第三章随机向量及其独立性

合集下载

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计(第3版)(谢永钦)第3章 随机向量

概率论与数理统计
定义3.7 设X和Y是两个随机变量,如果对于任意实数x和y,事
件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随 机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于X和关于Y的边缘分布 函数分别为FX(x),FY(y),则上式等价于
这正是参数为
的 分布的概率密度。
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
概率论与数理统计
X
X
Y
Y
概率论与数理统计
解: (1)串联情况
X
Y
概率论与数理统计
(2)并联情况
X
Y
感谢聆听 批评指导
概率论与数理统计
二维正态分布 若(X.,Y)的概率密度为
概率论与数理统计
4. n维随机变量
设E是一个随机试验,它的样本空间是=(e).设随机变量
是定义在同一样本空间上的n个随机变量,则称向

为n维随机向量或n维随机变量。简记为
设 数
为n维随机变量
是n维随机变量,对于任意实 ,称n元函数
的联合分布函数。
设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取各对可能值的概率为 P{X=xi,Y=yj}=pij, i,j=1,2,…
称上式为(X,Y)的(联合)概率分布或(联合)分布律.离散型随机变量(X,Y) 的联合分布律可用表3-1表示.
概率论与数理统计
(X,Y)的分布律也可用表格形式表示:
记作
或记为
.

第三章-多维随机向量的分布及数字特征

第三章-多维随机向量的分布及数字特征



xi x y j y
一般求概率函数 P ( X , Y ) ( xi , y j ) 采用以下公式: P ( X , Y ) ( xi , y j ) PX xi P Y y j X xi 例3.3 整数 X 等可能的取值1,2,3,4,整数Y 等可能的取值 1~ X,求随机向量( X , Y )的概率分布列。 解: 由题目条件随机向量( X , Y )所有可能取值点为 (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) 显然,当 y j xi时,P ( X , Y ) ( xi , y j ) 0 。 当 y j xi时,分别有 P ( X , Y ) (1,1) P X 1 P Y 1 X 1 1 1 1 4 4 P ( X , Y ) (2,1) P X 2 P Y 1 X 2
P x1 X x2 , y1 Y y2
X
pij
0 1
Y
0
1/4 1/4
1
1/4 1/4
0 x 0或y 0 1 / 4 0 x 1且0 y 1 F ( x, y ) PX x, Y y 1 / 2 0 x 1且y 1 1 / 2 x 1且0 y 1 1 x 1且y 1
表达随机试验结果的变量个数从一个增加到两个形成二 维随机向量,概率分布律的描述有了实质的变化,而二维推 广到多维只有形式上的变化并无实质性的困难,我们主要讨 论二维随机向量。 2. 二维随机向量的分布函数 Def 设( X , Y )为二维随机向量,( x, y )为平面内任意一点,则

