第十章电磁感应1-资料

合集下载

2025年高考物理总复习配套课件第十章电磁感应第1讲电磁感应现象楞次定律

2025年高考物理总复习配套课件第十章电磁感应第1讲电磁感应现象楞次定律
阻碍原电流的变化——“增反减同”(即自 感现象)
[考法全析]
考法(一) 阻碍原磁通量的变化——“增反减同”
[例1] 电磁弹射的装置是航空母舰上的一种舰载机起飞装置。如
图所示的装置也能进行电磁弹射,线圈固定在光滑绝缘杆MN上、导体
圆环套在绝缘杆的左端。则下列说法正确的是
()
A.开关闭合,圆环将从M端离开绝缘杆
解析:只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,A、B错误; 线圈中插入条形磁铁瞬间回路中磁通量有变化,电流表有变化,磁铁不动后电流 表无变化,C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产 生感应电流,能观察到电流表的变化,D正确。 答案:D
2.[磁通量的大小]
如图所示,两个单匝线圈a、b的半径分别为r和2r。圆形匀强磁场
D.线圈给磁铁的磁场力先向下再向上
[解析] 根据楞次定律的“来拒去留”,磁铁向闭合线圈靠近,要受阻力作 用,即磁场力向上,故A正确。
[答案] A
考法(三) 使回路面积有变化趋势——“增缩减扩”
[例3] (多选)如图甲所示,圆形线圈P静止在水平桌面上,其正上方固定一
螺线管Q,P和Q共轴,Q中的电流i随时间t变化的规律如图乙所示,取甲图中电
一点一过
“四步法”判断感应电流方向
研清微点3 应用右手定则判断感应电流的方向
4.下列图中表示闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,
导体ab上的感应电流方向为a→b的是
()
解析:ab棒顺时针转动,运用右手定则:磁感线穿过手心,拇指指向顺时针方向, 则导体ab上的感应电流方向为a→b,故A正确;ab向纸外运动,运用右手定则时, 磁感线穿过手心,拇指指向纸外,则知导体ab上的感应电流方向为b→a,故B错 误;穿过回路的磁通量减小,由楞次定律知,回路中感应电流方向由b→a→d→c, 则导体ab上的感应电流方向为b→a,故C错误;ab棒沿导轨向下运动,由右手定 则判断知导体ab上的感应电流方向为b→a,故D错误。

