度搜索法进行遍历,则可能得到的一种顶点序列为__①__;按宽度搜索法进行遍历,则可能得到的一种顶点序列为__②__。
①A. a,b,e,c,d,f B. e,c,f,e,b,d C. a,e,b,c,f,d D. a,e,d,f,c,b②A. a,b,c,e,d,f B. a,b,c,e,f,d C. a,e,b,c,f,d D. a,c,f,d,e,b图 7.1 一个无向图11.已知一有向图的邻接表存储结构如图7.2所示。
图7.2 一个有向图的邻接表存储结构⑴根据有向图的深度优先遍历算法,从顶点v1出发,所得到的顶点序列是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章图一、单项选择题1.在一个无向图G中,所有顶点的度数之和等于所有边数之和的______倍。
A.l/2 B.1C.2 D.42.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的______倍。
A.l/2 B.1C.2 D.43.一个具有n个顶点的无向图最多包含______条边。
A.n B.n+1C.n-1 D.n(n-1)/24.一个具有n个顶点的无向完全图包含______条边。
A.n(n-l) B.n(n+l)C.n(n-l)/2 D.n(n-l)/25.一个具有n个顶点的有向完全图包含______条边。
A.n(n-1) B.n(n+l)C.n(n-l)/2 D.n(n+l)/26.对于具有n个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为______。
A.n B.n×nC.n-1 D.(n-l) ×(n-l)7.无向图的邻接矩阵是一个______。
A.对称矩阵B.零矩阵C.上三角矩阵D.对角矩阵8.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则表头向量的大小为______。
A.n B.eC.2n D.2e9.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则所有顶点邻接表中的结点总数为______。
A.n B.eC.2n D.2e10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。
A.入边B.出边C.入边和出边D.不是入边也不是出边11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。
A.入边B.出边C.入边和出边D.不是人边也不是出边12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是______。
A.完全图B.连通图C.有回路D.一棵树13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的______算法。
A.先序遍历B.中序遍历C.后序遍历 D.按层遍历14.采用邻接表存储的图的广度优先遍历算法类似于二叉树的______算法。
A.先序遍历B.中序遍历C.后序遍历 D.按层遍历15.如果无向图G必须进行二次广度优先搜索才能访问其所有顶点,则下列说法中不正确的是______。
A.G肯定不是完全图B.G一定不是连通图C.G中一定有回路D.G有二个连通分量16.下列有关图遍历的说法不正确的是______。
A.连通图的深度优先搜索是一个递归过程B.图的广度优先搜索中邻接点的寻找具有“先进先出”的特征C.非连通图不能用深度优先搜索法D.图的遍历要求每一顶点仅被访问一次17.下列说法中不正确的是______。
A.无向图中的极大连通子图称为连通分量B .连通图的广度优先搜索中一般要采用队列来暂存刚访问过的顶点C .图的深度优先搜索中一般要采用栈来暂存刚访问过的顶点D .有向图的遍历不可采用广度优先搜索方法18.一个有向图G 的邻接表存储如下图7-1所示,现按深度优先搜索遍历,从顶点v 1出发,所得到的顶点序列是______。
A .v 1,v 2,v 3,v 4,v 5B .v 1,v 2,v 3,v 5,v 4C .v 1,v 2,v 4,v 5,v 3D .v 1,v 2,v 5,v 3,v 4图7-1 一个有向图的邻接表19.对图7-2所示的无向图,从顶点1开始进行深度优先遍历,可得到顶点访问序列______。
A .1,2,4,3,5,7,6 B .1,2,4,3,5,6,7 C .1,2,4,5,6,3,7 D .1,2,3,4,5,7,6图7-2 一个无向图20.对图7-2所示的无向图,从顶点1开始进行广度优先遍历,可得到顶点访问序列______。
A .1,3,2,4,5,6,7B .1,2,4,3,5,6,7C .1,2,3,4,5,7,6D .2,5,1,4,7,3,6 21.一个无向连通图的生成树是含有该连通图的全部顶点的______。
A.极小连通子图B.极小子图C.极大连通子图D.极大子图22.设无向图G=(V, E) 和G’= (V’, E’),如果G’为G的生成树,则下列说法中不正确的是______。
A.G’为G的连通分量B.G’为G的无环子图C.G’为G的子图D.G’为G的极小连通子图且V’=V 23.任意一个无向连通图______最小生成树。
A.只有一棵B.有一棵或多棵C.一定有多棵D.可能不存在24.对于含有n个顶点的带权连通图,它的最小生成树是指图中任意一个________。
A.由n-1条权值最小的边构成的子图。
B.由n-1条权值之和最小的边构成的子图。
C.由n-1条权值之和最小的边构成的连通子图。
D.由n个顶点构成的边的权值之和最小的生成树。
25.若一个有向图中的顶点不能排成一个拓扑序列,则可断定该有向图_______。
A.是个有根有向图B.是个强连通图C.含有多个入度为0的顶点D.含有顶点数目大于1的强连通分量26.判定一个有向图是否存在回路除了可以利用拓扑排序方法外,还可以用____。
A.求关键路径的方法 B.求最短路径的Dijkstra算法C.广度优先遍历算法 D.深度优先遍历算法27.求最短路径的Dijkstra算法的时间复杂度为______。