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1

概率论第三章 随机向量

概率论第三章 随机向量

第三章随机向量在实际问题中,除了经常用到一个随机变量的情形外,还常用到多个随机变量的情形.例如,观察炮弹在地面弹着点e的位置,需要用它的横坐标X(e)与纵坐标Y(e)来确定,而横坐标和纵坐标是定义在同一个样本空间Ω={e}={所有可能的弹着点}上的两个随机变量.又如,某钢铁厂炼钢时必须考察炼出的钢e的硬度X(e)、含碳量Y(e)和含硫量Z(e)的情况,它们也是定义在同一个Ω={e}上的三个随机变量.因此,在实用上,有时只用一个随机变量是不够的,要考虑多个随机变量及其相互联系.本章以两个随机变量的情形为代表,讲述多个随机变量的一些基本内容.第一节二维随机向量及其分布1.二维随机向量的定义及其分布函数定义3.1设E是一个随机试验,它的样本空间是Ω={e}.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量(2-dimensional random vector)或二维随机变量(2-dimensional random variable),简记为(X,Y).类似地定义n维随机向量或n维随机变量(n>2).设E是一个随机试验,它的样本空间是Ω={e},设随机变量X1(e),X2(e),…,X n(e)是定义在同一个样本空间Ω上的n个随机变量,则称向量(X1(e),X2(e),…,X m(e))为Ω上的n维随机向量或n维随机变量.简记为(X1,X2,…,X n).与一维随机变量的情形类似,对于二维随机向量,也通过分布函数来描述其概率分布规律.考虑到两个随机变量的相互关系,我们需要将(X,Y)作为一个整体来进行研究.定义3.2设(X,Y)是二维随机向量,对任意实数x和y,称二元函数F(x,y)=P{X≤x,Y≤y} (3.1)为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.类似定义n维随机变量(X1,X2,…,X n)的分布函数.设(X1,X2,…,X n)是n维随机变量,对任意实数x1,x2,…,x n,称n元函数F(x1,x2,…,x n)=P{X1≤x1,X2≤x2,…,X n≤x n}为n维随机变量(X1,X2,…,X n)的联合分布函数.我们容易给出分布函数的几何解释.如果把二维随机变量(X,Y)看成是平面上随机点的坐标,那么,分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在直线X=x的左侧和直线Y=y的下方的无穷矩形域内的概率(如图3-1所示).根据以上几何解释借助于图3-2,可以算出随机点(X,Y)落在矩形域{x1<X≤x2,y1<Y ≤y2}内的概率为:P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)-F(x2,y1)-F(x1,y2)+F(x1,y1). (3.2)图3-1 图3-2容易证明,分布函数F (x ,y )具有以下基本性质:(1) F (x ,y )是变量x 和y 的不减函数,即对于任意固定的y ,当x 2>x 1时,F (x 2,y )≥F (x 1,y );对于任意固定的x ,当y 2>y 1时,F (x ,y 2)≥F (x ,y 1).(2) 0≤F (x ,y )≤1,且对于任意固定的y ,F (-∞,y )=0,对于任意固定的x ,F (x ,-∞)=0,F (-∞,-∞)=0,F (+∞,+∞)=1. (3) F (x ,y )关于x 和y 是右连续的,即F (x ,y )=F (x +0,y ),F (x ,y )=F (x ,y +0).(4) 对于任意(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,下述不等式成立:F (x 2,y 2)-F (x 2,y 1)-F (x 1,y 2)+F (x 1,y 1)≥0.与一维随机变量一样,经常讨论的二维随机变量有两种类型:离散型与连续型.2.二维离散型随机变量 定义3.3 若二维随机变量(X ,Y )的所有可能取值是有限对或可列无穷多对,则称(X ,Y )为二维离散型随机变量.设二维离散型随机变量(X ,Y )的一切可能取值为(x i ,y j )i ,j =1,2,…,且(X ,Y )取各对可能值的概率为P {X =x i ,Y =y i }=p ij ,i ,j =1,2,…. (3.3)称式(3.3)为(X ,Y )的(联合)概率分布或(联合)分布律,离散型随机变量(X ,Y )的联合分布律可用表3-1表示.表3-1由概率的定义可知p ij 具有如下性质: (1) 非负性:p ij ≥0(i ,j =1,2,…); (2) 规范性:∑ji ijp,=1.离散型随机变量X 和Y 的联合分布函数为F (x ,y )=P {X ≤x ,Y ≤y }=∑∑≤≤x x yy iji j p, (3.4)其中和式是对一切满足x i ≤x ,y j ≤y 的i ,j 来求和的.例3.1 设二维离散型随机变量(X ,Y )的分布律如表3-2所示:求P {X >1,Y ≥3}及P {X =1}.解 P {X >1,Y ≥3}=P {X =2,Y =3}+P {X =2,Y =4}+P {X =3,Y =3}+P {X =3,Y =4}=0.3;P {X =1}=P {X =1,Y =1}+P {X =1,Y =2}+P {X =1,Y =3}+P {X =1,Y =4}=0.2.例3.2 设随机变量X 在1,2,3,4四个整数中等可能地取值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求(X ,Y )的分布律.解 由乘法公式容易求得(X ,Y )的分布律,易知{X =i ,Y =j }的取值情况是:i =1,2,3,4,j 取不大于i 的正整数,且P {X =i ,Y =j }=P {Y =j |X =i }P {X =i }=i 1·41,i =1,2,3,4,j ≤i . 于是(X ,Y )的分布律为表3-33.二维连续型随机变量定义3.4 设随机变量(X ,Y )的分布函数为F (x ,y ),如果存在一个非负可积函数f (x ,y ),使得对任意实数x ,y ,有F (x ,y )=P {X ≤x ,Y ≤y }=⎰⎰∞-∞-x yv u v u f ,),(d d (3.5)则称(X ,Y )为二维连续型随机变量,称f (x ,y )为(X ,Y )的联合分布密度或概率密度. 按定义,概率密度f (x ,y )具有如下性质: (1) f (x ,y )≥0 (-∞<x ,y <+∞); (2)⎰⎰+∞∞-+∞∞-v u v u f d d ),(=1;(3) 若f (x ,y )在点(x ,y )处连续,则有yx y x F ∂∂∂),(2=f (x ,y );(4) 设G 为xOy 平面上的任一区域,随机点(X ,Y )落在G 内的概率为P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(. (3.6)在几何上,z =f (x ,y )表示空间一曲面,介于它和xOy 平面的空间区域的立体体积等于1,P {(X ,Y )∈G }的值等于以G 为底,以曲面z =f (x ,y )为顶的曲顶柱体体积. 与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布.设G 是平面上的有界区域,其面积为A ,若二维随机变量(X ,Y )具有概率密度f (x ,y )=⎪⎩⎪⎨⎧∈.,0),(,1其他Gy x A则称(X ,Y )在G 上服从均匀分布.类似设G 为空间上的有界区域,其体积为A ,若三维随机变量(X ,Y ,Z )具有概率密度f (x ,y ,z )=⎪⎩⎪⎨⎧∈.,0,),,(,1其他G z y x A ,则称(X ,Y ,Z )在G 上服从均匀分布.设二维随机变量(X ,Y )具有分布密度f (x ,y )=,121])())((2)([)1(212222221212121221σμσσμμρσμρρσσ-+-------y y x x eπ-∞<x <+∞,-∞<y <+∞,其中μ1,μ2,σ1,σ2,ρ均为常数,且σ1>0,σ2>0,-1<ρ<1,则称(X ,Y )为具有参数μ1,μ2,σ1,σ2,ρ的二维正态随机变量,记作:(X ,Y )~N (μ1,μ2,σ12,σ22,ρ).例3.3 设(X ,Y )在圆域x 2+y 2≤4上服从均匀分布,求 (1) (X ,Y )的概率密度; (2) P {0<X <1,0<Y <1}.解 (1) 圆域x 2+y 2≤4的面积A =4π,故(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,4,4122其他y x π(2) G 为不等式0<x <1,0<y <1所确定的区域,所以P {0<X <1,0<Y <1}=11011(,)d d d d .44Gf x y x y x y ππ==⎰⎰⎰⎰例3.4 设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)32(其他y x k y x e(1) 确定常数k ;(2)求(X ,Y )的分布函数;(3)求P {X <Y }.解 (1)由性质有⎰⎰⎰⎰-∞+∞+-+∞∞-+∞∞-=0)32(),(y x k y x y x f y x d d e d d=⎰⎰+∞+∞--032y x ky x d e d e=+∞-+∞-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-03023121y xk e e =k /6=1. 于是,k =6.(2) 由定义有F (x ,y )=⎰⎰∞-∞-y xv u v u f d d ),(⎪⎩⎪⎨⎧>>--==⎰⎰--+-.,0.0,0),1)(1(60032)32(其他y xy x v u x y v u e e d d e (3) P {X <Y }=(,)d d (,)d d Dx yf x y x y f x y x y <=⎰⎰⎰⎰=.52)1(362300)32(=-=⎥⎦⎤⎢⎣⎡⎰⎰⎰+∞--+∞+-y y x y y y y x d e e d d e 0例3.5 设(X ,Y )~N (0,0,σ2,σ2,0),求P {X <Y }. 解 易知f (x ,y )=2222221σπσy x +-e (-∞<x ,y <+∞),所以P {X <Y }=.212222y x yx y x d d e π⎰⎰<+-σσ.引进极坐标x =r cos θ, y =r sin θ,则P {X <Y }=.212122245402=-∞+⎰⎰θσσd d e πππr r r第二节 边缘分布二维随机变量(X ,Y )作为一个整体,它具有分布函数F (x ,y ).而X 和Y 也都是随机变量,它们各自也具有分布函数.将它们分别记为F X (x )和F Y (y ),依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数(Marginal distribution function ).边缘分布函数可以由(X ,Y )的分布函数F (x ,y )来确定,事实上F X (x )=P {X ≤x }=P {X ≤x ,Y <+∞}=F (x ,+∞), (3.7) F Y (y )=P {Y ≤y }=P {X <+∞,Y ≤y }=F (+∞,y ). (3.8)下面分别讨论二维离散型随机变量与连续型随机变量的边缘分布. 1.二维离散型随机变量的边缘分布设(X ,Y )是二维离散型随机变量,其分布律为:P {X =x i ,Y =y j }=p ij ,i ,j =1,2,….于是,有边缘分布函数F X (x )=F (x ,+∞)=∑∑≤x x jiji p.由此可知,X 的分布律为:P {X =x i }=ijj p∑,i =1,2,…, (3.9)称其为(X ,Y )关于X 的边缘分布律.同理,称(X ,Y )关于Y 的边缘分布律为:P {Y =y j }=ijip∑,j =1,2,…. (3.10)例3.6 设袋中有4个白球及5个红球,现从其中随机地抽取两次,每次取一个,定义随机变量X ,Y 如下:X =⎩⎨⎧;1第一次摸出红球第一次摸出白球,,0, Y =⎩⎨⎧.1第二次摸出红球第二次摸出白球,,0,写出下列两种试验的随机变量(X ,Y )的联合分布与边缘分布. (1) 有放回摸球;(2) 无放回摸球.解 (1)采取有放回摸球时,(X ,Y )的联合分布与边缘分布由表3-4给出.表3-4(2) 采取无放回摸球时,(X ,Y )的联合分布与边缘分布由表3-5给出.表3-5在上例的表中,中间部分是(X ,Y )的联合分布律,而边缘部分是X 和Y 的边缘分布律,它们由联合分布经同一行或同一列的和而得到,“边缘”二字即由上表的外貌得来.显然,离散型二维随机变量的边缘分布律也是离散的.另外,例3.6的(1)和(2)中的X 和Y 的边缘分布是相同的,但它们的联合分布却完全不同.由此可见,联合分布不能由边缘分布惟一确定,也就是说,二维随机变量的性质不能由它的两个分量的个别性质来确定.此外,还必须考虑它们之间的联系.这进一步说明了多维随机变量的作用.在什么情况下,二维随机变量的联合分布可由两个随机变量的边缘分布确定,这是第四节的内容.2.二维连续型随机变量的边缘分布设(X ,Y )是二维连续型随机变量,其概率密度为f (x ,y ),由F X (x )=F (x ,+∞)=⎰⎰∞-+∞∞-⎥⎦⎤⎢⎣⎡xx y y x f d d ),(知,X 是一个连续型随机变量,且其概率密度为f X (x )=⎰+∞∞-=.),()(y y x f xx F X d d d (3.11) 同样,Y 也是一个连续型随机变量,其概率密度为f Y (y )=⎰+∞∞-=.),()(x y x f yy F Y d d d (3.12) 分别称f X (x ),f Y (y )为(X ,Y )关于X 和关于Y 的边缘分布密度或边缘概率密度.