我所认识的应力应变关系讲解
我所认识的应力与应变
设三条棱边分别为 MA,MB,MC,变形后为 M'A',M'B',M'C'。则 ' MA xy A' M ' B ' x M ' A MA 2
' MB y M 'B MB ' MC z M 'C MC
yz C ' M ' B '
2
zx C ' M ' A'
2.柯西方程和工程剪应变
1 2
xy y 1 2 zy
1 2 xz 1 2 yz
z
在位移场中分析六面体微分元的应变, 可得出表示应变的几何方程即柯西方 程。前提条件为连续性假设和小变形假设。 将柯西方程与应变张量比较,应变张量分量 x 、 y 和 z 即为正应变,应变
续函数,满足 u u , v v , w w 。
2
这里有 6 个分量,其中根据剪应力互等定理可得
γxy γyx γxz γzx γyz γzy
于是这里有 9 个分量,这 9 个分量就能清楚地表达平行六面体的形状变化。 为了将这 9 个分量写成张量形式并且满足张量的性质,对剪应变做处理,写成
x 1 2 yx 1 zx 2
3.一点应力状态的描述 过物体内任意一点 M 作三个互相垂直并与坐标平面平行的微分面,并在点 M 附近作一个与坐标轴倾斜的任意微分面,知道三个互相垂直微分面的受力情 况即上述的二阶张量, 利用平衡,可推出与坐标轴倾斜的任意微分面上的受力情 况。即只要知道一点的应力张量则该点处的应力状态也就完全确定了。 4.应力张量的坐标变换规律 应力张量是一个二阶张量,在数学上,应力张量的各个分量在坐标变换时, 应服从二阶张量的坐标变换规律。 5.主应力和主应力空间 只有正应力分量而没有剪应力的微分面称为主平面, 其法线方向称为应力主 方向,简称主方向,其上的正应力就称为主应力。 在物体内的同一点处, 存在三个互相垂直的主方向,把这三个互相垂直的主 方向取为坐标系的坐标轴方向,依此建立起来的几何空间,称为主应力空间,该 空间中的三个坐标轴称为应力主轴。 由于主应力的大小与坐标选择无关, 求解主应力时的应力状态的特征方程的 三个系数也与坐标的选择无关, 它们分别称为应力张量的第一、第二和第三不变 量。数学上,应力张量的三个不变量反映了张量具有不变性的特点;物理上,应 力张量的三个不变量反映了物体在特定的外部因素作用下, 内部各点的应力状态 不随坐标的改变而变化的性质。 6.球形应力张量和偏斜应力张量 若物体内存在这样一点, 其相应的三个主应力均相等,该点的应力张量称为 球形应力张量或应力球张量。如果物体内一点处于球形应力状态下,通过该点的 微分单元体只会均匀膨胀或缩小,也就是说,只会产生体积上的变化,而不会发 生形状上的变化。 偏斜应力张量反映了一个实际的应力状态偏离均匀应力状态的程度。 球形应力张量代表的应力状态不会引起塑性变形,或者说与塑性变形无关, 而认为塑性变形是由偏斜应力张量代表的应力状态所引起的。应当注意,这个结 论是对金属类材料而言, 对于非金属材料, 如混凝土、 岩土等一类材料则不成立。 7.八面体应力与应力强度 在主应力空间里,通过物体内任一点 M 这样的一个微分面,该微分面的外 法向 n 与三个应力主轴呈等倾斜,这样的微分面共有 8 个,它们组成一个包含点
《应力与应变》课件
目录
CONTENTS
• 应力概述 • 应变概述 • 应力与应变的关系 • 应力与应变的应用 • 实验与演示 • 总结与展望
01 应力概述
CHAPTER
定义与概念
定义
应力定义为物体内部单位面积上 所承受的力,用于描述物体受力 状态。
概念
应力是物体受力时内部各部分之 间的相互作用,是物体抵抗变形 和破坏的内在能力。
压缩实验
总结词
通过观察物体在压缩过程中的形变,了解应 力和应变的基本性质。
详细描述
压缩实验是应力与应变研究中另一种重要的 实验方法。在实验中,我们将物体的一端固 定,另一端施加逐渐增大的压力,使物体发 生压缩形变。通过测量压缩量,我们可以计 算出物体的应力和应变。通过观察和记录实 验数据,学生可以了解应力和应变的基本性
应力分类
按作用方式
可分为正应力和剪应力。正应力表示 垂直于受力面的力,剪应力表示与受 力面平行且垂直于切线方向的力。
按作用效果
