压电陶瓷材料的主要性能及参数精选文档
压电陶瓷剖析(36页)
(5)超声加工
<.把微细磨料随超声加工工具一起以一定静压力加 在工件 上,就能加工出与工具相同的形状。超声 工具使工件表 面的磨料以相当大的冲击力连续冲 击,破坏超声辐射部 位,使材料破碎而达到去除 材料的目的。
其 它 非线性元件,压电继电器等
压电陶0 瓷应用(一)
电蜂鸣SS
•超声波振子
压电陶瓷应用(二)
5压黾超声换能器的面用写发展
5,1引言
< 超声换能器是实现声能与电能相互转换的部件,
<• 最早的超声换能器是P.郎之万(P. Langevin)在1917年 为水下 探测设计的夹心式换能器。这个换能器是以石 英晶体为压电材 料,用两块钢板在两侧夹紧而成的。 <• 1933年以后出现的叠片 型磁致伸缩换能器,强度高、
与电磁变压器相比,这具有体积小,质量轻,功率密 度高, 效率高,耐击穿,耐髙温,不怕燃烧,无电磁 干扰和电磁噪 声,且结构简单、便于制作、易批量生 产,在某些领域成为 电磁变压器的理想替代元件等优 点。此类变压器用于开关转 换器、笔记本电脑、氖灯 驱动器等。
(2)超声马达
<•超声马达是把定子作为换能器,利用压电晶体的 逆压电 效应让马达定子处于超声频率的振动,然 后靠定子和转 子间的摩擦力来传递能量,带动转 子转动。
产生的电荷与施加的应力成比例。 ♦压电陶瓷的压电常数有压电应变常数、压电电压常数、 压电应
力常数以及压电劲度常数等。 ____
♦反映压电陶瓷的弹性变量(即应力、应变)和电学变量 (即电场、 电位移)之间的关系的方程式,称为压电方程。
压电陶瓷(PDF)
平移台系列纳米定位偏转台系列纳米定位动电源系列压电陶瓷驱微仪系列高精度测其他定制及 产品代理进口5低压驱动超长的使用寿命刚度大亚毫秒的响应速度亚纳米的分辨率光学成像激光调准精密机械聚焦显微微定位特点应用XP 6×6/18XP 4.5×4.5/18 XHP 150/14-10/12XP 6×6/18电压与位移曲线XP 6×6/18蠕变曲线D31:-290picometer/VoltD33:+635picometer/Volt相对介电常数Rel.dielectric constant ε:5400居里温度Curie temperature ℃:150℃密度Density :8g/cm 3弹性柔顺常数S 33 :18×10-12m 2/N 使用温度:-50~80℃居里温度:150℃空载满幅值最大使用频率:123HzXP 6×6/18XP 4.5×4.5/18XHP 150/14-10/12外形尺寸[mm]±0.16×6×184.5×4.5×18OD/ID :14/10 标称位移 [μm]±10%181812最大位移[μm]±10%242416静电容量[μF]±20%1.80.82.7刚度 [N/μm]±10%7030270响应频率 [kHz]455065标称推力[N]1400600 4000 型号其他使用参数:压电陶瓷材料特性:低压叠堆压电陶瓷-推荐型号术参数www.xm tkj.c o m *************X M T 芯明天科技024681012141618200102030405060708090100110120130140150S 输出位移(u m )驱动电压V (v )压电陶瓷XP 6×6/18驱动电压与输出位移测试曲线图6×6×203×4×9XP 6×6/20XP 3×4/92013 1.40.17492569100100020018 9标称位移是在0~150V 驱动电压下的位移,最大驱动电压可在-30V~150V ;建议在0~150V 驱动电压下使用。
压电陶瓷性能参数解析
方程名称
压电方程通式
第一类压电方程
第二类压电方程
第三类压电方程
第四类压电方程
注:① i,j=1,2,3,4,5,6; m,n=1,2,3.