例3.7 设随机变量X 和Y 具有联合概率密度f (x ,y )=⎩⎨⎧≤≤.,0.,62其他x y x求边缘概率密度f X (x ),f Y (y ).解f X (x )=⎪⎩⎪⎨⎧≤≤-==⎰⎰∞+∞-.,0,10),(66),(22其他x x x x x dy y y x f df Y (y )=⎰⎰∞+∞⎪⎩⎪⎨⎧≤≤-==-d d .,0,10),(66),(其他y yy y y x x y x f 例3.8 求二维正态随机变量的边缘概率密度. 解 f X (x )=⎰+∞∞-,),(y y x f d ,由于,)())((2)(212122112221212222σμρσμρσμσσμμρσμ--⎥⎦⎤⎢⎣⎡---=----x x y y x y 于是f X (x )=y x y x d eeπ-⎰∞+∞⎥⎦⎤⎢⎣⎡--------211222121)1(212)(221121σμρσμρσμρσσ令t =⎪⎪⎭⎫ ⎝⎛----1122211σμρσμρx y , 则有f X (x )=2121221212)(122)(12121σμσμσσ--∞+∞----=⎰x t x t e πd ee π, -∞<x <∞.同理f Y (y )=22222)(221σμσ--y e π,-∞<y <∞.我们看到二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于ρ,亦即对于给定的μ1,μ2,σ1,σ2,不同的ρ对应不同的二维正态分布,它们的边缘分布却都是一样的.这一事实表明,对于连续型随机变量来说,单由关于X 和关于Y 的边缘分布,一般来说也是不能确定X 和Y 的联合分布的.第三节 条件分布由条件概率的定义,我们可以定义多维随机变量的条件分布.下面分别讨论二维离散型和二维连续型随机变量的条件分布.1.二维离散型随机变量的条件分布律定义3.5 设(X ,Y ) 是二维离散型随机变量,对于固定的j ,若P {Y =y j }>0,则称P {X =x i |Y =y j }=P {X =x i ,Y =y j }/P {Y =y j },i =1,2,…,为在Y =y j 条件下随机变量X 的条件分布律(Conditional distribution ). 同样,对于固定的i ,若P {X =x i }>0,则称P {Y =y j |X =x i }=P {X =x i ,Y =y j }/P {X =x i },j =1,2,…,为在X =x i 条件下随机变量Y 的条件分布律.例3.9 已知(X ,Y )的联合分布律如表3-6所示求:(1) 在Y =1的条件下,X 的条件分布律; (2) 在X =2的条件下,Y 的条件分布律.解 (1) 由联合分布律表可知边缘分布律.于是P {X =1|Y =1}=4825/41=12/25; P {X =2|Y =1}=4825/81=6/25;P {X =3|Y =1}=4825/121=4/25; P {X =4|Y =1}=4825/161=3/25. 即,在Y =1的条件下X 的条件分布律为 表3-7(2) 同理可求得在X =2的条件下Y 的条件分布律为表3-8 例3.10 一射手进行射击,击中的概率为p (0<p <1),射击到击中目标两次为止.记X 表示首次击中目标时的射击次数,Y 表示射击的总次数.试求X ,Y 的联合分布律与条件分布律.解 依题意,X =m ,Y =n 表示前m -1次不中,第m 次击中,接着又n -1-m 次不中,第n 次击中.因各次射击是独立的,故X ,Y 的联合分布律为P {X =m ,Y =n }=p 2(1-p )n -2, m =1,2,…,n -1, n =2,3…. 又因P {X =m }={}∑∑∞+=∞+=--===1122)1(,m n m n n p p n Y m X P=∑∞+=--122)1(m n n p p=p (1-p )m -1, m =1,2,…;P {Y =n }=(n -1)p 2(1-p )n -2, n =2,3,…,因此,所求的条件分布律为当n =2,3,…时,P {X =m |Y =n }={}{},11,-====n n Y P n Y m X P m =1,2,…,n -1;当m =1,2,…时,P {Y =n |X =m }={}{}1)1(,---====m n p p n Y P n Y m X P , n =m +1,m +2,…. 2.二维连续型随机变量的条件分布 对于连续型随机变量(X ,Y ),因为P{X =x ,Y =y }=0,所以不能直接由定义3.5来定义条件分布,但是对于任意的ε>0,如果P {y -ε<Y ≤y +ε}>0,则可以考虑P {X ≤x |y -ε<Y ≤y +ε}={}{}.,εεεε+≤<-+≤<-≤y Y y P y y y x X P如果上述条件概率当ε→0+时的极限存在,自然可以将此极限值定义为在Y =y 条件下X 的条件分布.定义3.6 设对于任何固定的正数ε,P {y -ε<Y ≤y +ε}>0,若{}{}{}εεεεεεεε+≤<-+≤<-≤=+≤<-≤++→→y Y y P y Y y x X P y Y y x X P ,lim lim 0存在,则称此极限为在Y =y 的条件下X 的条件分布函数,记作P {X ≤x |Y =y }或F X |Y (x |y ).设二维连续型随机变量(X ,Y )的分布函数为F (x ,y ),分布密度函数为f (x ,y ),且f (x ,y )和边缘分布密度函数f Y (y )连续,f Y (y )>0,则不难验证,在Y =y 的条件下X 的条件分布函数为F X |Y (x |y )=(,)d .()xY f u y u f y -∞⎰若记f X |Y (x |y )为在Y =y 的条件下X 的条件分布密度,则f X |Y (x |y )=f (x ,y )/f Y (y ).类似地,若边缘分布密度函数f X (x )连续,f X (x )>0,则在X =x 的条件下Y 的条件分布函数为F Y |X (y |x )=⎰∞-yX v x f v x f d )(),(. 若记f Y |X (y |x )为在X =x 的条件下Y 的条件分布密度,则f Y |X (y |x )=)(),(x f y x f X .例3.11 设(X ,Y )~N (0,0,1,1,ρ),求f X |Y (x |y )与f Y |X (y |x ). 解 易知f (x ,y )=)1(222222121ρρρ-+---y xy x eπ(-∞<x ,y <+∞),所以f X |Y (x |y )=)1(2222)1(21)(),(ρρρ----=y x Y x f y x f eπ ;f Y |X (y |x )=)1(2222)1(21)(),(ρρρ----=x y X x f y x f eπ .例3.12 设随机变量X ~U (0,1),当观察到X =x (0<x <1)时,Y ~U (x ,1),求Y 的概率密度f Y (y ).解 按题意,X 具有概率密度f X (x )=⎩⎨⎧<<.,010,1其他x类似地,对于任意给定的值x (0<x <1),在X =x 的条件下,Y 的条件概率密度f Y |X (y |x )=⎪⎩⎪⎨⎧<<-.,0,1,11其他y x x因此,X 和Y 的联合概率密度为f (x ,y )=f Y |X (y |x )f X (x )=⎪⎩⎪⎨⎧<<<-.,0,10,11其他y x x于是,得关于Y 的边缘概率密度为f Y (y )=⎰⎰∞+∞-⎪⎩⎪⎨⎧<<--=-=.,0,10),1ln(11),(0其他y y y x x x y x f d d第四节 随机变量的独立性我们在前面已经知道,随机事件的独立性在概率的计算中起着很大的作用.下面我们介绍随机变量的独立性,它在概率论和数理统计的研究中占有十分重要的地位.定义3.7 设X 和Y 为两个随机变量,若对于任意的x 和y 有P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },则称X 和Y 是相互独立(Mutually independent )的.若二维随机变量(X ,Y )的分布函数为F (x ,y ),其边缘分布函数分别为F X (x )和F Y (y ),则上述独立性条件等价于对所有x 和y 有F (x ,y )=F X (x )F Y (y ). (3.13)对于二维离散型随机变量,上述独立性条件等价于对于(X ,Y )的任何可能取的值(x i ,y j )有P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }. (3.14)对于二维连续型随机变量,独立性条件的等价形式是对一切x 和y 有f (x ,y )=f X (x )f Y (y ), (3.15)这里,f (x ,y )为(X ,Y )的概率密度函数,而f X (x )和f Y (y )分别是边缘概率密度函数.如在例3.6中,(1)有放回摸球时,X 与Y 是相互独立的;而(2)无放回摸球时,X 与Y 不是相互独立的.例3.13 设(X ,Y )在圆域x 2+y 2≤1上服从均匀分布,问X 和Y 是否相互独立? 解 (X ,Y )的联合分布密度为f (x ,y )=⎪⎩⎪⎨⎧≤+.,0,1,122其他y x π由此可得f X (x )=11,(,)0,.x f x y dy +∞-∞-≤≤=⎪⎩⎰其他 f Y (y )=⎪⎩⎪⎨⎧≤≤--=⎰∞+∞-.,0,11,12),(2其他y y x y x f πd可见在圆域x 2+y 2≤1上,f (x ,y )≠f X (x )f Y (y ),故X 和Y 不相互独立.例3.14 设X 和Y 分别表示两个元件的寿命(单位:小时),又设X 与Y 相互独立,且它们的概率密度分别为f X (x )=⎩⎨⎧>-.,0,0,其他x x e ; f Y (y )=⎩⎨⎧>-.,0,0,其他y y e求X 和Y 的联合概率密度f (x ,y ).解 由X 和Y 相互独立可知f (x ,y )=f X (x )f Y (y )=⎩⎨⎧>>+-.,0,0,0,)(其他y x y x e第五节两个随机变量的函数的分布下面讨论两个随机变量函数的分布问题,就是已知二维随机变量(X ,Y )的分布律或密度函数,求Z =ϕ(X ,Y )的分布律或密度函数问题.1.二维离散型随机变量函数的分布律设(X ,Y )为二维离散型随机变量,则函数Z =ϕ(X ,Y )仍然是离散型随机变量.从下面两例可知,离散型随机变量函数的分布律是不难获得的.例3.15 设(X ,Y )的分布律为求Z =X +Y 和Z =XY 的分布律.解 先列出下表表3-10从表中看出Z =X +Y 可能取值为-2,0,1,3,4,且P {Z =-2}=P {X +Y =-2}=P {X =-1,Y =-1}=5/20; P {Z =0}=P {X +Y =0}=P {X =-1,Y =1}=2/20;P {Z =1}=P {X +Y =1}=P {X =-1,Y =2}+P {X =2,Y =-1}=6/20+3/20=9/20;P {Z =3}=P {X +Y =3}=P {X =2,Y =1}=3/20; P {Z =4}=P {X +Y =4}=P {X =2,Y =2}=1/20.于是Z =X +Y 的分布律为表3-11同理可得,Z =XY 的分布律为表3-12例3.16 设X ,Y 相互独立,且分别服从参数为λ1与λ2的泊松分布,求证Z =X +Y 服从参数为λ1+λ2的泊松分布.证 Z 的可能取值为0,1,2,…,Z 的分布律为P {Z =k }=P {X +Y =k }={}{}∑=-==ki i k Y P i X P 0=k ki k i k i k i )(!1)!(!21)(01212121λλλλλλλλ+=-+-=---∑e e e ,k =0,1,2,…. 所以Z 服从参数为λ1+λ2的泊松分布.本例说明,若X ,Y 相互独立,且X ~π(λ1),Y ~π(λ2),则X +Y ~π(λ1+λ2).这种性质称为分布的可加性,泊松分布是一个可加性分布.类似地可以证明二项分布也是一个可加性分布,即若X ,Y 相互独立,且X ~B (n 1,p ),Y ~B (n 2,p ),则X +Y ~B (n 1+n 2,p ).2.二维连续型随机变量函数的分布设(X ,Y )为二维连续型随机变量,若其函数Z =ϕ (X ,Y )仍然是连续型随机变量,则存在密度函数f Z (z ).求密度函数f Z (z )的一般方法如下:首先求出Z = ϕ(X ,Y )的分布函数F Z (z )=P {Z ≤z }=P { ϕ(X ,Y )≤z }=P {(X ,Y )∈G }=⎰⎰Gv u v u f d d ),(,其中f (x ,y )是密度函数,G ={(x ,y )|ϕ(x ,y )≤z }.其次是利用分布函数与密度函数的关系,对分布函数求导,就可得到密度函数f Z (z ). 下面讨论两个具体的随机变量函数的分布. (1) Z =X +Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X +Y 的分布函数为F Z (z )=P {Z ≤z }=(,)d d ,x y zf x y x y +≤⎰⎰,这里积分区域G :x +y ≤z 是直线x +y =z 左下方的半平面,化成累次积分得F Z (z )=(,)d d z y f x y x y +∞--∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.固定z 和y ,对积分(,)d z yf x y x --∞⎰作变量变换,令x =u -y ,得(,)d (,)d z yzf x y x f u y y u --∞-∞=-⎰⎰.