可分为拉应力和压应力。拉应力表示 使物体拉伸的力,压应力表示使物体 压缩的力。
应力单位与表示方法
单位
应力的单位是帕斯卡(Pa),国际单位制中的基本单位。
表示方法
应力的表示方法通常采用符号“σ”或“σxx”(xx表示方向),例如正应力的 表示符号为σ或σxx,剪应力的表示符号为τ或τxy(xy表示剪切方向)。
进步。
谢谢
THANKS
压缩试验
测定材料的抗压强度、弹性模量等指 标,了解材料在受压状态下的性能表 现。
有限元分析
模型建立
根据实际结构或系统建立有限元 模型,将复杂结构离散化为有限
个单元。
加载与约束
认识的应力与应变的关系
我所认识的应力与应变的关系在之前的材料力学的学习当中,认识到的应力与应变的关系是,是正比关系,ε
σE
=,弹性应力应变关系主要是广义胡克定律。
在现在的弹塑性力学中,在弹性阶段,他们是线性关系,在塑性阶段,应力与应变的关系是非线性的,与材料有关。
在塑性变形时应力与应变的关系称为本构关系。
在弹性阶段应力与应变的特点是:应力与应变完全成线性关系;弹性变形是可逆的。
在塑性变形的时候的特点是:应力、应变为非线性关系:塑性变化不可逆:对于应变硬化材料,卸载后的屈服应力比初始屈服应力高。
塑性变形时,应力与应变之间的关系不是单值关系,而与加载路线(加载历史)有关。
有初始屈服和后继屈服,应力变形受到加载路线的影响。
在这产生了三个增量本构关系和全量理论,分别是Levy-Mises理论,Saint-Venant塑性流动方程,
Prandtl-Reuss理论,全量塑性应变与应力
之间的关系伊留辛全量理论在塑性变形时,只有在满足比例加载的条件下,才可建立全量应变与应力之间的关系。
以上就是我认识的应力与应变之间的关系。
应变和应力关系
新能源技术:利用应变和应力原理,优化风力发电机叶片设计,提高风能 利用率和发电效率。
机器人技术:通过研究应变和应力与机器人关节运动的关系,提高机器人 的灵活性和稳定性,拓展机器人的应用领域。
应变和应力对未来科技发展的影响
增强材料性能:通过深入研究应变和应力,可以开发出性能更强的新型材 料,为未来的科技发展提供物质基础。
智能制造:利用应变和应力的知识,可以优化制造过程中的材料性能,提 高生产效率和产品质量,推动智能制造的发展。
生物医学应用:在生物医学领域,应变和应力的研究有助于更好地理解和 控制人体生理机制,为未来的生物医学应用提供支持。
压痕法:利用压痕仪在物体表面压出一定形状的压痕,通过测量压痕的尺寸来计算应力
应变和应力的相互影响
应变和应力之间的关系:应变是应力作用下的物体形状变化,应力是抵抗变形的力。
应变和应力的测量方法:通过应变计和应力计进行测量,应变计测量物体变形,应力计测量物 体受到的力。
应变和应力的相互影响:应变和应力之间存在相互影响,例如在材料屈服点附近,应变和应力 之间会发生突变。
应力的概念
分类:正应力、剪应力、弯 曲应力等
定义:物体受到外力作用时, 内部产生的反作用力
单位:帕斯卡(Pa) 作用效果:使物体产生形变
应变和应力的关系
应变是物体形状 的改变,应力是 物体内部抵抗变
形的力
应变和应力之间 存在线性关系, 即应变正比于应
力
应变和应力之间 的关系可以用胡 克定律表示,即 应力=弹性模量
应变和应力关系
汇报人:XX
应变和应力的定义 应变和应力的测量方法 应变和应力的应用领域 应变和应力的研究进展 应变和应力的未来展望
我所认识的应力与应变1
我所认识的应力与应变机械与动力工程学院动力工程专业学号602430107013 杨栋君一点的应力与应变是材料力学与弹塑性力学两门课程中两个非常重要的基本概念,材料力学主要讨论平面应力状态以及平面应力状态下的应变分析,而弹塑性力学则研究空间应力状态与应变状态。
我最先接触应力与应变是在材料力学的绪论中,材料力学中的应力首先是由研究构件(组成机械的零件或结构物的构件统称为构件,如建筑物的梁和柱,机床的轴等)截面处某一点的强弱程度而逐渐引入的。
应力定义为“单位面积上所承受的附加内力”。
材料力学中物体因受外力作用而变形,其内部各部分之间因相对位置改变而引起的相互作用称为内力,在m 上,围绕点取微小面积,上分布截面{ EMBED Equation.KSEE3 \* MERGEFORMAT |m内力的合力为(的方向和大小与点的位置和的大小有关),平均应力,代表在范围内,单位面积上内力的平均集度。