②βTnm为自由介质隔离率(m/F),βSnm为夹持介质隔离率(m/F)。
(6)机电耦合系数
机电耦合系数K是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为
由于压电元器件的机械能与它的形状和振动模式有关,因此,不同形状和不同振动模式对应的机电耦合系数也不相同。压电陶瓷的机电耦合系数列于表1-2中,它们的计算方式可从压电方程中导出。
上面两式弹性顺度常数S11和S12之比,称为迫松比,即
(1-9)
它表示横向相对收缩与纵向相对伸长之比。
同理,可以得到S13,S21,S22,其中,S22=S11,S12=S21。极化过的压电陶瓷,其独立的弹性顺度常数只有5个,即S11,S12,S13,S33和S44。
独立的弹性劲度常数也只有5个,即C11,C12,C13,C33和C44.
(1-4)
式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,IR大时,tanδ也大;IR小时tanδ也小。通常用tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。
处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。
压电陶瓷参数整理
压电材料的主要性能参数(1) 介电常数ε介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。
不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。
例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。
介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为ε=C ·t/A式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。
由于所需的检测频率较低,所以ε应大一些。
因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。
(2)压电应变常数压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U= 式中 U ——施加在压电晶片两面的压电;△t ——晶片在厚度方向的变形。
压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。
其值大,发射性能好,发射灵敏度越高。
(3)压电电压常数33g压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小:31(m/N)P U g V P=• 式中 P ——施加在压电晶片两面的应力;P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。
压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。
其值大,接收性能好,接收灵敏度高。
(4)机械品质因数机械品质因数也是衡量压电陶瓷的一个重要参数。
它表示在振动转换时材料内部能量消耗的程度。
产生损耗的原因在于内摩擦。
m E E θ=储损m θ值对分辨力有较大的影响。
机械品质因数越大,能量的损耗越小,晶片持续振动时间长,脉冲宽度大,分辨率低。
(5)频率常数由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 022LL C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。
pzt-4压电陶瓷电学参数
pzt-4压电陶瓷电学参数
PZT-4是一种常见的压电陶瓷材料,具有优良的压电性能和电
学参数。
关于PZT-4的电学参数,我们可以从多个方面来进行全面
的回答。
首先,PZT-4的介电常数通常在1000至1500之间,这意味着
它在外加电场下的极化能力非常强。
这也使得PZT-4成为一种优秀
的压电材料,可用于传感器、换能器和压电马达等应用。
其次,PZT-4的压电常数通常在600至750之间,这表明它对