于是F Z (z )=(,)d d (,)d .zz --f u y y u y f u y y dy u +∞+∞∞∞-∞-∞⎡⎤-=-⎢⎥⎣⎦⎰⎰⎰⎰由概率密度的定义,即得Z 的概率密度为f Z (z )=(,)d f z y y y +∞-∞-⎰. (3.16)由X ,Y 的对称性,f Z (z )又可写成f Z (z )=(,)d f x z x x ∞-∞-⎰. (3.17)这样,我们得到了两个随机变量和的概率密度的一般公式.特别地,当X 和Y 相互独立时,设(X ,Y )关于X ,Y 的边缘概率密度分别为f X (x ),f Y (y ),则有f Z (z )=()()d X Y f z y f y y +∞-∞-⎰; (3.18) f Z (z )=()()d X Y f x f z x x +∞-∞-⎰. (3.19)这两个公式称为卷积(Convolution )公式,记为f X *f Y ,即f X *f Y =()()d ()()d X Y X Y f z y f y y f x f z x x +∞+∞-∞-∞-=-⎰⎰.例3.17 设X 和Y 是两个相互独立的随机变量,它们都服从N (0,1)分布,求Z =X +Y 的概率分布密度.解 由题设知X ,Y 的分布密度分别为f X (x )=2221x -e π, -∞<x <+∞,f Y (y )=2221y -e π, -∞<y <+∞.由卷积公式知f Z (z )=x x x x z f x f zx z x z x Y X d e eπd ee πd ⎰⎰⎰∞+∞------∞+∞--∞+∞-==-2222)2(42)(22121)()(.设t =2zx -,得 f Z (z )=44422222121z z t z t --∞+∞---===⎰eππe 2π1d e e π,即Z 服从N (0,2)分布.一般,设X ,Y 相互独立且X ~N (u 1,σ12),Y ~N (u 2,σ22),由公式(3.19)经过计算知Z=X+Y 仍然服从正态分布,且有Z ~N (u 1+u 2,σ12+σ22).这个结论还能推广到n 个独立正态随机变量之和的情况,即若X i ~N (u i ,σi 2)(i =1,2,…,n ),且它们相互独立,则它们的和Z =X 1+X 2+…+X n 仍然服从正态分布,且有Z ~N (∑∑=21,i ni i u σ).更一般地,可以证明有限个相互独立的正态随机变量的线性组合仍服从正态分布. 例3.18 设X 和Y 是两个相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;其他,0,10,1x f Y (y )=⎩⎨⎧>-.,0,0,其他e y y 求随机变量Z=X+Y 的分布密度.解 X ,Y 相互独立,所以由卷积公式知f Z (z )=.)()(⎰+∞∞--x x z f x f Y X d .由题设可知f X (x )f Y (y )只有当0≤x ≤1,y >0,即当0≤x ≤1且z -x >0时才不等于零.现在所求的积分变量为x ,z 当作参数,当积分变量满足x 的不等式组0≤x ≤1 x <z 时,被积函数f X (x )f Y (z -x )≠0.下面针对参数z 的不同取值范围来计算积分.当z <0时,上述不等式组无解,故f X (x )f Y (z -x )=0.当0≤z ≤1时,不等式组的解为0≤x ≤z .当z >1时,不等式组的解为0≤x ≤1.所以f Z (z )=()01()0e d 1e ,01,e d e (e 1),1,0,.z z x z z x z x z x z ------⎧=-≤≤⎪⎪=->⎨⎪⎪⎩⎰⎰其他, (2) Z =X/Y 的分布设(X ,Y )的概率密度为f (x ,y ),则Z =X /Y 的分布函数为FZ (z )=P {Z ≤z }=P {X /Y ≤z }=/(,)d d x y zf x y x y ≤⎰⎰.令u =y ,v =x /y ,即x =uv ,y =u .这一变换的雅可比(Jacobi )行列式为J =1uv =-u . 于是,代入上式得F Z (z )=(,)d d (,)d d zv zf uv u J u v f uv u u u v +∞-∞-∞≤⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.这就是说,随机变量Z 的密度函数为f Z (z )=⎰+∞∞-.),(u u u zu f d (3.20)特别地,当X 和Y 独立时,有f Z (z )=⎰+∞∞-u u u f zu f Y X d )()(, (3.21)其中f X (x ),f Y (y )分别为(X ,Y )关于X 和关于Y 的边缘概率密度.例3.19 设X 和Y 相互独立,均服从N (0,1)分布,求Z =X /Y 的密度函数f Z (z ). 解 由3.21式有f Z (z )=u u u u u f zu f z u Y X d e πd ⎰⎰∞+∞-∞+∞-+-=2)1(2221)()(=)1(11202)1(22z u u z u +=⎰∞++-πd e π, -∞<z <+∞.例3.20 设X ,Y 分别表示两只不同型号的灯泡的寿命,X ,Y 相互独立,它们的概率密度依次为f (x )=⎩⎨⎧>-;,0,0,其他x x eg (y )=⎩⎨⎧>-.,0,0,22其他y y e求Z =X/Y 的概率密度函数.解 当z >0时,Z 的概率密度为f Z (z )=⎰⎰+∞+∞+---+==02)2(2)2(222z y y y y y z y yz d e d e e ; 当z ≤0时,f Z (z )=0.于是f Z (z )=⎪⎩⎪⎨⎧≤>+.0,0,0,)2(22z z z .(3) M =max(X ,Y )及N =min (X ,Y )的分布设X ,Y 相互独立,且它们分别有分布函数F X (x )与F Y (y ).求X ,Y 的最大值,最小值:M =max(X ,Y ),N =min(X ,Y )的分布函数F M (z ),F N (z ).由于M =max(X ,Y )不大于z 等价于X 和Y 都不大于z ,故P {M ≤z }=P {X ≤z ,Y ≤z },又由于X 和Y 相互独立,得F M (z )=P {M ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }·P {Y ≤z }=F X (z )·F Y (z ). (3.22) 类似地,可得N =min(X ,Y )的分布函数为F N (z)=P {N ≤z }=1-P {N >z }=1-P {X >z ,Y >z }=1-P {X >z }·P {Y >z }=1-(1-F X (z ))(1-F Y (z )). (3.23)以上结果容易推广到n 个相互独立的随机变量的情况.设X 1,X 2,…,X n 是n 个相互独立的随机变量,它们的分布函数分别为F Xi (x i )(i =1,2,…,n ),则M =max(X 1,X 2,…,X n )及N =min(X 1,X 2,…,X n )的分布函数分别为F M (z )=F X 1(z )F X 2(z )…F Xn (z ); (3.24)F N (z )=1-[1-F X 1(z )][1-F X 2(z )]…[1-F Xn (z )]. (3.25)特别,当X 1,X 2,…,X n 是相互独立且有相同分布函数F (x )时,有F M (z )=(F (z ))n , (3.26) F N (z )=1- [1-F (z )]n . (3.27)例3.21 设X ,Y 相互独立,且都服从参数为1的指数分布,求Z =max{X ,Y }的密度函数.解 设X ,Y 的分布函数为F (x ),则F (x )=⎩⎨⎧<≥--.0,0,0,1x x x e由于Z 的分布函数为F Z (z )=P {Z ≤z }=P {X ≤z ,Y ≤z }=P {X ≤z }P {Y ≤z }=[F (z )]2,所以,Z 的密度函数为f Z (z )=F ′Z (z )=2F (z )F ′(z )=⎩⎨⎧<≥---.0,0,0),1(2z z z z e e下面再举一个由两个随机变量的分布函数求两随机变量函数的密度函数的一般例子. 例3.22 设X ,Y 相互独立,且都服从N (0,σ2),求Z =22Y X +的密度函数.解 先求分布函数F Z (z )=P {Z ≤z }=P {22Y X +≤z }.当z ≤0时,F Z (z )=0;当z >0时,F Z (z )=P {22Y X +≤z }=y x y x zy x d d e π222222221σσ+-≤+⎰⎰.图3-3作极坐标变换x =r cos θ,y =r sin θ(0≤r ≤z ,0≤θ<2π)(如图3-3),于是有F Z (z )=2222220022121σσθσz zr r r ---=⎰⎰ed ed ππ.故得所求Z 的密度函数为f Z (z )=F ′Z (z )=⎪⎩⎪⎨⎧≤>-.0,0,0,2222z z z z σσe 此分布称为瑞利分布(Rayleigh ),它很有用.例如,炮弹着点的坐标为(X ,Y ),设横向偏差X ~N (0,σ2),纵向偏差Y ~N (0,σ2),X ,Y 相互独立,那么弹着点到原点的距离D 便服从瑞利分布,瑞利分布还在噪声、海浪等理论中得到应用.小 结对一维随机变量的概念加以扩充,就得多维随机变量,我们着重讨论二维随机变量. 1.二维随机变量(X ,Y )的分布函数:F (x ,y )=P {X ≤x ,Y ≤y },-∞<x <∞,-∞<y <∞.(1) 离散型随机变量(X ,Y )定义分布律:P {X =x i ,Y =y j }=p ij , i ,j =1,2,…,1,=∑ji ijp.(2) 连续型随机变量(X ,Y )定义概率密度f (x ,y )(f (x ,y )≥0):F (x ,y )=⎰⎰∞-∞-y xy x y x f d d ),(,对任意x,y .一般,我们都是利用分布律或概率密度(不是利用分布函数)来描述和研究二维随机变量的.2.二维随机变量的分布律与概率密度的性质与一维的类似.特别,对于二维连续型随机变量,有公式P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中,G 是平面上的某区域,这一公式常用来求随机变量的不等式成立的概率,例如:P {Y ≤X }=P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(.其中G 为半平面y ≤x .3.研究二维随机变量(X ,Y )时,除了讨论上述一维随机变量类似的内容外,还讨论了以下新的内容:边缘分布、条件分布、随机变量的独立性等.(1) 对(X ,Y )而言,由(X ,Y )的分布可以确定关于X 、关于Y 的边缘分布.反之,由X 和Y 的边缘分布一般是不能确定(X ,Y )的分布的.只有当X ,Y 相互独立时,由两边缘分布能确定(X ,Y )分布.(2) 随机变量的独立性是随机事件独立性的扩充.我们也常利用问题的实际意义去判断两个随机变量的独立性.例如,若X ,Y 分别表示两个工厂生产的显像管的寿命,则可以认为X ,Y 是相互独立的.(3) 讨论了Z =X +Y ,Z =X/Y ,M =max(X ,Y ),N =min(X ,Y )的分布的求法.(设(X ,Y )分布已知);这是很有用的.4.本章在进行各种问题的计算时,例如,在求边缘概率密度,求条件概率密度,求Z =X +Y的概率密度或在计算概率P {(X ,Y )∈G }=⎰⎰Gy x y x f d d ),(时,要用到二重积分,或用到二元函数固定其中一个变量对另一个变量的积分.此时千万要搞清楚积分变量的变化范围.题目做错,往往是由于在积分运算时,将有关的积分区间或积分区域搞错了.在做题时,画出有关函数的积分域的图形,对于正确确定积分上下限肯定是有帮助的.另外,所求得的边缘密度、条件密度或Z =X +Y 的密度,往往是分段函数,正确写出分段函数的表达式当然是必须的.重要术语及主题二维随机变量(X ,Y ) (X ,Y )的分布函数 离散型随机变量(X ,Y )的分布律 连续型随机变量(X ,Y )的概率密度 离散型随机变量(X ,Y )的边缘分布律 连续型随机变量(X ,Y )的边缘概率密度条件分布函数 条件分布律条件概率密度 两个随机变量X ,Y 的独立性 Z =X +Y 的概率密度 Z =X /Y 的概率密度 M =max(X ,Y ),N =min(X ,Y )的概率密度习 题 三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤-.,0,0,10),2(8.4其他x y x x y求边缘概率密度.9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度.10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度.11.设随机变量(X ,Y )的概率密度为 f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4只,求其中没有一只寿命小于180的概率.17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i=0,1,2,….18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.21 21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?(1998研考)22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布. (2001研考)24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). (2002研考)25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.(2006研考)26. 设二维随机变量(X ,Y )的概率分布为+Y .求:(1) a ,b ,c 的值;(2) Z 的概率分布;(3) P {X =Z }. (2006研考)。