通过引入数学的极限法,随着的逐渐缩小,当趋于零时,平均应力的大小和方向都趋向于一定极限,即,称为点的应力。
应力是一个矢量,一般既不与截面垂直,也不与截面相切。
在弹塑性力学中,针对应力首先引入了体力(作用在物体微粒体积上的力)和面力(沿着物体表面的分布力)的概念。
可变形固体在外力等因素的作用下,其内部各部分之间就要产生相互的作用,内力指物体内的一部分与其相邻的另一部分之间相互作用的力。
应力就是载荷引起的物体内单位面积上的内力,表示内力在截面上某一点的分布集度。
这点与材料力学中的应力的定义基本一致。
但弹塑性力学中更细化的从空间(取平行于坐标面的3个两两垂直的微元平面)研究一点处的应力状态,当微元面趋于零时,上面作用的应力就代表过点任何截面上的应力,由爱因斯坦的求和约定引入了应力张量。
每一行为过点的一个面上的3个应力分量,便构成应力张量。
或者(应力张量的9个分量必须满足正交坐标系中二阶张量的变换公式)。
由此可以看出应力不是一个简单的矢量,它是对某点内力的精确描述。
应力应变关系式
应力应变关系式应力应变关系是材料力学中一个重要的概念,它描述了材料在受到外力作用时,其内部产生的应力和应变之间的关系。
应力是指单位面积上承受的力的大小,应变是指材料在受力作用下的变形程度。
应力应变关系是材料力学中一个重要的公式,它对于工程设计和材料选择具有重要的指导意义。
应力应变关系公式为σ=Eε,其中σ为应力,E为材料的弹性模量,ε为应变。
这个公式表明,应力与应变之间呈线性关系,即应力随着应变的增加而增加,随着应变的减少而减少。
这个公式还可以表示为σ=克斯塔x,其中σ为应力,克斯塔为应变梯度,x为材料的剪切模量。
这个公式表明,应力与应变梯度之间呈线性关系,即应力随着应变梯度的增加而增加,随着应变梯度的减少而减少。
在描述应力应变关系时,需要注意以下几点:首先,应力应变关系只适用于线性弹性范围内,即材料在受力作用后能够恢复到原来的状态。
如果材料受到的应力超过其弹性极限,材料就会发生塑性变形,应力应变关系就不再适用。
其次,应力应变关系公式中的弹性模量和剪切模量是材料的固有属性,与材料的形状和尺寸无关。
因此,在进行材料力学实验时,需要测量这些属性,以便根据应力应变关系公式计算出材料的应力应变关系。
最后,应力应变关系公式只适用于均匀各向同性材料,即材料在各个方向上的性质相同。
如果材料不是均匀各向同性材料,例如复合材料或非晶态材料,应力应变关系公式就需要进行修改或重新定义。
总之,应力应变关系是材料力学中一个重要的概念,它描述了材料在受力作用下的应力和应变之间的关系。
通过测量材料的弹性模量和剪切模量,可以根据应力应变关系公式计算出材料的应力应变关系。
在使用应力应变关系公式时需要注意适用范围和材料性质等因素的影响。
我所认识的应力与应变的关系
我所认识的应力与应变的关系机械与动力工程学院我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
应力应变之间关系
我所认识的应力与应变的关系弹性与塑性应变的关系:一维:胡克定律弹性变形三维:广义胡克定律屈服条件应力曾变与增量之间的关系—增量理论塑性变形比例变形时全量理论低碳钢拉伸应力应变曲线:σO O’ O’’εOB:弹性阶段 BH:屈服阶段 HC:强化阶段 CE:局部变形阶段应力和应变的关系是本构关系,是物质特性的反映。
在弹性变形阶段,应力与应变之间的关系满足胡克定律,即:σij =Cijklεkl。
应力与应变的关系可以近似看成线性的,其中C是材料弹性常数,与弹性体内各点的坐标有关,还与温度和方向有关。
因此,对于常温下均匀弹性体,材料弹性常数是材料的特性常数。
J.Baushinger效应:强化材料随着塑性变形的增加,屈服极限在一个方向提高而在相反方向降低的效应。
其中理想的J.Baushinger效应是:屈服极限在一个方向上提高的数值与在相反方向上降低的数值相等。
应变能函数是物体在外力作用下变形的过程,根本上是一个热力学过称。