大学物理电磁感应-PPT课件精选全文完整版

大学物理电磁感应-PPT课件精选全文完整版

的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线


电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关

静电场为有源场

EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场

高二物理第十章知识点总结

高二物理第十章知识点总结

高二物理第十章知识点总结高二物理第十章主要讲述了电磁感应与电磁场的相关知识。

本章的内容包括电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感、电磁场的概念及特性等。

以下是对这些知识点的详细总结。

1. 电磁感应现象电磁感应是指导体中的磁通量发生变化时,在导体两端产生感应电动势。

磁通量的变化可以通过改变磁场强度、磁场方向、导体面积或者改变磁场与导体之间的相对运动来实现。

2. 法拉第电磁感应定律法拉第电磁感应定律描述了感应电动势的大小与变化率之间的关系。

根据定律,感应电动势的大小等于磁通量的变化率。

即E = -dΦ/dt,其中E表示感应电动势,Φ表示磁通量,t表示时间。

3. 楞次定律楞次定律是电磁感应的基本规律之一,它描述了感应电流的方向。

根据楞次定律,当导体中的磁通量发生变化时,感应电流的方向会使得产生的磁场阻碍磁通量的变化。

这个定律也可以用右手规则来判断感应电流的方向。

4. 自感与互感自感是指电流通过一个线圈时,该线圈本身所产生的感应电动势。

互感是指两个或多个线圈之间的相互感应现象。

自感与互感是电磁感应中的重要概念,它们在电路中起到了重要的作用。

5. 电磁场的概念及特性电磁场是指由电荷和电流所产生的空间中的力场和磁场。

电磁场具有电场强度、磁感应强度和能量密度等特性。

电场强度描述了电场对电荷施加力的强度,磁感应强度描述了磁场对带电粒子施加力的强度。

本章的知识点涉及了电磁感应与电磁场的基础概念和原理,这些知识在物理学与工程学中有着广泛的应用。

理解并掌握这些知识点,不仅有助于我们对电和磁的相互作用有更深入的理解,还能帮助我们解决实际问题,如电磁感应发电原理和变压器的工作原理等。

总结起来,本章内容涉及了电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感以及电磁场的概念与特性。

这些知识点是理解电磁现象和解决相关问题的基础,通过深入学习与实践探索,我们能够更好地理解和应用这些知识,为今后的学习和工作打下坚实的基础。

物理必修三第十章知识点总结

物理必修三第十章知识点总结

物理必修三第十章知识点总结第十章:电磁感应与电磁波电磁感应是指当导体中有磁通量的变化时,导体内产生感应电动势,并产生感应电流的现象。

电磁感应现象是电磁学中的重要基础,也是电磁场理论的重要组成部分。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律之一,它表明当磁通量的变化率发生变化时,感应电动势的大小与磁通量的变化率成正比。

