近世代数课件代数运算

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数 1.3 代数运算

近世代数            1.3 代数运算

§3代数运算一、代数运算定义1一个A×B到D的映射叫做一个A×B到D的代数运算.例1 令 A = Z , B = Z*, D= Q . 那么普通除法是A×B 到D的代数运算.例2 令V 是数域F上一个向量空间.那么V 的向量加法是一个V×V 到V 的代数运算, F的数与V 的向量间的乘法是一个F×V 到V 的代数运算.一个代数运算我们用 ◦ 来表示, 于是有◦ : (a ,b )→ d = a ◦ b .这里我们已把 ),(b a 用新的符号记成a ◦b 了.假定A = { a 1, a 2, …, a n }, B = { b 1, b 2, …, b m }.◦ : (a i , b j ) → d ij则a i ◦ b j = d ij , 于是 ◦ 的运算表如下:二、二元运算定义2假如◦是一个A×A到A的代数运算, 则说集合A 对于代数运算◦来说是闭的, 也说◦是A的代数运算或二元运算.例3普通加法、减法、乘法都是Z,Q,R,C的代数运算.例4 法则a◦b = a b + 1 是Z 的代数运算.三、代数系统定义3 一个集合A , 连同定义在A 上的一个或若干个运算所构成的系统称为代数系统 (或代数体系).例如: 代数系统( A , ◦ ); ( C , + , × );( A , ◦1 , ◦2 , … , ◦n ).定义4 设有一个代数系统 ( A ; ◦1 , ◦2 , … , ◦n ), 若S A ,且(S ; ◦1 , ◦2 , … , ◦n )也是一个代数系统,则称(S ; ◦1 , ◦2 , … , ◦n )是(A ; ◦1 , ◦2 , … , ◦n )的子代数系统(简称为子系统).。

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

大学数学《近世代数》课件

大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元

近世代数教学课件

近世代数教学课件

并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A

近世代数学习课件

近世代数学习课件
注:X上的一元和二元代数运算均满足 运算的封闭性。
定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:

近世代数课件(全)--1-2运算律,同态同构

近世代数课件(全)--1-2运算律,同态同构

2012-9-19
定义3

则称

是集合A的代数运算,若 a , b A, 都 有 a b=b a.

满足交换律.
定理2 如果 A 的代数运算 同时满足 交换律和结合律,那么 a 1 a 2 a n 中的元的次序可以任意掉换.
2012-9-19
定义4
是一个B×A到A的代数运算,⊕是一个A
n 0

0不在N中,矛盾。
( N , ) 与 (N , ) 不同构.
2012-9-19
作业: 证明: (1) { N ,}与 { N ,} (2) { Z , }与 { Z ,} (3)
{Q , }与 {Q ,}


不同构(普通乘法).
不同构.
(其中 Q
不同构. 为非零有理数集).
都是整数中
通常的加法“+”,现作
: ( A , ) ( A , )其 中 ( n ) n , n A
,那么
2012-9-19
是同构映射.
定理5 如果 ( A , , ) 和( A , , ) 同构,那么 (1) 满足结合律 也满足结合律 ; (2) (3)
的代数运算.若 , ⊕对于B的任何b,A的任何
a 1 , a 2 ,都有
a (b c ) ( a b ) ( a c )
则说 , ⊕适合第一分配律. 类似地可定义第二分配律. 如果⊕适合结合律 , , ⊕适合第一分配律,则
b B , a1 , a 2 , a n A, 都 有 a ( b1 b 2 b n ) ( a b1 ) ( a b 2 ) ( a b n )

近世代数主要知识点PPT课件

近世代数主要知识点PPT课件
• 假如运算1和1‘来说,有一个A到A’的满射的同态映射存在,同态满射 • 同构映射 一一映射的同态映射就是一个同构映射 • 自同构
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么‫ג‬x:

大学课程课件 近世代数教学课件

大学课程课件 近世代数教学课件

A1 , A2 ,, An

A1 A2 An 我们有
A1 A2 An
( x A1 A2 A) ( x至少属于某一Ai , i 1, 2,, n)
( x A1 A2 A) ( x属于每一Ai , i 1, 2,, n)
全体复数的集合,表示为C
设A,B是两个集合,如果A 的每一元素都是B 的
元素,那么就说A是B的子集,记作 作 ,或记
. 根据这个定义,A是B的的子集当且仅当
A B
.
BA 对于每一个元素 x,如果
,就有
x A
A是B的子集,记作:
xB
( A B) (x : x A x B)
f :x y
这时y 叫做 x 在f 之下的象,记作 . f (x )
例1 设
A B {1,2,3,4}
这是A到B的一个映射.
f : 1 2,2 3,3 4,4 1
例2 设A是一切非负数的集合,B是一切实数的集合. 对于每 一 与它对应. f 不是A到B的映射, x ,令 A f ( x) x 因为当 时, 不能由x唯一确定.
设 f :AB 如果对于每一 x A 与g是相等的. 记作
,B g:A ,都有
f ( x) g ( x)
都是A到B的映射, ,那么就说映射f
f g
例3