于机械应力的响应非常敏感。
这使得PZT-4在压电传感器和执行器
方面有着广泛的应用,例如压力传感器、声波发生器等。
此外,PZT-4的电机械耦合系数通常在0.6至0.7之间,这意
味着它能够高效地将电能转换为机械能,或者将机械能转换为电能,因此在压电换能器和压电马达中有着重要的应用。
另外,PZT-4的电阻率通常在10^9至10^11Ω·cm之间,这使
得它在一些特定的电学应用中能够表现出良好的绝缘性能。
总的来说,PZT-4作为一种压电陶瓷材料,具有较高的介电常数、压电常数和电机械耦合系数,以及较高的电阻率,这些优秀的电学参数使得它在压电传感器、换能器、压电马达等领域有着广泛的应用前景。
希望这些信息能够对你有所帮助。
压电陶瓷片主要参数
压电陶瓷片主要参数
压电陶瓷片是一种用来发声的新型智能元件,它的出现便开创了现代声学技术
的一个崭新篇章。
该片由导电玻璃/电子基材以及表面强度层组成,其中导电玻璃/电子基材主要由高温烧结的压电陶瓷和可抗热韧性的电子基材构成,当外加电场即
使产生压陷,超声波可由此系统发出。
压电陶瓷片的主要参数包括尺寸、厚度、电容量、超声反射系数、频率和电压。
其中,片子尺寸对其工作有非常大的影响,尺寸越大,其反应的尺度就越大,电容量就越大;厚度过厚也会降低其超声能力,最佳厚度为0.381mm;超声反射系数通
常在20-40,这取决于其介质和常数;超声频率可以从1-20kHz,该参数受尺寸、
厚度和介质参数影响;最后,电压越大,超声能力越强。
因此,压电陶瓷片的主要参数的设计制造的精度和实用性都是极为关键的,确
保压电陶瓷片的可靠性和质量。
正确地掌握这些参数,可以有效地协助工程师们科学地选定、定制和使用各种压电陶瓷片。
完整版压电陶瓷片的原理及特性
完整版压电陶瓷片的原理及特性压电陶瓷是一种可压电材料,当施加外力时会产生电荷累积,从而产生电压。
压电陶瓷的原理是基于压电效应,即当施加外力时,材料内部的正负电荷会重新排列,形成电荷不平衡。
这种电荷不平衡会导致材料产生电位差,即产生电压。
压电陶瓷片由于具有良好的压电性能,广泛应用于传感器、超声换能器、无线电设备、换能器、纳米位移器、振动器等领域。
它的特点和特性如下:1.高压电系数:压电陶瓷片具有较高的压电系数,能够将机械能转化为电能,并且具有较高的能量转化效率。
这使得压电陶瓷片在能量采集、传感和控制领域应用广泛。
2.宽温度范围:压电陶瓷片的工作温度范围通常较宽,可以在极端的高温或低温环境下正常工作。
这使得它在航天、航空以及极地等恶劣环境中的应用具有独特的优势。
3.频率响应范围广:压电陶瓷片能够在较宽的频率范围内工作,通常从几千赫兹到几百兆赫兹。
因此,在超声波成像、荧光光谱仪和无线电通信等领域中具有重要的应用。
4.稳定性好:压电陶瓷片的性能稳定,具有优异的机械和电学性能。
它不易受到外界环境的影响,具有较长的使用寿命。
5.易于加工与制造:压电陶瓷片可以通过多种加工方法加工成不同形状和尺寸,如切割、打孔、磨削等。
这使得它在不同应用场合下可以满足不同形状和尺寸的需求。
6.低功率消耗:压电陶瓷片的功率消耗较低,适合用于需要低功耗的场合,如无线传感、医疗设备等。
7.较高的精度和稳定性:由于压电陶瓷片的工作原理和特性,它可以实现较高的精度和稳定性。
可以采集到更加准确和稳定的电信号或实现更加精确的控制。
总而言之,压电陶瓷片具有高压电系数、宽温度范围、频率响应范围广、稳定性好、易于加工与制造、低功率消耗和较高的精度和稳定性等特点和特性。
这使得它在诸多领域中有着广泛的应用前景。
压电陶瓷性能参数解析
压电陶瓷性能参数解析T=cS(1-6)式中,S为弹性顺度常数,单位为m2/N;C为弹性劲度常数,单位为N/m2。
但是,任何材料都是三维的,即当施加应⼒于长度⽅向时,不仅在长度⽅向产⽣应变,宽度与厚度⽅向上也产⽣应变。
设有如图1-2所⽰的薄长⽚,其长度沿1⽅向,宽度沿2⽅向。
沿1⽅向施加应⼒T1,使薄⽚在1⽅向产⽣应变S1,⽽在⽅向2上产⽣应变S2,由(1-5)式不难得出S1=S11T1(1-7)S2=S12T1(1-8)上⾯两式弹性顺度常数S11和S12之⽐,称为迫松⽐,即(1-9)它表⽰横向相对收缩与纵向相对伸长之⽐。
同理,可以得到S13,S21,S22,其中,S22=S11,S12。
极化过的压电瓷,其独⽴的弹性顺度常数只有5个,即S11,S12,S13,S33和S44。