物体由一种变形状态到另一种变形状态,其中有外力对物体做功,物体与外界交换能量,物体的总能量发生变化。
热力学定律证明,理想弹性体存在应变能,即udu U ⎰=。
应变能函数是应变状态的单值函数,仅取决于应变的起始状态和最终状态,与变形过程无关,对于线弹性体,ij ij u εσ21=。
格林公式是弹性体的应力分量等于应变能对相应应变分量的偏导数,即ij ij ij u εεσ∂∂=)(,该公式适用于所有弹性体。
应力分析、应变分析的结果适合于连续介质力学的所有问题,与材料物质特性无关。
本构关系的影响因素有:材料、环境、加载类型、加载速度,用函数表达式表示为:),,(T t f εσ=单一曲线假设认为不管何种应力状态,加载时,应力强度和应变强度的关系是一种单一曲线关系,可由简单加载的应力应变获得。
等向强化模型是认为加载时,在各个方向强化的程度相同。
随动强化模型是认为一个方向强化的程度等于相反方向弱化的程度。
应力应变之间的关系
应力与应变的关系
你想啊,咱们每天上班下班,跟个陀螺似的转个不停,这不就是生活中的“应力”嘛!有时候,老板给的任务多了点,压力山大啊,感觉就像是被压得喘不过气来。
这时候,咱们不能硬扛,得学会“应变”。
比如,合理安排时间,提高工作效率,或者偶尔偷个闲,跟同事开个玩笑,放松放松心情,这不就是咱们应对压力的“应变”小妙招嘛!
再瞅瞅咱们身边的朋友圈,有时候也会遇到点小摩擦,比如意见不合啦,误会啥的。
这时候,如果都死磕着不放,那友谊的小船说翻就翻。
所以啊,咱们得学会变通,学会理解,学会包容,就像弹簧一样,压一下,弹回来,还能更加紧密。
这就是友情里的“应力与应变”,相互磨合,才能更加坚固。
还有啊,咱们对待自己的身体也得这样。
工作再忙,也不能忽视了健康。
不然,身体一出问题,那可就是大问题了。
这时候,咱们得赶紧调整作息,均衡饮食,适当运动,给身体减减压,让它也能“应变”过来,继续活力满满地陪咱们闯荡江湖。
说到底,应力与应变,就像是生活中的一场场小考,考验着咱们的智慧和心态。
咱们不能一味地逃避,也不能硬碰硬,得学会灵活应对,找到最适合自己的方式去化解压力,享受生活的乐趣。
毕竟,人生嘛,就是一场修行,一场关于如何在压力中成长,在变化中前行的修行。
所以啊,下次当你觉得压力山大的时候,不妨换个角度想想,这也许是个机会,让你学会更多,变得更加强大。
毕竟,没有压力,哪来的动力呢?咱们啊,就在这应力与应变的交织中,一步步成长,一步步走向更加美好的未来!。
我所认识的应力应变关系讲解
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx、、z 、、、只有一个不为零,六个应变分量x y xy yz zx、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,s为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E ,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D点卸载至零,应力应变关系自D点沿'DO∥OA,其中DO到达'O点,且''OO为塑性应变p,DG为弹性应变e,总应变为它们之和。
此后再继续加载,为应力应变关系沿ODEF变化,D点为后继屈服点,OD为后继弹性阶段,'s后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC,s s,而在强化阶段',称为Bauschinger效应。
DOD,s s从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T、t的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。
应力和应变之间的关系
应力和应变的关系曲线
描述
应力和应变的关系曲线是描述应力与应变之间关系的图形表示。
形状
在弹性范围内,曲线呈直线上升;超过弹性极限后,曲线出现弯曲。
应用
通过应力和应变的关系曲线,可以确定材料的弹性模量、屈服点和 极限强度等机械性能参数。