即感应电动势E等于磁通量变化率dΦ/dt乘以一个常数负号,该常数称为电磁感应系数,通常用负号表示。

2. 楞次定律楞次定律是描述电磁感应现象的另一个定律,它表明当感应电流产生时,其磁场会产生一个方向,使得磁场的变化趋势减弱或抵消感应电流产生的原因。

楞次定律是能量守恒定律的一个推论,它保证了感应电流产生时系统的能量不会凭空消失。

3. 磁通量磁通量是描述磁场穿过一个给定面积的量度,它是磁感应强度B与该面积A的乘积。

磁通量是一个标量,单位是韦伯(Wb)。

当磁场垂直于给定面积时,磁通量的大小等于磁感应强度的大小乘以该面积。

4. 电磁感应的应用电磁感应现象在现实生活中有着广泛的应用。

例如,电磁感应技术广泛应用于电力工业中的发电、变压器、电动机等设备中。

此外,电磁感应还常被应用于磁悬浮列车、电磁炉、感应加热器等领域。

5. 自感与互感自感是指导体中产生感应电流时,该导体本身产生的感应电动势。

互感是指在多个线圈之间产生的感应电动势。

自感和互感是电磁感应中的两个重要概念,它们在电路设计和电磁设备中起着重要的作用。

6. 电磁波的产生与传播当电场和磁场相互作用时,就会产生电磁波。

电磁波是一种能够在真空中传播的波动现象,其传播速度等于光速。

电磁波包括可见光、无线电波、微波等。

电磁波的传播是通过电场和磁场的相互作用不断地传递能量。

7. 电磁波的特性电磁波具有波长、频率、振幅等特性。

波长是指电磁波在垂直于传播方向的一个完整周期的长度,单位是米。

频率是指单位时间内经过一个点的电磁波的周期数,单位是赫兹。

物理高二知识点第十章总结

物理高二知识点第十章总结

物理高二知识点第十章总结第十章:电磁感应本章主要介绍了电磁感应的相关知识点,包括法拉第电磁感应定律、楞次定律、自感和互感等内容。

本文将对这些知识点进行总结和概括,以加深对物理高二电磁感应的理解。

一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基础定律,描述了导体中感应电动势的大小和方向。

根据法拉第电磁感应定律,当导体中磁通量发生变化时,会产生感应电动势。

其中,感应电动势的大小与磁通量的变化率成正比,方向由右手定则确定。

二、楞次定律楞次定律是法拉第电磁感应定律的补充,描述了电流在变化时的方向。

根据楞次定律,当电流发生变化时,会产生感应磁场。

感应磁场的方向与电流变化的方向相反,从而使得变化的电流受到阻力。

三、自感和互感自感是指导体中产生的感应电动势对自身的感应作用。

自感的大小与导体中电流的变化率成正比,方向由自感方向定则确定。

互感是指导体中产生的感应电动势对周围导体的感应作用。

互感的大小与磁通量的变化率和两个导体的相对位置有关,方向由互感方向定则确定。

四、电磁感应的应用电磁感应在实际应用中起着重要的作用。

其中,变压器是电磁感应的典型应用之一,通过互感实现电能的转换和传输。

发电机和电动机也是电磁感应的典型应用,分别将机械能转换为电能和将电能转换为机械能。

总结:电磁感应是电磁学的重要分支,通过法拉第电磁感应定律和楞次定律描述了电磁感应现象的基本规律。

自感和互感则进一步扩展了电磁感应的应用范围。

在实际应用中,电磁感应被广泛运用于变压器、发电机、电动机等设备中,对能源的转换和传输起着至关重要的作用。

通过本章的学习,我们对电磁感应有了更深入的了解。

掌握了法拉第电磁感应定律和楞次定律,能够解决与电磁感应相关的问题。

同时,理解了自感和互感的概念,能够更好地应用于实际问题的解决中。

希望本文的总结能够对大家对物理高二电磁感应的学习和理解有所帮助。

101 第十章电磁感应定律要点

101 第十章电磁感应定律要点

一般空间中既可存在电荷又可存在变化的磁场。 所以空间中既存在库仑电场又存在感生电场。
E E E感
二. 感生电动势与感生电场的关系
作用于单位正电荷上的感生电场力的功是感生电动势 由电动势的定义: i
d m 由法拉第电磁感应定律: i dt d m 感 dl dt L S const d m d dB ( dS ) dS dt S dt dt
D
a
F
b
E
§13.3 感生电动势 涡旋电
场 一.变化的磁场产生感生电动势
1
当回路 1中电流发生 变化时,在回路 2中 出现感应电动势。
Φm 2 G
ε
R
洛仑兹力 非静电力
动生电动势 非静电力
电磁感应 感生电动势

关于电荷所受的力
电荷 运动电荷 库仑力 其他电荷激发 的电场 磁场
N
B
洛仑兹力
工频炉 中频炉 高频炉
增加能耗

热效应过强--温度过高---易破坏绝缘--造成事故
如变压器铁芯。
应减少涡流
1、选择高阻值材料 减少涡流的途径
(电机变压器的铁芯 材料是硅钢而非铁) 2、多片铁芯组合
五. 感生电场的计算
dB i E感 dl dS L S dt
例1:局限于半径 R 的圆柱形空间内分布有均匀磁场, 方向如图。磁场的变化率 dB dt 0
直导线平动
闭合线圈平动
i BL sin
i 0

有一半圆形金属导线在匀强磁场中作切割磁 力线运动。 已知:, B, R.
求:动生电动势。
解: 方法一
作辅助线,形成闭合回路。

第十章 法拉第电磁感应定律

第十章 法拉第电磁感应定律

第10章法拉第电磁感应定律10.1 法拉第电磁感应定律 (2)10.1.1磁通量 (2)10.1.2 楞次定律 (4)10.2 动生电动势 (6)10.3 感生电场 (8)10.4 发电机 (10)10.5 涡电流 (11)10.6 总结 (12)10.7 附录:感生电动势与参照系 (12)10.8 解题技巧:法拉第定律和楞次定律 (13)10.9 解题 (14)10.9.1 导线附近的矩形线圈 (14)10.9.2 面积变化的线圈 (15)10.9.3 滑动的棒 (15)10.9.4 运动的棒 (16)10.9.5 时变磁场 (17)10.9.6 运动线圈 (18)10.10 概念题 (19)10.11 附加题 (20)10.11.1 滑动棒 (20)10.11.2 斜劈上的滑动棒 (20)10.11.3 磁场中的RC电路 (21)10.11.4 滑动棒 (21)10.11.5 转动棒 (22)10.11.6 通过磁场的矩形线圈 (22)10.11.7 磁棒穿过线圈 (22)10.11.8 交流发电机 (23)10.11.9 时变磁场的电动势 (23)10.11.10 正方形线圈通过磁场 (24)10.11.11 下落的线圈 (24)法拉第电磁感应定律10.1 法拉第电磁感应定律到目前为止,我们研究的电场和磁场分别是由静电荷和运动电荷(电流)产生的。