独⽴的弹性劲度常数也只有5个,即C11,C12,C13,C33和C44.由于压电瓷存在压电效应,因此压电瓷样品在不同的电学条件下具有不同的弹性顺度常数。
在外电路的电阻很⼩相当于短路,或电场强度E=0的条件下测得的称为短路弹性顺度常数,记作S E。
在外电路的电阻很⼤相当于开路,或电位移D=0的条件下测得的称为开路弹性顺度常数,记作S D。
由于压电瓷为各向异相性体,因此共有下列10个弹性顺度常数:S E11,S E12,S E13,S E33,S E44,S D12,S D13,S D33,S D44。
同理,弹性劲度常数也有10个:C E11,C E12,C E13,C E33,C E44,C D11,C D12,C D13,C D33,C D44。
(4)机械品质因数。
电子陶瓷7.2压电陶瓷的主要参数
电能转变所得的机械能 机械能转变所得电能 k2 输入的电能 输入的机械能 或
k2
K是压电材料进行机械能-电能转换的能力反映。它与 材料的压电系数、ε和弹性常数等有关,是一个比较综合的 参数。 机电耦合系数反映了机械能和电能之间的转换效率, 由于转换不可能完全,总有一部分能量以热能、声波等形 式损失或向周围介质传播,因而K总是小于1的。
电子材料
国家级精品课程
§7-2 压电陶瓷的主要参数
压电陶瓷作为介电材料,可用介电系数ε,介电损耗tgδ,
绝缘电阻率ρ和抗电强度Eb等表征。
作为压电材料,还必须补充一些参数: 1、压电系数d、g 2、机电耦合系数k 3、机械品质因素Q
4、频率系数N
‹#›/228
§7-2 压电陶瓷的主要参数
1、压电系数d 单位机械应力T所产生的极化强度P
‹#›/228
§7-2 压电陶瓷的主要参数
4、频率系数N 压电振子的谐振频率fr与振动方向上线度的乘积。
N frL
L
只与材料性质相关,而与尺寸因素无关。
‹#›/228
d P / T (C/N) 正压电效应
或:单位电场强度V/x所产生的应变△x/x 逆压电效应 d (x / x) /(V / x) x / V (m/V) 常用的为横向压电系数 d31 和纵向压电系数 d33 (脚 标第一位数字表示压电陶瓷的极化方向;第二位数字表
示机械振动方向)。四方钙钛矿结构有五个非零的压电
‹#›/228
§7-2 压电陶瓷的种材料由于振动方式不同,k值也不同。 常用的有横向机电耦合系数k31、纵向机电耦合系数k33 、 以及沿圆片的半径方向振动的平面机电耦合系数kp(或 称径向机电耦合系数kr)。
压电陶瓷材料测试需要知道的13个基本参数
压电陶瓷材料测试需要知道的13个基本参数压电陶瓷材料是一种具有压电效应的材料,能够在外加电场或机械应力的作用下产生电荷分离效应。
因此,测试压电陶瓷材料的基本参数是非常重要的,这些参数可以用来评估材料的性能和用途。
以下是测试压电陶瓷材料常用的13个基本参数。
1.电阻:电阻是指材料对电流的阻碍程度。
测试电阻可以了解材料的导电性能和内部结构。
2.电容:电容是指材料对储存电荷的能力。
测试材料的电容可以了解其在电场下的响应能力。
3.线性压电系数:线性压电系数是指材料在外加应力下产生的电荷与应力之间的比例关系。
测试线性压电系数可以了解材料的压电性能。
4.介电常数:介电常数是指材料在电场下的电容性能。
测试介电常数可以了解材料的储存和释放电荷的能力。
5.机械弹性模量:机械弹性模量是指材料在单位应力下的应变程度。
测试机械弹性模量可以了解材料在外力下的变形性能。
6.导电性:导电性是指材料对电流的传输性能。
测试导电性可以评估材料的导电能力。
7.相对介电常数:相对介电常数是指材料在电场中的电容性能相对于真空的比例关系。
测试相对介电常数可以了解材料对电场的响应能力。
8.环境温度:环境温度是指材料所处环境的温度。
测试环境温度可以了解材料在不同温度下的性能。
9.硬度:硬度是指材料对外力的抵抗能力。
测试硬度可以评估材料的耐磨性和耐压性能。
10.热膨胀系数:热膨胀系数是指材料随温度变化时的尺寸变化率。
测试热膨胀系数可以了解材料在温度变化时的稳定性。
11.耐压强度:耐压强度是指材料在单位面积下能够承受的最大压力。
测试耐压强度可以评估材料的抗压性能。
12.自由震荡频率:自由震荡频率是指材料在无外界激励下自然振动的频率。
测试自由震荡频率可以了解材料的振动特性。