04
应力和应变的应用
弹性力学
弹性力学是研究弹性物体在外力作用下 变形和内力的规律的科学。在弹性力学 中,应力和应变是描述物体变形和受力 状态的基本物理量。
公式
σ=Eεsigma = E varepsilonσ=Eε
解释
σ为应力,E为弹性模量,ε为应变。 当应力增加时,应变也相应增加, 且两者成正比关系。
非线性关系
描述
当材料受到超过其弹性极限的应力时 ,应力与应变之间的关系不再是线性 的,而是呈现非线性关系。
特征
在非线性阶段,应变随应力的增加而 急剧增加,可能导致材料发生屈服或 断裂。
设计优化
优化结构设计
通过对应力和应变的分析,优化结构设计,提高结构的承载能力 和稳定性。
考虑材料特性
在设计过程中,充分考虑材料的力学特性和性能,合理选择和使 用材料,以降低应力和应变对结构的影响。
引入减震和隔震措施
通过引入减震和隔震措施,降低地震等外部载荷对结构产生的应 力和应变,提高结构的抗震性能。
时间
蠕变
在长期恒定应力作用下,材料会发生 缓慢的塑性变形,即蠕变。蠕变会影 响材料的应力和应变关系,特别是在 高温和长期载荷作用下。
时间依赖性
某些材料的力学性能会随时间发生变 化,对应力和应变的关系产生影响。 例如,疲劳和时效等现象会导致材料 性能随时间发生变化。
07
应力和应变在工程实践中的 注意事项
应力应变关系
我所认识的应力应变关系一 在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。
在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即εσX XE =在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律本式应该是91个应变分量 单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。
(1)具有一个弹性对称面的线弹性体的应力应变公式如下(2)正交各向异性弹性体的弹塑性体公式如下(3)各向同性弹性体的本构方程各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。
在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足:111213x x y zC C C σεεε=++ 212223y x y z C C C σεεε=++313233z x y zC C C σεεε=++ (2-3)x ε对x σ的影响与y ε对y σ以及z ε对z σ的影响是相同的,即有112233==C C C ;y ε和z ε对x σ的影响相同,即1213=C C ,同理有2123=C C 和3132=C C 等 ,则可统一写为:112233==C C C a =122113312332=====C C C C C C b = (2-4)所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。
在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。
广义胡可定律如下式1[()]1[()]1[()]x x y z y y x z z z x y E E E εσνσσεσνσσεσνσσ⎧=-+⎪⎪⎪=-+⎨⎪⎪=-+⎪⎩ 222xy xy yz yz zx zx G G G τγτγτγ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩v 泊松比 2(1)EG ν=+剪切模量 E :弹性模量/杨氏模量 虎克定律E G σετγ==对于应变能函数理解有点浅在此就不多做介绍了。
应力与应变间的关系
一、单向应力状态下应力与应变旳关系
1
1
E
σ1
σ1
E 为材料旳弹性模量,单位为N/m2.
横向线应变2,3与纵向线应变 1 成
正比,比值为泊松比γ,而符号相反。
2
3
1
二、纯剪切应力状态下应力与应变旳关系
G 或
G
τ γ γτ
G 为剪切弹性模量,单位为N/m2.