在导体内置入电场将引起电流,它反过来又会产生磁场。

人们不禁要问,磁场能不能产生电场呢?1831年,法拉第(Michael Faraday)发现,随时间变化的磁场会产生电场。

这种现象称为电磁感应。

图10.1.1展示了法拉第的实验。

图10.1.1 电磁感应法拉第证明了,当磁铁相对于线圈静止时,电流计里没有电流。

但只要磁铁与线圈之间存在相对运动,线圈中就会感应出电流。

具体地说,当磁铁靠近线圈时,电流计指针偏向一个方向,当磁铁远离线圈时,电流计指针偏向相反方向。

10电磁感应

10电磁感应

电磁感应一、磁通量磁通量a.公式φ=BS 适用条件是:b.φ=B·Scosθ其中θ为B与S的夹角,磁通量的变化△φ=φ2一φ1.二、电磁感应现象产生感应电流的条件三、感应电流方向的判定右手定则:楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总要阻碍引起感应电流的磁通量变化.使用方法:效果:例1.一金属圆环水平固定放置。

现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引,例2.如图所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N及在水平方向运动趋势的正确判断是()A.F N先小于mg后大于mg,运动趋势向左B.F N先大于mg后小于mg,运动趋势向左C.F N先大于mg后大于mg,运动趋势向右D.F N先大于mg后小于mg,运动趋势向右,例3.如图所示,一闭合的小金属环用一根绝缘细杆挂在固定点O处,使金属圆环在竖直线OO′的两侧来回摆动的过程中穿过水平方向的匀强磁场区域,磁感线的方向和水平面垂直。

若悬点摩擦和空气阻力均不计,则()A.金属环每次进入和离开磁场区域都有感应电流,而且感应电流的方向相反,B.金属环进入磁场区域后越靠近OO′线时速度越大,而且产生的感应电流越大C.金属环开始摆动后,摆角会越来越小,摆角小到某一值后不再减小,D.金属环在摆动过程中,机械能将全部转化为环中的电能例4.如图,线圈M 和线圈N 绕在同一铁芯上。

M 与电源、开关、滑动变阻器相连,P 为滑动变阻器的滑动端,开关S 处于闭合状态。

N 与电阻R 相连。

下列说法正确的是 ( )A .当P 向右移动,通过R 的电流为b 到a ,B .当P 向右移动,通过R 的电流为a 到bC .断开S 的瞬间,通过R 的电流为b 到aD .断开S 的瞬间,通过R 的电流为a 到b ,例5.一长直铁芯上绕有一固定线圈M ,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N ,N 可在木质圆柱上无摩擦移动。

§10-1电磁感应定律

§10-1电磁感应定律
o
o I dx d m I 则: l l v i 2x dt 2r dt 这样就有: v 0, i 0
0 I i l v 2x 0 kt i l v 2x
太原理工大学物理系
错在那里?
例2 真空中一长直导线通有电流 I (t ) I 0e 其中t为时间,I0和λ大于零。有一带滑动边的矩 形导线框与长直导线平行共面,两者相距为a , 矩形线框的滑动边长为b,以匀速率v 运动,设开 始时滑动边与对边重合, B v 求任意t时刻线框内的感 I (t ) 应电动势,并讨论方向。 x
t
0 I 解: B 2x
s
a
b
m Bds
太原理工大学物理系
回路绕行的正方向为顺时针方向
穿过回路的磁通量
m Bvtdx

a b
a
0 I (t ) vtdx 2x
0 I (t ) ab vt ln 2 a t 将 I (t ) I 0e 代入上式
B
I 3)若I=常数,回路以v向右
运动,i =? 4)若I=kt,且回路又以v向 右运动时,求i=?
l
a
b
Hale Waihona Puke ox太原理工大学物理系
解:设垂直纸面向里为回路的法线方向,则顺时 针为回路绕行正方向
1) 穿过回路中的m; 无限长载流导线的磁场
B
0 I B 2x
m B ldx
通过正方形线圈的磁通量:
Φm BdS