13.力学损耗因子:力学损耗因子是指材料在振动或应力下的能量损耗程度。
测试力学损耗因子可以评估材料的能量耗散性能。
以上是测试压电陶瓷材料常用的13个基本参数。
通过测试这些参数,可以了解材料的电性能、机械性能和热性能等方面,为材料的研究和应用提供重要参考。
第二讲:压电陶瓷参数及多层压电陶瓷性能及注意事项
Qe
1 tan
测量试样自由电容 CT
测试的精度需要考虑到 • 设备自身的测试精度,温度的精度±2度,电容的测试精度在±10%等等 • 样品的规格要求12mm×6mm×1mm;或者直径l5~20 mm,厚度0.7~1 mm • 工装要求:总分布电容要小于试样室温自由电容的5%,线尽可能短 • 测试过程要求:温度点不少于10个,升(降)温速度不大于3℃/min.在每个 选定的温度点保持一定时间,一般为1h.
2 =0.27 时, K p 2.51
f fr
f fr f
2 =0.30时, K p 2.53
kp
2 1
d 31 s
E T 11 33
2 k31 1
k p k 31
2 =0.36时, K p 2.55 f r
平面机电耦合系数Kp
f s0
f s1 分别为压电振动体基音频率和一次泛音频率,
且一次泛音约是基音频率的2.5~2.6倍。
公式只适合于泊松比从0.27到0.42的情况,0~0.5的情况 可以获得 f s1 f s 0 再查表。
机电耦合系数
Electromechanical coupling factor
表示压电体中机械能与电能之间相互耦合程度的 重要参数,是衡量压电性强弱的重要物理量。 无论执行器还是传感器,都应尽量高;
压电铁电各种物理 参数及其关系
压电陶瓷各种参数
压电陶瓷材料最常用参数
介电性
压电性
弹性
机械自由介电常数T11 、T33 ;机械夹持介电常数 S11 、 S33 d31; d33;d15 s11; s12 ; s13 ; s33 ;s44
介电损耗角正切 tan
压电陶瓷材料测试需要知道的13个基本参数
压电陶瓷材料测试需要知道的13个基本参数压电陶瓷材料是一种能够通过施加电压或应力来产生机械变形,或者通过施加机械压力或应变来产生电荷分离的材料。
在压电陶瓷材料测试中,以下是13个基本参数,用于评估和分析材料的性能和特性。
1.压电系数(Piezoelectric Coefficient):表示压电陶瓷材料在单位电场下产生的机械应变或单位应变下产生的电荷。
具体包括压电应变系数和压电电荷系数。
2.介电常数(Dielectric Constant):指材料在外加电场下的电容率。
介电常数决定了材料的电介质性能。
3.机械质量密度(Mechanical Density):表示单位体积内材料的质量。
机械质量密度影响材料的力学性能。
4.晶体结构(Crystal Structure):描述压电陶瓷材料的晶体结构,如立方晶系、四方晶系等。
5.绝缘电阻(Insulation Resistance):表示材料对电流的阻抗能力。
绝缘电阻高表示材料的绝缘性能好。
6.介电损耗因子(Dielectric Loss Factor):表示压电材料在交变电源下的能量损耗。
7.压电耦合因子(Piezoelectric Coupling Factor):表示材料电能到机械能的转换效率。
该参数对于传感器和执行器的性能至关重要。
8.矢量震荡模式(Vector Resonance Mode):表示压电材料在特定频率下的最佳工作模式。
根据应用的需要,不同的矢量震荡模式可以选择。
9.饱和电压(Saturation Voltage):指材料在电场作用下的饱和电压值。
在此电压下,材料的压电响应达到最大。
10.功率密度(Power Density):表示材料转换电能到机械能的能力。
高功率密度表示材料具有更高的工作效率。
11.主谐波(Fundamental Resonance):表示材料在特定频率下的共振点。
主谐波频率是设计和优化压电材料应用的重要参考。
12.稳定性(Stability):指材料在温度、湿度和外界环境变化下的稳定性能。
电子陶瓷7.2压电陶瓷的主要参数
§7-2 压电陶瓷的主要参数
不同材料的k值不同。
同种材料由于振动方式不同,k值也不同。 常用的有横向机电耦合系数k31、纵向机电耦合系数k33 、 以及沿圆片的半径方向振动的平面机电耦合系数kp(或 称径向机电耦合系数kr)。