三、复杂应力状态下应力与应变旳关系
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料旳广义胡克定律 (1)符号要求
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
(b)三个剪应力分量: 若正面(外法线与坐标轴
P a
y
z
x
y 解:铜块上截面上旳压应力为
y
P A
300 103 0.12
y x
30MPa
x
(b) Z z
1 [ ( )] 0
xE x
y
z
由
1 [ ( )] 0
zE z
x
y
解得
x
z
(1 1 2
)
y
0.34(1 0.34) 1- 0.342
(30)
-15.5MPa
特例
在平面纯剪切应力状态下:σ 1 σ 3 τ xy
代入得
1 2
E
(1
2
3)
1 2
弹塑性力学 应力和应变之间的关系
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
应力与应变的关系
应力与应变的关系
应力与应变是相互关联的概念,有着密切的关系。
下文将对应力与应变的关系
作详细的解释。
首先,需要了解应力和应变的概念,应力是一种外力对材料的作用,包括张力,剪力,扭转力和摩擦。
应变本质上是材料力学特性的变化,是以体积为例子的变形,受应力的强大影响而形成的。
其次,应力和应变的关系本质上是一种“折中”的关系,材料对某种外力的反
应强度不定;受应力越大,应变就会越大,物体越有可能变形;受应力越小,应变就会越小,这就说明应力和应变之间呈现出正比的关系。
正是基于这种关系,受应力的大小可以通过测量材料的应变来表示,这是测定应力的一种重要方式。
最后,由于应力与应变之间的密切关系,对其进行计算模拟可以有效预测在应
力作用下材料的表现,科学上精确的计算模型可以模拟出完整的应力、应变关系并用于进行预测。
总之,应力与应变之间的关系是相互关联的,相互影响的关系。
它具有很强的
可预测性、可算法化的特点,可以更好地解释材料行为,并且为预测带来很大的方便。
我所认识的应力应变关系
我所认识的应⼒应变关系我所认识的应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。
则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。
在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。
所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。
有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。
由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。
这样的⼀组⽅程即所谓的本构⽅程。
讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。
⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC 段)该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,⾮线性弹性阶段AB 段和初始屈服阶段BC 段。
该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。
2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。
CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。
超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。
这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。
这⼀现象称为“颈缩”(necking )。
应力与应变关系
一、应力与应变1、应力在连续介质力学里,应力定义为单位面积所承受的作用力。
通常的术语“应力"实际上是一个叫做“应力张量” (stress tensor )的二阶张量。
概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。
具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。
很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。
对于连续介质来说,担当此任的就是应力张量,简称为应力。
2、应变应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。
因此是一个无量纲的物理量。
在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变",另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。
对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。
3、本构关系应力与应变的关系我们叫本构关系(物理方程)。
E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress )机械设计或工程结构设计中允许零件或构件承受的最大应力值。
要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力.凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。