2a a

0 I adx 2x
太原理工大学物理系
m
2a
a
0 v 0 v adx a ln 2 2x 2

大学物理电磁学第十章电磁感应PPT课件

大学物理电磁学第十章电磁感应PPT课件
d Idq n2Rd 2 R R dR
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I

v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的

电磁感应课件

电磁感应课件

负.
如下图所示,在同一水平面内有三个闭合线
圈 a 、b 、 c,当 a 线圈中有电流通过时,它们
的磁通量 分别为 φa、 φb 、与φc ,下列说法正确
的是: (
B)
A. φa < φb < φc
B. φa > φb > φc C. φa < φc < φb
I a bc
D. φa > φc > φb
( BD )
A. 若磁场方向垂直纸面向外并增加时,
杆ab将向右移动。
B. 若磁场方向垂直纸面向外并减少时,
杆ab将向右移动。
C. 若磁场方向垂直纸面向里并增加时, 杆ab将向右移动。
a
D.若磁场方向垂直纸面向里并减少时,
杆ab将向右移动。
点拨:Φ=BS,杆ab将向右移动 ,
b
S增大, Φ增大,只有B减小,才能阻碍Φ增大
量增加,I 的方向为顺时针,
v
当dc边进入直导线右侧,直到线框 在正中间位置B时,向外的磁通量
b
c
A BC
减少到0, I 的方向为逆时针,
接着运动到C,向里的磁通量增加,I 的方向为逆时针,
当ab边离开直导线后,向里的磁通量减少,I 的方向为顺时针。
所以,感应电流的方向先是顺时针,接着为逆时针, 然后又为顺时针。
况如图示,
v dc
自右向左移动时,感应电流 M
N
的磁场向外,
所以感应电流为逆时针方向。
例2.如图所示,一水平放置的圆形通电线圈I固定,
有另一个较小的线圈II从正上方下落,在下落过程中
线圈II的平面保持与线圈I的平面平行且两圆心同在一
竖直线上,则线圈II从正上方下落到穿过线圈I直至在
下方运动的过程中,从上往下看线圈II:( C )

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

解析
高考一轮总复习•物理
第25页
1.[“三则一律”的应用](多选)如图所示,金属导轨上的导体棒 ab 在匀强磁场中沿 导轨做下列哪种运动时,铜制线圈 c 中将有感应电流产生且被螺线管吸引( )
A.向右做匀速运动 B.向左做减速运动 C.向右做减速运动 D.向右做加速运动
答案
高考一轮总复习•物理
第26页
高考一轮总复习•物理
第9页
2.如图所示,两个单匝线圈 a、b 的半径分别为 r 和 2r.圆形匀强磁场 B 的边缘恰好 与 a 线圈重合,则穿过 a、b 两线圈的磁通量之比为 ( )
A.1∶1 C.1∶4
B.1∶2 D.4∶1
答案
高考一轮总复习•物理
3.如图所示的各图所描述的物理情境中,没有产生感应电流的是( )
第22页
2.“三则一律”的应用技巧 (1)应用楞次定律,一般要用到安培定则. (2)研究感应电流受到的安培力时,一般先用右手定则确定电流方向,再用左手定则确 定安培力的方向,有时也可以直接用楞次定律的推广应用确定.
高考一轮总复习•物理
第23页
典例 2 (2024·山西太原模拟)(多选)如图所示装置中,ab、cd 杆垂直放置在导轨上,与 导轨接触良好,杆与导轨之间的摩擦力不计.原来 ab、cd 杆均静止,当 ab 杆做如下哪些运 动时,cd 杆将向左移动( )
解析
高考一轮总复习•物理
第12页
重难考点 全线突破
高考一轮总复习•物理
考点 感应电流方向的判断
1.楞次定律中“阻碍”的含义
第13页
高考一轮总复习•物理
2.应用楞次定律的思路
第14页
高考一轮总复习•物理
第15页
典例 1 如图所示,两匀强磁场的磁感应强度 B1 和 B2 大小相等、方向相反.金属圆环 的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )

大学物理授课教案第十章电磁感应

大学物理授课教案第十章电磁感应

第十章 电磁感应§10-1法拉第电磁感应定律一、电磁感应现象,感应电动势电磁感应现象可通过两类实验来说明: 1.实验1〕磁场不变而线圈运动 2〕磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何〔如:线圈运动,变;或不变线圈运动〕,回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。

3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰•=lK l d K :非静电力ε 〔10-1〕说明:〔1〕由于非静电力只存在电源内部,电源电动势又可表示为⎰•=正极负极l d Kε说明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

〔2〕闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰•=lK l d K :非静电力ε〔3〕电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。

二法拉第电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。

数学表达式:dtd k i Φ-=ε 在SI 制中,1=k ,〔S t V Wb :;:;:εΦ〕,有dt d i Φ-=ε 〔10-2〕 上式中“-〞号说明方向。

2、i ε方向确实定为确定i ε,首先在回路上取一个绕行方向。

规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。

在此根底上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。

,0>Φ00<⇒>Φi dt d ε ,0>Φ00>⇒<Φi dt d ε 沿回路绕行反方向沿回路绕行方向:0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。

楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。

大学物理电磁学第十章电磁感应.ppt

大学物理电磁学第十章电磁感应.ppt
1
第10章 电磁感应
本章研究变化的电磁场的基 本规律,从产生磁通的方式和磁 通变化的方式入手,总结感应电 动势的各种表达式。要求会熟练 计算电动势和磁场能量。
2
第10章 电磁感应
一、电磁感应基本定律 二、动生电动势 三、感生电动势 四、自感和互感 五、磁场能量
3
电磁感应
Electromagnetic induction
4. 法拉第电磁感应定律
9
数学表式:
i
dN dt
d dt
N
(N: 磁链,全磁通)
Note: d d B• dS d BcosdS
的变化 i 动生电动势(S或变化) 感生电动势( B变化)
•切忌出现如下错误:
d 10
dt
d B dS B dS
dt dt
dt
电动势的“方向”是电源内从负极到正
____________
____________
电源-提供非静电力的装置。
F静
电源的作用:
使流向低电位的正 电荷回到高电位,维持 两极板的恒定电势差。 (干电池、蓄电池等)
+ + + + + +
+ + + + + +
电 源
F非
F静
____________
____________
(2)电源电动势
把单位正电荷从负极经过
(R2
R1)
r2
d
dt
例3 两个半径分别为r和R的同轴圆形线圈,相 17
距x,且R>>r, x>>R ,若大线圈通有电流I而小线
圈沿x轴方向以速率v运动, 求x=NR 时小线圈中