概率论与数理统计第3章随机向量

概率论与数理统计第3章随机向量

解 (1)根据概率密度函数性质(2)知
f (x, y)dxdy
Ce(3x4 y) dxdy C e3xdx e4y dy C 1
00
0
0
12
从而 C 1
12
(2)由定义3.3.1知
xy
F(x, y)
f (u,v)dudv
(1 e3x )(1 e4y ), x 0, y 0,
3
7
7
1
3.4.1 二维离散型随机向量的边缘分布
(2) 采取无放回摸球时,与(1)的解法相同,(X,Y)的 联合分布与边缘分布由表3.4给出.
表3.4
Y X
0
1 P{Y=yj} p j
01Biblioteka 2277
2
1
7
7
4
3
7
7
P{X=xi} pi
4 7 3 7
1
3.4.2 二维连续型随机向量的边缘分布
设(X,Y)是二维连续型随机向量,其概率密度为f(x,y),

FX (x) F(x,)
x
f (x,y)dydx
知,X是一个连续型随机变量,且其概率密度为
f X (x)
dFX (x) dx
f (x,y)dy.
(3.4.5)
同样,Y也是一个连续型随机变量,其概率密度为
fY ( y)
= dFY(y)
dy
f (x,y)dx.
(3.4.6)
(X ,Y )
~
N (1,
2
,
2 1
,
2 2
,
)
称(X,Y)为二维正态随机向量.
3.4 边缘分布
1 二维离散型随机向量的边缘分布 2 二维连续型随机向量的边缘分布