‹#›/228
§7-2 压电陶瓷的主要参数
Z
极 化 方 向 Y
‹#›/228
§7-2 压电陶瓷的主要参数
4、频率系数N 压电振子的谐振频率fr与振动方向上线度的乘积。
N frL
L
只与材料性质相关,而与尺寸因素无关。
‹#›/228
如果压电元件上加上交流信号,当交流电信号的频 率与元件(振子)的固有振动频率 fT相等时,便产生谐
振。振动时晶格形变产生内摩擦,而损耗一部分能量
(转换成热能)。
‹#›/228
§7-2 压电陶瓷的主要参数
为了反映谐振时的这种损耗程度而引入 Qm这个参
数,Qm越高,能量的损耗就越小。
Qm 的大小以与相应的谐振方式有关,无特别说明 时表示平面(或径向)振动的机械品质因素。 在滤波器、谐振换能器、压电音叉等谐振子中, 要求高的Qm值。
常用的有横向机电耦合系数k31纵向机电耦合系数k33??22872压电陶瓷的主要参数33纵向机电耦合系数31横向耦机电合系数平面机电耦合系数径向机电耦合系数??22872压电陶瓷的主要参数3机械品质因素q耗的机械能每一谐振周期振子所消如果压电元件上加上交流信号当交流电信号的频率与元件振子的固有振动频率f相等时便产生谐振
Z X 振动方向 极 化 方 向 振 动 方 向
极 化 方 向
Z
条状振子 K31(横向耦 机电合系数)
柱状振子 K33(纵向机 电耦合系数)
压电陶瓷参数整理
锆钛酸铅压电压电陶瓷的居里点比钛酸钡高的多,在较大的温度范围内性能比较稳定,作为换能材料,它的压电效应显著。且可以通过变更其化学组成大幅度调整其化学性能。
锆钛酸铅种类繁多,各具特点。PZT-4(发射型)具有低机械损耗和介电损耗、大的交流退极化场,并具有较大的介电常数、机电耦合系数和压电常数,特别适合于强电场、大机械振幅的激励。PZT-5(接收型)具有高机电耦合系数、高压电应变常数和高电阻率,各机电参数具有优异的时间稳定性和温度稳定性,对低功率共振和非共振适用。PZT-8具有比PZT-4更低的机械损耗和介电常数、机电耦合系数,但抗张强度和稳定性优于PZT-4,更适用于高机械振幅的激励。
值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持续振动时间长,脉冲宽度大,分辨率低。
(5)频率常数
由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是:
式中 t——晶片厚度; ——晶片中纵波波长; ——晶片中纵波的波速;
——晶片固有频率。
则:
这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。
3偏铌酸铅压电陶瓷( )ﻫ它的突出优点是能够经受接近居里点(570℃)而不会强烈地退极化。另一个特点是具有特别低的机械品质因数。特别适合做宽带、耐高温、耐高静水压的换能器。
4铌酸钾钠压电陶瓷( )
它具有非常低的介电常数、较高的频率常数和较高的切变机电耦合系数 ,因而适合切变模式特别是高频(10~100MHz)下的换能器。
5钛酸铅压电陶瓷( )
它是一种颇具特点的压电材料。其居里点很高,适合在高温下工作。在压电陶瓷中,它的介电常数最小,具有中等阻抗。它的机电耦合系数 和 较大,而 和 却很小,用其制作沿z轴振动振子,易得到近似的纯模。它的压电常数 大,适于做接收器。
压电陶瓷的性能参数解析
示的薄长片,其长度沿1方向,宽度沿2方向。
沿1方向施加应力T1,使薄片在1方向产生应变
S1,而在方向2上产生应变S2,由(1-5)式不 难得出
S1=S11T1
(1-7)
S2=S12T1
(1-8)
上面两式弹性顺度常数S11和S12之比,称为迫松比,即
(1-9) 它表示横向相对收缩与纵向相对伸长之比。 同理,可以得到S13,S21,S22,其中,S22=S11,S12=S21。极化过的压电陶瓷,其独立的弹性顺度
D=Q/A=dT
(1-15)
式中,d的单位为库仑/牛顿(C/N)
这正是正压电效应。还有一个逆压电效应,既施加电场E时成比例地产生应变S,其所产生的应变为膨
胀或为收缩取决于样品的极化方向。
S=dE
(1-16)
式中,d的单位为米/伏(m/v)。
上面两式中的比例常数d称为压电应变常数。对于正和逆压电效应来讲,d在数值上是相同的,即有关
(1-3)
即经过极化后的压电陶瓷具有两个介电常数ε11和ε33。