高二物理第十章知识点归纳总结

高二物理第十章知识点归纳总结

高二物理第十章知识点归纳总结高二物理课程中的第十章主要讲述了电磁感应、电磁波、电磁振荡等内容。

本文将对这些知识点进行归纳总结,帮助学生更好地理解和掌握这些重要概念。

一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律描述了磁场变化引起的感应电动势的大小和方向。

∮E·dl=-dΦB/dt其中E为感应电动势,ΦB为磁通量,t为时间。

2. 感应电动势的产生当磁场穿过一个导体回路时,导体内就会产生感应电流。

感应电动势的大小与磁场变化的速率、导体回路的形状和磁场的强度有关。

3. 洛伦兹力和感应电动势的关系感应电动势的产生是由洛伦兹力作用于电子上引起的,导致电子运动。

二、电磁波1. 电磁波的概念电磁波是由电场和磁场相互耦合形成的波动现象,可以在真空中传播。

2. 电磁波的特性电磁波有频率、波长、波速等特性。

波长和频率之间的关系为λv=c,其中λ为波长,v为频率,c为光速。

3. 光的电磁波性质光既具有粒子性又具有波动性,可以解释一些光的现象,如衍射和干涉。

三、电磁振荡1. 电磁振荡的概念电磁振荡是由振荡电场和振荡磁场相互耦合形成的周期性变化现象。

2. 振荡电路的特点振荡电路由电感、电容和电阻组成,能够产生稳定的振荡信号。

振荡电路中的电荷和电流随时间变化呈周期性。

3. LC振荡电路LC振荡电路由电感和电容组成,能够产生简谐振荡。

振荡频率与电感和电容的数值有关。

四、电磁感应与电磁波的应用1. 发电机的工作原理发电机利用电磁感应的原理将机械能转化为电能。

发电机产生的电压和电流可通过导线传输和利用。

2. 变压器的工作原理变压器利用电磁感应的原理将交流电能从一个电路传输到另一个电路。

变压器能够改变电压的大小而不改变电能的大小。

3. 无线电的原理无线电是利用电磁波传输信息和能量的技术。

无线电技术已广泛应用于通信、广播和雷达等领域。

综上所述,高二物理第十章的知识点包括电磁感应、电磁波和电磁振荡等内容。

学生通过学习这些知识点,可以更好地理解电磁现象的本质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 电磁感应
(Electromagnetic Induction)
磁悬浮列车
1
本章目录
△§10.1法拉第电磁感应定律 §10.2 动生电动势 §10.3 感生电动势和感生电场
△§10.4 互感 △§10.5 自感 △§10.6 磁场能量
2
△§10.1法拉第电磁感应定律
( Faradays law of electromagnetic induction) 一. 感应电动势
20lktl
nb a
逆时针方向
3)I=常数,t 时刻,此时回路的磁通:
b+vt
a+vt
0Il 2r
dr2oIllnabvvtt
d i dt
2o ll(a(a v )tb b () vv)t0 顺时针方向19
2)i 20lklnab3)i20 lla(a vtbb) vvt
4)综合i 2)dd、t 3 )2 ,0 k t时 l刻a回 b v 路 a 的tb v 磁vt通t :ln a b 2v v ok tttllnab vvtt
圈中产生的感应电动势
d
dt
大小 d
dt
20Lln(r1r2r)1r3r(2r3)dd1It
20 Lln (r1r2 r)1r3 r(2r3) I0cots 16()
(4)如果这个 1
d
2
导线框不是静 I1
止,而是以匀
L
A
I2
速度 V向右运
动的话,导线
r1
r2
r3
r 框中的感应电 注意:
I
R
1 dR dt,源自R—回路电阻。
时间间隔 t1→t2内,穿过回路导线截面的电量:
q
t2
t1
Idt
t2
t1
1 d
R dt
dt
1 2
R
1
d
R1(1 2)
q 与过程进行的速度无关。
测q 可以得到 ,这就是磁通计的原理。
9
三、 楞次定律(Lenz Law) 见书P321
判断感应电流方向的定律。
感应电流的效果,总是反抗引起感应电流的原因
L
A
B左A
0I1 2a
r1
r2
B右 A2(r1r02I2r3a)
BAB左 AB右 A
2 I2
r3
14
1
d
2
(2)
I1
L
A
I2
B dS
s
sBcosdS
r1
r2
r3
r1r2 0(I1
I2
)Ldx
r1 2 x r1r2r3x
20I1Lln(r1r2r)1r3(r2r3)
15
(3) 如果 I1I2I0si n t() ,则在线
感应电流激发 的磁场通量
磁通量的变化 (增加或减小)
核心: 阻碍原磁通的改变
若 B
i