许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。
失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。
5、许用应力、失效应力及安全系数之间关系塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。
应力应变关系
应力应变关系
应力应变关系是指在物体受到外力作用时,物体内部会产生应力,从而引起物体的变形,这种变形称为应变。
应力和应变之间的关系可以通过应力-应变曲线来描述。
在弹性区域内,应力和应变成正比,即应力与应变的比例关系为线性关系,弹性模量为比例系数。
弹性区域内,当外力去除后,物体能够恢复到原始形状和体积。
在超过弹性极限后,物体进入塑性变形区,此时应力和应变之间的关系不再是线性关系,物体会发生不可逆的塑性变形。
应力应变关系是材料力学的基本理论,对于材料的工程应用和设计具有重要的意义。
通过研究应力应变关系,可以了解材料的强度、刚度等力学性质,从而指导工程实践中的设计和施工。
我所认识的应力和应变
我所认识的应力和应变应力表示内力在截面上某一点的分布集度,它是一个矢量,不仅有大小和方向,而且和点的位置以及通过该点界面方向有关。
应力的国际单位为2/N m ,简写Pa 。
若把应力矢量Pn 沿微分面的线方向和切线方向分解,则沿法线方向的应力分量n σ称为主应力,沿切线方向的应力分量n τ称为剪应力。
应力是二阶张量,由于一点的应力矢量与该点的位置以及通过该点界面的方向有关,所以,凡提到应力,应同时指明它是对物体内的哪一点,并过该点的哪一个微分面。
应力分量的正负号规定为正面正向为正,负面负向为正。
在同一点的三个垂直微分面上共有9个应力张量,这9个应力分量作为一个整体组成所谓的二阶张量,称为应力张量,而其中的每个量,就称为为应力张量的分量。
记应力张量为ij σ并表示为x xy xy ij xy y xy xy xy z σττστστττσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应力张量ij σ描绘了一点处的应力状态,即只要知道了一点的应力张量ij σ,就可以完全确定通过该点的各个微分面上的应力。
主应力:在受力物体内一点任意方向的微分方向上,一般都有正应力和剪应力分量存在。
但是通过某一点的微分面发生旋转时,它的发现方向也会改变,骑上的正应力和剪应力分量的数值也会发生变化,在旋转到某一微分面时只有正应力分量而没有剪应力的微分面称为主平面,其法线方向称为应力方向,,其上的正应力就称为主应力。
主应力空间:在物体内的同一点处,必定存在三个互相垂直的主方向。
若把这三个互相垂直的主方向取为坐标系的三个坐标轴方向,依次建立起来的几何空间,称为主应力空间。
该空间的三个坐标称为应力主轴。
在主应力空间里,该点的应力张量ij σ可以表示为123000000ij σσσσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,式中:1σ,2σ和3σ为主应力。
通过同一点的所有微面上的正应力中最大和最小的是主应力;并且通过同一点的任意微分面上的总应力其绝对值介于最大主应力和最小主应力的绝对值之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。
各种材料的应力应变关系图如下图所示:理想线弹性模型 理想刚塑性模型线性强化刚塑性模型 理想弹塑性模型线性强化弹塑性模型 幂强化模型一. 线性弹性体1. 线性弹性体本构方程的一般形式在单向应力状态下,理想弹性材料的应力和应变之间的关系很简单,即x x E σε=,即胡克定律。
如果在三维应力状态下,应力应变之间仍然满足类似的一一对应的关系,则称这类弹性体为线弹性体。
对线弹性体,把单向应力状态下得胡克定律推广到三维应力状态下。
其一般形式为:111213141516x x y z xy yz zx C C C C C C σεεεγγγ=+++++212223242526y x y z xy yz zx C C C C C C σεεεγγγ=+++++313233343536z x y z xy yz zx C C C C C C σεεεγγγ=+++++414243444546xy x y z xy yz zx C C C C C C τεεεγγγ=+++++515253545556yz x y z xy yz zx C C C C C C τεεεγγγ=+++++616263646566zx x y z xy yz zx C C C C C C τεεεγγγ=+++++ (2-1)式(2-1)可简写为ij ijkl kl C σε= (2-2)由于应力张量和应变张量的对称性,弹性张量具有对称性:=ijkl ijlk C C 、=ijkl jikl C C ,从弹性应变能密度函数的概念出发,可以证明上述36个常数中,实际上独立的弹性常数只有21个,即=ijkl klij C C 。
满足广义胡克定律的线弹性体称为各向异性弹性体,各向异性弹性体是线弹性体的最一般情况。
2. 各向同性弹性体的本构方程各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。
在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足:111213x x y z C C C σεεε=++212223y x y z C C C σεεε=++313233z x y z C C C σεεε=++ (2-3)x ε对x σ的影响与y ε对y σ以及z ε对z σ的影响是相同的,即有112233==C C C ;y ε和z ε对x σ的影响相同,即1213=C C ,同理有2123=C C 和3132=C C 等 ,则可统一写为:112233==C C C a =122113312332=====C C C C C C b = (2-4)所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。