第三章 随机向量及其独立性

第三章 随机向量及其独立性

联合分布律的性 质 ≥ 0, i, j = 1,2,L (1) p .
ij
(2)∑pi j = 1.
i, j
第三章
随机向量及其独立性
二维离散型随机向量的联合分布律全面 地反映了向量(X,Y)的取值及其概率规律 的取值及其概率规律. 地反映了向量 的取值及其概率规律 而单个随机变量X,Y也具有自己的概率 也具有自己的概率 而单个随机变量 分布. 分布 那么要问:二者之间有什么关系呢 那么要问 二者之间有什么关系呢? 二者之间有什么关系呢
第三章
随机向量及其独立性
实例2 实例
在平面坐标系中, 在平面坐标系中,一门大炮向目标发射 一发炮弹. 一发炮弹 炮弹落点位置由它的横坐标X和纵坐标 炮弹落点位置由它的横坐标 和纵坐标Y 和纵坐标 来确定. 来确定 X,Y 都是随机变量,称(X,Y )是二维随机 都是随机变量, 是二维随机 向量. 向量
第三章
随机向量及其独立性
二 离 型 机 量 设 维 散 随 向 (X,Y)的 有 所 可 取 值 (xi , yj ), i = 1,2,L j = 1,2,L 能 的 为 , .
记 pij = P{X = xi ,Y = yj }, i = 1,2,L j = 1,2,L , .
的联合分布律, 称上式为随机向量 ( X,Y ) 的联合分布律,也 称为概率分布. 称为概率分布 若随机向量 ( X,Y ) 的的概率分布的规律 性不强,或者不能用上式表示时, 性不强,或者不能用上式表示时,还可以用 表格的形式表示如下. 表格的形式表示如下
F(x1, x2,L xn ) = P{X1 ≤ x1, X2 ≤ x2,L Xn ≤ xn} , ,
x1 , x 2 , L , x n 为任意实数

【学习课件】第三章概率论与数理统计

【学习课件】第三章概率论与数理统计

解 确定随机变量的取值:
及F(2,2).
p i j P Xi,Yj
F ( x , y) = P { X x , Y y}
{ P X { X i , Y i } j } { Y { X j } i } { Y j } pij
P Y j|X iP X i
xi x yjy
为 X, Y的 分 布 函 数 , 或 X与 Y的 联 合 分 布 函 数 。
X x ,Y y X x Y y
几 何 意 义 : 分 布 函 数 Fx0,y0表 示 随 机 点 X,Y落 在 区 域
x,y,xx0,yy0
中 的 概 率 。 如 图 阴 影 部 分 所 示 :
y
x0, y0
X=xi ,Y y j
P X=xi
pij , j=1, 2, pi
为给定条件X xi时,Y的条件概率分布律。
3、条件概率分布律
给定条件Yyj时,X的条件概率分布律记作:
X|Yyj
P X=xi |Yyj
pij ,i= 1, 2, pj
X |Y yj
P X |Y y j
x1
p1 j
X , Y ~P X=xi, Y=y j pij , i, j=1, 2,
则称 P X=xi | Y y j
P X=xi ,Y y j P Y=y j
pij , i=1, 2, p j
为给定条件Y y j时,X的条件概率分布律;
P Y=y j | X=xi
P
= limPX x,Y y lim Fx, y
y
y
0, x 0; =x2, 0 x 1;
1, 1 x.
FYy PY yPX ,Y y
= limPX x,Y y limFx, y

大学概率论第三章----随机向量

大学概率论第三章----随机向量

大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。

简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。

(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。

设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。

第3章 第三章随机向量

第3章  第三章随机向量
且对给定的 成立,故X和Y相互独立. 例4 设 (X, Y)的联合分布密度函数为
3 x, 0 x 1, x y x, p ( x, y ) 2 0, 其他 .
问X, Y是否独立? 解
x 3 2 x x d y 3 x , 0 x 1, p X ( x ) p ( x, y ) d y 2 0, 其他 .
例3 设 (X, Y) 的联合分布列如下, 问X, Y是否独立?
X Y
0 1 2
1 2 20 2 20 4 20
0 1 20 1 20 2 20
2 2 20 2 20 4 20

X p
易得X和Y的边缘分布律分别为:
0 1 4 1 1 4 2 2 4 Y p 1 2 5 0 1 5 2 2 5
3.4 条件分布与随机变量的独立性



e
dt
1 e 2
( x ).
pY ( y )
1 e 2
y2 2
( y ).
本节
上页
下页
3.3 连续型随机向量及分布
本章
上页
下页
3.4 条件分布与随机变量的独立性
1.离散型条件分布
2.连续型条件分布
3.随机变量的独立性
本章
上页
下页
3.4 条件分布与随机变量的独立性
( xi , yi )(i, j 1,2,), 且 P( X xi ,Y y j ) pij ,
则我们把它称为(X,Y)的联合分布列.
本节
上页
下页
3.2 离散型随机向量及分布
联合分布列:
X
Y
x1 xi

概率论第3章 随机向量及其分布

概率论第3章  随机向量及其分布

例3 一袋中有五件产品,其中两件次品,三件正品,
从袋中任意依次取出两件,分别采用有放回与不放回 两种方式进行抽样检查,规定随机变量
=10,,
第1次取出次品 第1次取出正品
=10,,
第2次取出次品 第2次取出正品
则(ξ,η)的联合分布律如下(并可求得边缘分布律):
表1 有放回抽样的分布律
设(X, Y)的联合分布律为P{X=xi , Y=yj}= pij (i,j=1,2, …) ,则(X, Y)关于X的边缘分布律有
PX xi PX xi ,Y



P X xi , (Y y j )

j 1



P ( X xi ,Y y j )
FX1,X2,L ,Xn x1, x2,L , xn P : X1() x1, X 2 () x2,L , X n () xn
I P : n Xi () xi

i 1

定理3.1.1 设,F, P为概率空间, 随机向量 X1, X 2,L , X n 的联合分布函数为FX1,X2,L ,Xn ,则
P 0, 1 P 0 P 1 0 2 3 3 5 4 10
P 1, 0 P 1 P 0 1 3 2 3 5 4 10
P 1, 1 P 1 P 1 1 3 2 3 5 4 10
定理3.1.2 设,F, P为概率空间, X1, X 2,L , X n
为其上的随机向量。
(1) 若X1, X 2,L
,
X
都为离散型随机变量,有分布列
n
P Xi aji ,j 1,2,L ,i 1,2,L ,n,

高等数学3.4 随机变量的独立性与条件分布

高等数学3.4 随机变量的独立性与条件分布

2 3/15 3/15
0 1
(2) 由( X , Y ) 的联合分布律知 X 的边缘分布为 X P 0 1/15 1 10/15
由条件分布定义可知
P Y = 0 X = 0 = P Y = 1 X = 0 = P Y = 2 X = 0 =
P X = 0 , Y = 0 P X = 0 P X = 0 , Y = 1 P X = 0 P X = 0 , Y = 2 P X = 0
Y P
1 1/2
2 1/9 +α
3 1/18 +β
若X 与 Y 相互独立, 则有 1 = P X = 1, Y = 2 = P X= 1 9 1 1 = ( + ) 3 9 1 = P X = 1, Y= 3 = P X =1 18 1 1 = ( + ) 3 18
Y P = 2
dt
=
同理
x R
fY ( y ) =
( y 2 )2 exp , 2 2 2 2 2 1
y R
若 = 0 , 则对于任意实数 x 与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 因此 X 与 Y 是相互独立的 . 反之, 若 X 与Y 相互独立, 则对于任意实数 x与 y 都有 f ( x, y ) = f X ( x )fY ( y ) 若取 x = 1 , y = 2 , 则有
1 2
2
2 2 ( x ) ( x ) 2 2 1 1 + 2 2 1 1
y 2 ( x 1 ) x 1 1 = 2 2 1 2 1 2(1 ) 2
2
所以( X , Y )关于X的边缘密度为

概率论与数理统计第3章

概率论与数理统计第3章
22
y
(2)
{Y X } {( X ,Y ) G },
YX
G
O
P{Y X } P{( X ,Y ) G }
x
f ( x , y ) d x d y
G


0
( 2 x y ) d x y 2e d y
1 . 3
2e ( 2 x y ) , f ( x, y) 0,
(2)
p
i j
ij
1
二维离散型随机向量的联合分布函数为
xi x y j y
p
13
例1
一袋中装有2只白球 则( X , Y )的联合概率分布为 和3只黑球,进行有放 回取球 Y 0 1
X 0 1
1 第一次取出白球 X 0 第一次取出黑球 1 第二次取出白球 Y 0 第二次取出黑球
Y 的边缘概率密度.
25
3 x 3 e x0 边缘密度函数为 例6 求随机向量 (X,Y)的边缘分布函数和边缘密度函数, ( x) f X ( x ) FX x0 已知其联合分布函数为 0
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1 , y1 ) F ( x1 , y2 ) 0.
9
三、边缘分布函数
( X , Y )为二维随机向量, 联合分布函数为F ( x, y)
X和Y分别也是随机变量 X , Y的分布函数分别记为 FX ( x)和FY ( y) FX ( x) P{ X x} P{ X x, Y } lim F ( x , y ) F ( x , )
4
二、联合分布函数的性质
设 ( X , Y ) 是二维随机向量, 对于任意实数 x , y , 二元函数 : F ( x , y ) P{( X x ) (Y y )} P { X x , Y y } 称为二维随机向量 ( X , Y ) 的分布函数, 或称为随 机变量X 和 Y 的联合分布函数.