B i

B i

B
10 i
1
d
2
I1
L
A
I2
r1
r2
r3
例1 相距为d,两根平行长直导线1、2放在

I1 I2
空中,每根导线载有电流
求:⑴ 两导线所在平面内与导线1相距为a 11
1
d
2
I1
L
A
I2
法拉第的实验:
S
N
v
B
v
共同因素:穿过导体回路的磁通量发生变化。
3
法拉第于1831年总结出规律:




L
感应电动势 dΦ
dt
正方向约定: 正向与回路
L的正绕向成右手螺旋关系。 在此约定下, 式中的负号反 映了楞次定律 (Lenz law)。
4
说明:
d
1、任一回路中:BdSBcosdS
动势又为多少?
此时,不仅电流随
时间变化,1 、r3
也随时间变化。
17
20I1Lln(rr1 1(dr 2)r1(dr2r1)) 20Lln(rr1 1(dr 2)r1d(r2r1))dd1It
20I1Ldd{t ln(rr1 1(dr 2)r1d (r2r1 ))}
18
例2.长直导线通有电流I,在它附近放有一 矩形导体回路.
的变化方式: 导体回路运动,B不变~~动生电动势
导体回路不动,B变化~~感生电动势
21
§10.2 动生电动势(motional emf)
感应电动势 回路动引起的动生电动势 动 磁场变引起的感生电动势 感
一. 动生电动势 1 定义 在稳恒磁场(大小、方向均不随时间变化) 中运动的导线内所产生的感应电动势(感应 电动势的特例)
此题若这样考虑:而 i:dddtB ds 0 I ldr.
则:
i
d
dt
2r
2orI
l
dr dt
2orI
l
v
这样就有: 2)v 0, i 0
3)i
0I 2r
lv
错在那里?
4)i 20krtlv
20
注意: 法拉第电磁感应定律给出的感应电动势 公式
d
dt
应用它可求任 何感应电动势
适应于任何原因产生的感应电动势(动 生、感生、自感、互感)。应用它无任 何特殊条件。
dt dt
dt
③电动势的“方向”是电源内从负极到正
极的方向,即电势升高的方向。
6
2、“–”表示感应电动势的方向, 和都是标量
,方向只是相对回路的绕行方向而言。如下所示

n B
n B
d dt
(B , n )i90 (B , n ) i 90
Bcosd s0 0
若,
d
dt
0
若,
d
dt
0
则 i<0
dt
其中B, , S 有一个量发生变化, 回路中就有
的存在。计算感应电动势大小时注意:
1)正确计算出磁通量
① 写出 d B c o sd S
② 对回路所围面积积分求出 SBcosdS
2)将磁通量的表达式 对时间求一阶导
数即得感应电动势大小 。
5
•切忌出现如下错误:
d dt
d BdSBdS
r1
r2
r3
(2) 通过图中斜线所示线圈所围面积的磁通 量。
(3) 如果 I 1 I 2 I 0 s in (t),则在线 圈中产生的感应电动势 12
(4)如果这个导线框不是静止,而是以匀速
度 V向右运动的话,导线框中的感应
电动势又为多少?
1
d
2
I1
L
A
I2
V
r1
r2
r3
13
解:⑴
1
d
B AB 左 AB 右 A I 1
则 i>0
与假定方向相反 同向
7
3、 电磁感应定律的一般形式
N 匝线圈串联: i(ddΦ ti) dd( t i Φi)
令 Φi — 磁链(magnetic flux linkage)
i
于是有
d
dt

Φ 1Φ 2… Φ NΦ , 则
N
dΦ dt
8
二 . 感应电流(induction current)
求: 1)穿过回路中的; 2)若I=kt(k=常)回路中i=? 3)若I=常数,回路以v向右运动,i =? 4)若I=kt,且回路又以v向右运动时,求i=?
I dr
a
r
b
解:设回路绕行方向为顺时针,
l
1)
abBldr
b
a
0I 2r
ldr
0Il 2
ln b a
2) I=kt时,在t时刻,
i
d
dt
20lklnab0
相关文档
最新文档