在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。
3. 弹性应变能密度函数弹性体受外力作用后,不可避免地要产生变形,同时外力的势能也要产生变化。
根据热力学的观点,外力所做的功,一部分将转化为弹性体的动能,一部分将转化为内能;同时,在物体变形过程中,它的温度也将发生变化,或者从外界吸收热量,或者向外界发散热量。
分析弹性体内任一有限部分∑的外力功和内能的变化关系,设弹性体内取出部分Σ的闭合表面为S ,它所包围的体积为V 。
以δW 表示外力由于微小位移增量在取出部分Σ上所作的功,δU 表示在该微小变形过程中取出部分Σ的内能增量,δK 表示动能增量,δQ 表示热量的变化(表示为功的单位),根据热力学第一定律,则有δW =δK +δU -δQ (2-5)假设弹性体的变形过程是绝热的,即假设在变形过程中系统没有热量的得失。
再假设弹性体在外力作用下的变形过程是一个缓慢的过程,在这个过程中,荷载施加得足够慢,弹性体随时处于平衡状态,而且动能变化可以忽略不计(这样的加载过程称为准静态加载过程),则根据上式表示的热力学第一定律,外力在变形过程中所做的功将全部转化为内能储存在弹性体内部。
这种贮存在弹性体内部的能量是因变形而获得的,称之为弹性变形能或弹性应变能。
由于弹性变形是一个没有能量耗散的可逆过程,所以,卸载后,弹性应变能将全部释放出来。
以X ,Y ,Z 表示单位体积的外力,X ,Y ,Z 表示作用在弹性体内取出部分Σ表面上单位面积的内力。
对上述的准静态加载过程,认为弹性体在外力作用下始终处于平衡状态。
外力所做的功W 包含两个部分:一部分是体力X ,Y ,Z 所做的功1W ;另一部分是面力X ,Y ,Z 所做的功2W ,它们分别为1()i i V VW X u dV Xu Yv Zw dV ==++⎰⎰⎰⎰⎰⎰ (2-6)2()i i S SW X u dS Xu Yv Zw dS ==++⎰⎰⎰⎰ (2-7)则:12()()V SW W W Xu Yv Zw dV Xu Yv Zw dS =+=+++++⎰⎰⎰⎰⎰ (2-8)外力由于微小位移增量在取出部分Σ上所做的功W δ表示为:12i i i i V S W W W X u dV X u dSδδδδδ=+=+⎰⎰⎰⎰⎰ (2-9)将平衡微分方程和静力边界条件代入上式,利用散度定理可得:,()()ij j i ij i j V SW u dV u l dS δσδσδ=-+⎰⎰⎰⎰⎰,,()(),ij j i ij i j ij i j V S Vu dV u dV u dV σδσδσδ=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (2-10) 因为,,,1()2ij ij ij i j j i ij i j u u u σδεσδσδ=+=,所以内能增量U δ为: ,ij i j ij ij V VU W u dV dV δδσδσδε===⎰⎰⎰⎰⎰⎰ (2-11)定义函数0()ij U ε,使之满足格林公式:0()ij ij ijU εσε∂=∂ (2-12)把它代入(2-11)有: 000ij ij ij ij V V V VU U dV dV U dV U dV δσδεδεδδε∂====∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ (2-13) 0()ij U ε表示单位体积的弹性应变能,称之为弹性应变能密度函数(或弹性应变比能函),简称应变能。
对(2-12)取积分,得0()00000()(0)ij ijU ij ij ij dU d U U εεσεε==-⎰⎰ (2-14) 假如0()ij U ε的具体函数形式能够确定的话,弹性体的应力与应变之间的关系也就完全确定了。
这可表明,弹性应变能密度函数是弹性材料本构关系的另一种表达形式。
假设0()ij U ε对ij ε有二阶以上的连续偏导数,有式(2-12)可得ijkl klijσσεε∂∂=∂∂ (2-15) 式(2-15)为广义格林公式。
将式(2-2)代入广义格林公式得:ijkl klij ijkl kl ijC C σσεε∂∂===∂∂ (2-16) 即各向异性弹性体独立的弹性常数只有21个。
三.屈服条件研究材料的塑性特性时,首先要弄清楚材料什么时候进入塑性变形阶段,即什么时候达到屈服。
固体在载荷作用下,最初处于弹性状态,随着载荷逐步增加至一定程度使固体内应力较大的部位出现塑性变形,固体由初始弹性状态进入塑性状态的过程就是初始屈服。
需要找到确定材料初始弹性状态的界限的准则,这个准则就称为初始屈服条件,简称屈服条件。
1.屈服函数与屈服曲面在简单应力状态下,如前面所述的应力应变关系曲线可知,当固体内部应力达到初始屈服极限时将产生初始屈服。
在复杂应力状态下,一般屈服条件可以表示为应力分量、应变分量、时间t 和温度T 的函数,它可写成:(,,,)0ij ij f t T σε= (3-1)不考虑时间效应和接近常温的情况下,时间t 和温度T 对塑性状态没什么影响,在初始屈服之前,应力和应变之间具有一一对应关系,所以应变分量ij ε可以用应力分量ij σ表示,因此屈服条件就仅仅是应力分量的函数了,它可表示为:()0ij f σ= (3-2)以应力张量的六个分量为坐标轴,就建立起一个六维应力空间,屈服函数()0ij f σ=表示应力空间中的一个曲面,即屈服曲面(简称屈服面)。
当应力点ij σ位于该曲面之内时(即()0ij f σ<),材料处于弹性状态;当应力点位于此曲面上时(即()0ij f σ=),材料由初始弹性开始屈服;如果应力进一步增加,材料进入塑性状态。