由于压电陶瓷存在压电效应,因此样品处于不同的机械条件下,其所测得的介电常数也不相同。在机
械自由条件下,测得的介电常数称为自由介电常数,在εT 表示,上角标T表示机械自由条件。在机械夹持 条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条 件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电
常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2) 介质损耗
介质损耗是包括压电陶瓷在内的任何介质材料所
具有的重要品质指标之一。在交变电场下,介质所积
压电陶瓷性能参数解析
式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,IR大时,tanδ也大;IR小时tanδ也小。通常用tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。
???处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。
???对于一般的固体,应力T只引起成比例的应变S,用弹性模量联系起来,即T=YS;压电陶瓷具有压电性,即施加应力时能产生额外的电荷。其所产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,用介质电位移D(单位面积的电荷)和应力T(单位面积所受的力)表示如下:
???D=Q/A=dT(1-15)
压电陶瓷的性能参数解析
???制造优良的压电陶瓷元器件,通常要对压电陶瓷性能提出明确的要求。因为压电陶瓷性能对元器件的质量有决定性的影响。因此,要讨论和认识压电陶瓷的元器件,就必须首先要了解压电陶瓷的性能参数与量度方法。
???压电陶瓷除了具有一般介质材料所具有的介电性和弹性性能外,还具有压电性能。压电陶瓷经过极化处理之后,就具有了各向异性,每项性能参数在不同方向上所表现的数值不同,这就使得压电陶瓷的性能参数比一般各向同性的介质陶瓷多得多。压电陶瓷的众多的性能参数是它被广泛应用的重要基础。
T3,S1=S2,S3
Kp
垂直于3方向的圆片的径向振动,3面电极
T1=T2,S1=S2,S3
Kt
平行3方向的圆片的厚度振动,3面电极
T1=T2;T3;S2
K15
垂直于2方向的面内的切变振动,1面电极
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电陶瓷材料的主要性
能及参数精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-
压电陶瓷材料的主要性能及参数
自由介电常数εT33(free permittivity)
电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。
相对介电常数εTr3(relative permittivity)
介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。
介质损耗(dielectric loss)
电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。
损耗角正切tgδ(tangent of loss angle)
理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。
即:
电学品质因数Qe(electrical quality factor)
电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。
若用并联等效电路表示交变电场中的压电陶瓷的试样,则Qe=1/ tgδ=ωCR
机械品质因数Qm(mechanical quanlity factor)
压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之
比称为机械品质因数。
它与振子参数的关系式为:
泊松比(poissons ratio)
泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示:
δ= - S 12 /S11
串联谐振频率fs(series resonance frequency)
压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即
并联谐振频率fp(parallel resonance frequency)
压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p =
谐振频率fr(resonance frequency)
使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。
反谐振频率fa(antiresonance frequency)
使压电振子的电纳为零的一对频率中较高的一个频率称为反谐振频率,用f a 表示。
最大导纳频率fm(maximum admittance frequency)
压电振子导纳最大时的频率称为最大导纳频率,这时振子的阻抗最小,
故又称为最小阻抗频率,用f m表示。
最小导纳频率fn(minimum admittance frequency)
压电振子导纳最小时的频率称为最小导纳频率,这时振子的阻抗最大,故又称为最大阻抗频率,用f n表示。
基频(fundamental frequency)
给定的一种振动模式中最低的谐振频率称为基音频率,通常成为基频。
泛音频率(fundamental frequency)
给定的一种振动模式中基频以外的谐振频率称为泛音频率。
温度稳定性(temperature stability)
温度稳定性系指压电陶瓷的性能随温度而变化的特性。
在某一温度下,温度变化1℃时,某频率的数值变化与该温度下频率的数值之比,称为频率的温度系数TKf。
TKf=
另外,通常还用最大相对漂移来表征某一参数的温度稳定性。
正温最大相对频移=△f s (正温最大)/ f s(25℃)
负温最大相对频移=△f s (负温最大)/ f s(25℃)
机电耦合系数(ELECTRO MECHANICAL COUPLING COEFFICIENT)
机电耦合系数K是弹性一介电相互作用能量密度平方V122与贮存
的弹性能密度V1与介电能密度V2乘积之比的平方根。
压电陶瓷常用以下五个基本耦合系数
A、平面机电耦合系数KP(反映薄圆片沿厚度方向极化和电激励,作径向伸缩振动时机电耦合效应的参数。
)
B、横向机电耦合系数K31(反映细长条沿厚度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。
)
C、纵向机电耦合系数K33(反映细棒沿长度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。
)
D、厚度伸缩机电耦合系数KT(反映薄片沿厚度方向极化和电激励,作厚度方向伸缩振动的机电效应的参数。
)
E、厚度切变机电耦合系数K15(反映矩形板沿长度方向极化,激励电场的方向垂直于极化方向,作厚度切变振动时机电耦合效应的参数。
)
压电应变常数D(PIEZOELECTRIC STRAIN CONSTANT)
压电应变常数是在应力T和电场分量EM(M≠I)都为常数的条件下,电场分量E变化所引起的应变分量SI的变化与EI变化之比。
压电电压常数G(PIEZOELECTRIC VOLTAGE CONSTANT)
该常数是在电位移D和应力分量TN(N≠I)都为常数的条件下,应力分量TI的变化所引起的电场强度分量EI的变化与TI的变化之比。
居里温度TC(CURIE TEMPERATURE)
压电陶瓷只在某一温度范围内具有压电效应,它有一临界温度TC,当温度高于TC时,压电陶瓷发生结构相转变,这个临界温度TC称
为居里温度。
温度稳定性(TEMPERATURE STABILITY)
指压电陶瓷的性能随着温度变化的特性,一般描述温度稳定性有温度系数或最大相对漂移二种方法。
十倍时间老化率(AGEING RATE PER DECADE) Y表示某一参数
频率常数(FREQUENCY CONSTANT)
对于径向和横向长度伸缩振动模式,其频率常数为串联谐振频率与决定此频率的振子尺寸(直径或长度)的乘积。
对于纵向长度厚度和伸缩切变振动模式,其频率常数为并联谐振频率与决定此频率的振子尺寸(长度或厚度)的乘积,其单位:。