概率论与数理统计讲义第三章 多维随机变量及其分布

概率论与数理统计讲义第三章 多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。

第三章 随机向量

第三章 随机向量

第三章 随机向量在有些随机现象中,每次试验的结果需同时用多个指标来描述,如炮弹的弹着点的平面坐标,飞机的重心在空中的位置需三个坐标来确定,等等。

我们称由n 个随机变量1ξ,2ξ,n ξ, 构成的向量ξ=()n ξξξ,,,21 为n 维随机向量。

为简单起见,本节着重研究二维随机向量。

§1 二维随机向量及其分布函数定义 设()ηξ,是二维随机变量,对任意实数y x ,,称二元函数()()y x P y x F ≤≤=ηξ,,为二维随机变量()ηξ,的联合分布函数。

由定义可以知道,对于任意b a <,d c <,有()d c b a P ≤<≤<ηξ,()()()()c a F c b F d a F d b F ,,,,+--=与一维随机变量的分布函数相类似,二维随机变量()ηξ,的联合分布函数),(y x F 有以下几个性质:(1)()1,0≤≤y x F(2)()y x F ,关于变量x 或y 单调增加; (3)()y x F ,关于变量x 或y 都是右连续的;(4)()0,=∞-y F ,()0,=-∞x F ,()0,=-∞∞-F ,()1,=+∞∞+F ;由于二维随机变量的每一个分量都是一维随机变量,从而它们有各自的分布函数()()x P x F ≤=ξξ和()()y P x F ≤=ηη,称为分量ξ和η的边缘分布函数。

由定义可以得到()()x P x F ≤=ξξ()()y x F x P y ,lim ,+∞→=+∞<≤=ηξ()+∞=,x F ,R x ∈类似,()y F η()y F ,∞+=,R y ∈例 设二维随机变量()ηξ,的联合分布函数为()⎩⎨⎧>>+--=-----其它00,01,y x e e e y x F xy y x y x λ 称这分布为二维指数分布,其中参数0≥λ。

利用上面所给公式,容易求得关于随机变量ξ和η的边缘分布函数分别为:()=x F ξ()+∞,x F ⎩⎨⎧≤>-=-001x x e x ()=y F η()y F ,∞+⎩⎨⎧≤>-=-0001y y e y 它们都是一维指数分布函数,且与参数λ无关。

概率论第三章-随机向量的独立性

概率论第三章-随机向量的独立性

f X ( x) =
1 e 2π σ 1

( x − µ 1 )2
2 2σ 1
fY ( y ) =
2π σ 2
1

( y − µ 2 )2
2 2σ 2
e
X~ N(µ1,σ12 ) , (
Y~ N(µ2,σ22 ) (
二维正态随机向量( 二维正态随机向量(X,Y)的两个分量独立的充要条件是 )
ρ= 0
P {X ≤ a , X ≤ b} = P {X ≤ a}P { X ≤ b}
对所有实数对(a, b) 均成立. 对所有实数对( 均成立. 随机事件{ 有下述关系: 2) 随机事件{ X≤a } 与{︱X︱ ≤a } 有下述关系:
{X
从而
≤ a} = {− a ≤ X ≤ a} ⊂ {X ≤ a}
P{ X ≤ a , X ≤ a } = P{ X ≤ a }
维随机变量X 相互独立, 维随机变量 例如3维随机变量 1 ,X2 ,X3 相互独立,则 X12 , X22 , X32 也相互独立 相互独立. X1 +X2与X3也相互独立 相互独立. sinX1 与X3也相互独立. 相互独立.
X1 +X2与X1 -X2 不一定相互独立. 不一定相互独立
随机变量的独立性本质上 是事件的独立性
FX ( x) FY ( y )
∀ i, j
1) 对于离散型的随机变量,X与Y相互独立的充要条件为:
P{ X = xi , Y = y j } = P{ X = xi } ⋅ P {Y = y j }
2) 对于连续型的随机变量, X与Y相互独立的充要条件为:
f ( x , y ) = f X ( x) fY ( y ) 几乎处处成立。

第三章概率论与数理统计——矿大版

第三章概率论与数理统计——矿大版

解 ⑴ 由性质
A dx
0 1
f ( x, y )dxdy 1 可得
y yx
G 0

x
xy dy 1 A 15
2
0
1 x
上页 下页 返回 结束
机动
目录
所以
15 xy , f ( x, y ) , 0
2
0 y x 1, others.
⑵ 由于 F ( x, y )
则 FX (x) P{ X x} P{ X x , Y } F ( x,)
同理可得 FY ( y) F (, y )
研究问题:已知联合分布,怎样求 X,Y 的边缘分布。
例1: 已知 ( X , Y )的分布函数为
(1 e F ( x, y )
P{ X xi , Y y j } pi j
(i , j 1 , 2 , )

称为二维随机变量 ( X , Y ) 的分布律。 性质:1)
pi j 0
2)
p
i 1 j 1
ij
1
机动
目录
上页
下页
返回
结束
将骰子抛两次,X—第一次出现的点数, 例1、 Y—第二次出现的点数,求(X , Y)的分布律。 解: X 1 2 3 4 5 6 Y 1 2 3 4 5 6
2 2
f ( x, y )dydx
12 dydx
பைடு நூலகம்

0
3

4
( x 9)( y 16)
2
.
例6 已知 ( X , Y ) 的概率密度为
Axy , f ( x, y ) , 0

第3.2.3节随机向量,随机变量的独立性(3)独立性

第3.2.3节随机向量,随机变量的独立性(3)独立性

又 p1( x)
1
( x )2
e 2σ2 , x ;
2 σ
p2
(
y)


1 2b
,
b y b,
0, 其它.

p(x,y)
1
2b

1
e ,
(x )2 2σ2

其中 x , b y b.
当 y b 时, p( x, y) 0.
1
1
1
6
1
2
3
p2 P{Y yj } 1 2
2 1 9

1
9
3
p1 P{X xi }
1
1
18
Hale Waihona Puke 31 3
1 2
18
3
(1)由分布律的性质知 0, 0, 2 1,
3
故与应满足的条件是 : 0, 0 且 1 .
σ1σ2
σ
2 2
0
3. n个随机变量的独立性(集合论观点)
设1,2 ,L ,n为n维随机变量,如果对任意的一维
博雷尔点集A1,A2 ,L ,An ,
P{1 A1 ,2 A2 ,L ,n An } P{1 A1 },L , P{n An }
1,2 ,L
与相互独立 p1( x) p2( y) p( x, y)

1 2πσ1σ2
exp{ 1 2
(x
1 )2
σ12

(
y
2)2
σ22
}

1 2πσ1σ2
1

概率论课件-第三章 随机向量及其分布

概率论课件-第三章 随机向量及其分布

由此,可证明n阶差分
,x + ( x1,+ h,12 x h2 ,, xn + hn ) FX1 , X 2 ,, X n (t1,t2 ,,tn ) ( x1 x2 , n )
n P ω Ω : {xi < X i (ω) xi + hi} 0 i1
x j j 1,2,3,,n-1
即由联合分布可以得到各一维变量(向量的各一维分量) 的边缘分布。
同样,可由随机向量的联合分布得到各二维随机变
量的边缘分布,如
FX1 , X 2 ( x1, x2 ) = P( X1 x1, X 2 x2 ) = P( X1 x1, X 2 x2 , X 3 < +,, X n < +) = FX1 , X 2 ,, X n ( x1, x2 ,+,,+) = lim FX1 , X 2 ,, X n ( x1, x2 ,, xn )
x j j 2,3,,n
FX n ( xn ) = P( X n xn ) = P( X 1 +, X 2 < +, X n-1 < +, X n < xn ) = FX1 , X 2 ,, X n (+,+,,+, xn ) = lim FX1 , X 2 ,, X n ( x1, x2 ,, xn )
说明随机点落在(阴影)矩形区域里的概率非负。
关于二维随机变(X,Y)的联合
分布函数F(x,y)的说明:
如果将二维随机变量 (X,Y)看成是平面上随机点的 坐 标,则分 布函数 F(x,y) 在 (x,y)处的函数值,就是随机
点 (X,Y) 落 在 右 图 所 示 的 以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

yj}
j 1,2,
为 在X xi条 件 下Y的 条 件 分 布 律.
例2: 一射手进行射击,每次射击击中目标的概率均为 p(0<p<1)且假设各次击中目标与否相互独立,射击进行 到击中目标两次为止.设X表示到第一次击中目标时的射 击次数,以Y表示总共进行的射击次数.试求(X,Y)的联合 分布和条件分布.
同理
P{ X = 1}= p1 j =1/4
j1
P{ X = 2}= p2 j =1/4
j 1
P{
X
=
3}=
p3 j
=1/4
j 1
P{
X
=
4}=
p4 j
=1/4
j 1
P{Y=1}=25/48, P{Y=2}=13/48
P{Y=3}=7/48 , P{Y=4}=3/48
可以用表格来说明联合分布律与边缘分布律的关系
表中,每一列的和表示Y的边缘分布,每一行的和表示X的
边缘分布.右下角的1是所有pij的和,也是X,Y各自边缘分
布的和.
例6:设二维随机变量(X,Y)的联合分布为
又P{Y=2}=1/3 求 (1)a,b
(2)求边缘分布律