A.O(n) B.O(n+e)C.O(n2) D.O(ne)28.求最短路径的Floyd算法的时间复杂度为______。
A.O(n) B.O(ne)C.O(n2) D.O(n3)29.关键路径是事件结点网络中______。
A.从源点到汇点的最长路径B.从源点到汇点的最短路径C.最长的回路D.最短的回路30.下面说法不正确的是______。
A.在AOE网中,减少任一关键活动的权值后,整个工期也就相应减少B.AOE网工程工期为关键活动的权值和C.在关键路径上的活动都是关键活动,而关键活动也必须在关键路径上D.A和B31.下面说法不正确的是______。
A.关键活动不按期完成就会影响整个工程的完成时间B.任何一个关键活动提前完成,将使整个工程提前完成C.所有关键活动都提前完成,则整个工程提前完成D.某些关键活动若提前完成,将使整个工程提前完成二、填空题1.对于具有n个顶点的无向图G最多有_________条边。
2.对于具有n个顶点的强连通有向图G至少有_________条边。
3.对于具有n个顶点的有向图,每个顶点的度最大可达___________。
4.若无向图G的顶点度数最小值大于___________时,G至少有一条回路。
5.对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表头向量的大小为___________,所有邻接表中的结点总数是__________。
6.已知一个有向图的邻接矩阵表示,删除所有从第i个结点出发的弧的方法是____________。
7.对于n个顶点的无向图,采用邻接矩阵表示,求图中边数的方法是__________,判断任意两个顶点i和j是否有边相连的方法是__________,求任意一个顶点的度的方法是___________。
8.对于n个顶点的有向图,采用邻接矩阵表示,求图中边数的方法是_________,判断任意两个顶点i和j是否有边相连的方法是__________,求任意一个顶点的度的方法是__________。
9.无向图的连通分量是指___________。
10.已知图G的邻接表如图7-3所示,从顶点v1出发的深度优先搜索序列为________,从顶点1出发的广度优先搜索序列为_____________。
图7-3 图G的邻接表11.n个顶点连通图的生成树一定有__________条边。
12.一个连通图的___________是一个极小连通子图。
13.Prim算法适用于求_________的网的最小生成树,Kruskal算法适用于求________的网的最小生成树。
14.在AOV图中,顶点表示________,有向边表示________。
15.可以进行拓扑排序的有向图一定是_________。
16.从源点到汇点长度最长的路径称为关键路径,该路径上的活动称为________。
17.Dijkstra算法从源点到其它各顶点的路径长度按________次序依次产生,该算法在边上的权出现_________情况时,不能正确产生最短路径。
18.求从某源点到其余各项点的Dijkstra算法在图的顶点数为10,用邻接矩阵表示图时计算时间约为10ms,则在图的顶点数为40时,计算时间约为_________ms。
三、判断题1.具有n个顶点的无向图至多有n(n-1)条边。
2.有向图中各顶点的入度之和等于各顶点的出度之和。
3.邻接矩阵只储存了边的信息,没有存储顶点的信息。
4.对同一个有向图,只保存出边的邻接表中结点的数目总是和只保存入边的邻接表中结点的数目一样多。
5.如果表示图的邻接矩阵是对称矩阵,则该图一定是无向图。
6.如果表示有向图的邻接矩阵是对称矩阵,则该有向图一定是有向完全图。
7.如果表示某个图的邻接矩阵不是对称矩阵,则该图一定是有向图。
8.连通分量是无向图的极小连通子图。
9.强连通分量是有向图的极大连通子图。
10.对有向图G,如果以任一顶点出发进行一次深度优先或广度优先搜索能访问到每一个顶点,则该图一定是完全图。
11.连通图的广度优先搜索中一般要采用队列来暂时刚访问过的顶点。
12.图的深度优先搜索中一般要采用栈来暂时刚访问过的顶点。
13.有向图的遍历不可采用广度优先搜索方法。
14.连通图的生成树包含了图中所有顶点。
15.设G为具有n个顶点的连通图,如果其中的某个子图有n个顶点,n-1条边,则该子图一定是G的生成树。
16.最小生成树是指边数最小的生成树。
17.从n个顶点的连通图中选取n-1条权值最小的边,即可构成最小生成树。
18.只要无向网中没有权值相同的边,其最小生成树就是惟一的。
19.只要无向网中有权值相同的边,其最小生成树就可能不是惟一的。
20.有环图也能进行拓扑排序。
21.拓扑排序算法仅适用于有向无环图。
22.任何有向无环图的结点都可以排成拓扑排序,而且拓扑序列不惟一。
23.关键路径是由权值最大的边构成的。
24.在AOE网中,减小任一关键活动上的权值后,整个工期也就相应减小。
25.在AOE网中工程工期为关键活动上权值之和。
26.在关键路径的活动都是关键活动,而关键活动未必在关键路径上。
27.关键活动不按期完成就会影响整个工程的完成时间。
28.所有关键活动都提前完成,则整个工程将提前完成。
29.某些关键活动若提前完成,将可能使整个工程提前完成。
30.求单源最短路径的狄克斯特拉算法不适用于有回路的有向网。
四、简答题1.图G是一个非连通无向图,共有28条边,则该图至少有多少个顶点?2.用邻接矩阵表示图时,矩阵元素的个数与顶点个数是否相关?与边的条数是否有关?3.对于稠密图和稀疏图,就存储而言,采用邻接矩阵和邻接表哪个更好些?4.请回答下列关于图的一些问题:(1)有n个顶点的有向强连通图最多有多少条边?最少有多少条边?(2)表示一个有1000个顶点,1000条边的有向图的邻接矩阵有多少个矩阵元素?是否为稀疏矩阵?(3)对于一个有向图,不用拓扑排序,如何判断图是否存在环?5.对n个顶点的无向图和有向图,采用邻接表表示时,如何判别下列有关问题?(1)图中有多少条边?(2)任意两个顶点i和j是否有边相连?(3)任意一个顶点的度是多少?6.给出如图7-4所示的无向图G的邻接矩阵和邻接表两种存储结构。