(1)由
33
pij =1
可知 a+b=1/6
i1 j1
又P{Y=2}=1/6+a+1/12=1/3
例1: 设二维随机变量(X,Y)的分布律如表所示。
问:X与Y相互独立吗? 解: X与Y的边缘分布律分别为
逐一验证可知, pij= pi. ·p.j
(i=1,2,3,j=1,2,3) 从而X与Y相互独立。
2、条件分布
定 义6 设( X ,Y )是 二 维 离 散 型 随 机 变 量, 对 于 固 定 的j,
(4)对于任意( x1, y1 )和( x2 , y2 ),x1 x2 , y1 y2 ,有 F( x2 , y2 ) F( x2 , y1 ) F( x1, y2 ) F( x1, y1 ) 0
定义中的2个随机变量可以推广到n维情形上。
第二节 二维离散型随机变量及其概率分布
1、联合概率分布律 定义3:若二维随机向量(X,Y)的所有可能取值是有 限对或无限可列多对,则称(X,Y) 为二维离散型随机 向量。 设(X,Y)的一切可能值为(xi,yj),i,j=1,2,… ,且(X,Y)取 各对可能值的概率为
12 84
24 84
6 84
42 84
0.5
设离散型随机变量( X ,Y )的分布律为 P{ X xi ,Y y j } pij , i, j 1,2,3
则F ( x, y) P{ X x,Y y} Pij xi x yjy
例2:随机变量X在1,2,3,4四个整数中等可能取值,另一个 随机变量Y随机地在1~X中等可能取值,试求(X,Y)的 联合分布函数。
P{X=xi,Y=yj}=pij, i,j=1,2,…
(1) 非负性: pij≥0,i,j=1,2…;
(2)规范性: pij 1
i, j
(X,Y)的分布律也可用表格形式表示
离 散型 随 机变 量X ,Y的 联合 分 布函 数 为
F ( x, y) P{ X x,Y Y } pij xi x yi y
边 缘 分 布 律,关 于X的 边 缘 分 布 律 为
pi P{ X xi } pij , i 1,2.
j
同 理,( X ,Y )关 于Y的 边 缘 分 布 律 为
p j P{Y y j } pij , j 1,2.
i
例5: (续例二)求(X,Y)的边缘分布律
解: X的所有可能取值为1,2,3,4
18 84
12 84
24 84
58 84
0.6905
P{ X Y 2}
P{ X 0,Y 2} P{ X 1,Y 1} P{ X 2,Y 0}
12 84
24 84
4 84
40 84
0.4762
P{ X 1}
P{X 1,Y 0} P{X 1,Y 1} P{ X 1,Y 2}
解:X的可能值为0,1,2,Y的可能为0,1,2,3.(X,Y)的所有可 能值为(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(2,0),(2,1).
由古典概率计算可得
P{ X
0,Y
0}
C
3 4
/
C
3 9
4 84
P{ X
0,Y
1}
C 31C 42
/
C
3 9
解: 由乘法公式及条件概率公式可得:
P{X=i,Y=j}的取值情况是:
i=1,2,3,4。 j取不大于i的正整数,且
P{X=i,Y=j}=P{Y=j|
X
1
i
ji
}
P{X=i}=
1 i

1 4
,i=1~4
于是(X,Y)的联合分布律为
例3:(二维两点分布)设X,Y的联合分布由下表给出(其中 0<p<1),则称(X,Y)服从二维两点分布
二维离散型随机变量的边缘分布律
设( X ,Y )为二维离散型随机向量,其分布律为 P{ X xi ,Y y j } pij , i, j 1,2,
于是有边缘分布函数
FX ( x) F ( x, )
pij
xi x j
X和Y自 身 分 布 律 分 别 称 之 为( X ,Y )关 于X和 关 于Y的
随机变量的独立性。
第三节 随机变量的独立性
定义6: 设X和Y是两个随机变量,如果对于任意实 数x和y,事件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随机变量X与Y相互独立。
设F(x,y)为二维随机变量(x,y)的分布函数,(x,y)关于X 和关于Y的边缘分布函数分别为FX(x),FY(y),则上式 等价于
3. (X,Y)的分布函数满足如下基本性质: (1)F(x,y)分别对x和y单调不减.
(2) 0F(x,y)1 且对于任意固定的y, F(, y) 0
对于任意固定的x, F( x,) 0
F(,) 0,F(,) 1
(3)F ( x, y)关于x, y是右连续的,即 F ( x, y) F ( x 0, y),F ( x, y) F ( x, y 0)
FX x P{X x} P{X x,Y }
lim P{ X x,,Y y} lim F ( x, y) F ( x,)
y
y
FY ( y) P{Y y} P{ X ,Y y}
lim P{ X x,Y y} lim F ( x, y) F ( , y)
x
x
求得两个边缘分布函数.
故F(x,y)不满足性质4,从而它不是二维随机变量的分布 函数
例5:若二元函数为
0, x y 0 F( x, y) 1, x y 0
F(x,y)是否为某二维随机变量的分布函数?
解 容易验证F(x,y)满足二维分布函数的性质1-3,我们 可以验证它不满足性质4:
取(x1,y1)=(-1,-1), (x2,y2)=(2,2)则 F(x2,y2) - F (x1,y2) - F (x2,y1) + F (x1,y1) =1-1-1+0=-1<0.
0}
C 22C 41
/
C
3 9
4 84
P{ X
2,Y
1}
C
22C
1 3
/
C
3 9
3 84
于是(X,Y)的分布可用表示
由(X,Y)的分布律,所求概率为
P{ X 1,Y 2} P{ X 0,Y 0} P{X 0,Y 1}
P{ X 1,Y 0} P{ X 1,Y 1}
4 84
第三章
多维随机变量及其分布1ຫໍສະໝຸດ 第一节 二维随机变量与分布函数
1、二维随机变量 定义1:设E是一个随机试验,它的样本空间是={e}. 设X(e)与Y(e)是定义在同一样本空间上的两个随机 变量,则称(X(e),Y(e))为上的二维随机向量或二维随 机变量.简记为(X,Y). 2、分布函数 定义2:设(X,Y)是二维随机变量,对于任意实数x,y,称 二元函数 F(x,y)=P{Xx,Yy} 为二维随机向量(X,Y)的 分布函数或联合分布函数。
故F(x,y)不满足性质4,从而它不是二维随机变量的分布 函数
二 边缘分布
(X,Y)作为一个整体,它具有分布函数F(x,y),而 X和Y也是随机变量,它们各自也具有分布函数,分别 记为FX(x)和FY(y),分别称为二维随机向量(X,Y)关于X 和Y的边缘分布函数。
当已知(X,Y)的联合分布函数F(x,y)时,可通过
18 84
P{ X
0,Y
2}
C 32C 41
/
C
3 9
12 84
P{ X
0,Y
3}
C
3 3
/
C
3 9
1 84
P{ X
1,Y
0}
C
21C
2 4
/
C
3 9
12 84
P{ X
1,Y
1}
C
21C
31C
1 4
/
C
3 9
24 84
P{ X
1,Y
2}
C
21C
2 3
/
C
3 9
6 84
P{ X
2,Y
例4:若二元函数为
0, x y 0 F( x, y) 1, x y 0
F(x,y)是否为某二维随机变量的分布函数?
解 容易验证F(x,y)满足二维分布函数的性质1-2,它不 是右连续函数,也不满足性质4:
相关文档
最新文档