f : R R, x | x |
2 g : R R , x x 那么 .
f g
定义4: 设 是A到B 的一个映射, g : B C f :AB 是B 到C 的一个映射. 那么对于每一个 , x A g ( f ( x)) 是C中的一个元素. 因此,对于每一 ,就有C 中唯一的确定 x A 的元素 与它对应,这样就得到A到C 的一个映射,这映 g ( f ( x和 )) 射是由 所决定的,称为 f 与g 的合成(乘积),记作 f : A . B 于是有 g:BC

近世代数——代数运算

近世代数——代数运算

近世代数——代数运算§3 代数运算定义 3.1 设A,B,D 是三个非空集合。

从B A ?到D 的映射叫做一个B A ?到D 的二元代数运算;当A=B=D 时, A A ?到A 的映射简称A 上的代数运算或二元运算。

注:(1)为什么叫运算?不妨设D B A →?:φ是映射,若d b a =),(φ,我们可以说a 和b 在φ的法则下运算得到d 。

(2)一个代数运算可以用表示,并将(a,b)在下的像记作b a 。

(3) 是A 上的代数运算A b a ∈??,,A b a ∈ 。

例1 设A=Z ,B= Z \{0},D=Q ,则ba b a ),(:是B A ?到D 的代数运算,即是普通的除法。

例2 (1) 设A=B={1,2},D={奇,偶},则有代数运算)1,1(:奇,偶奇奇, )1,2(,)2,1()2,2(但是1221 ≠。

(2) 设A=B=D=Z ,则有代数运算)1(),(:+b a b a 但是12433)31(3)21(=?=?= 而991)42(1)32(1=?=?= ,所以)32(13)21( ≠。

例3 设A 是非空集合,则集合的并与交是幂集A z 上的代数运算。

C B C B ),(:;C B C B ),(::注:当A,B 是有限集时,B A ?到D 的代数运算通常可以用一个矩形表给出。

例4 设A={n a a a ,,21},B={m b b b 21,},则B A ?到D 的一个代数运算ij j i d b a = 可以表为1b 2b · · · m b1a 11d 12d · · · m d 12a 21d 22d · · · m d 2n a 1n d 2n d · · · nm d此表通常称为运算表或Cayley表。

作业:Page 9 第2题补充设A,B分别是元素个数为m和n的有限集合。

近世代数课件代数运算

近世代数课件代数运算

§1 代数运算
令 u 表示{a, b, c}中其余的那个元素.于是, (x y) z e z z , x (y z) x u z ,
从而, (x y) z x (y z) .
同理可知,当 y z 或 z x 时, (x y) z x (y z) .
§1 代数运算
则称“ ”适合结合律. (2)若对于任意的 a, b A 总有 ab ba ,
§1 代数运算
则称“ ”适合交换律. (3)若对于任意的 a, b, c A ,由 ab ac
可以推得 b c ,则称“ ”适合左消去律;若对 于 任 意 的 a, b, c A , 由 ba ca 可 以 推 得 b c ,则称“ ”适合右消去律;若“ ”既适合 左消去律,又适合右消去律,则称“ ”适合消 去律.
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“” 适合结合律、交换律和消去律; R 上的乘法 “”适合结合律和交换律,不适合消去律; R 上 减法“-”不适合结合律和交换律,但适合消 去律.
注意: R \{0} 上的乘法“”适合结合律、 交换律和消去律.
§1 代数运算
例 6 令 P nn 表示某个数域 P 上的全 体 n 阶方阵构成的集合.则 P nn 上的加法 适合结合律、交换律和消去律; P nn 上的 减法不适合结合律和交换律,适合消去 律; P nn 上的乘法适合结合律,不适合消去 律,当 n 1时不适合交换律.
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .

近世代数讲义--代数运算

近世代数讲义--代数运算

§1 代数运算
例 6 令 P nn 表示某个数域 P 上的全 体 n 阶方阵构成的集合.则 P nn 上的加法 适合结合律、交换律和消去律; P nn 上的 减法不适合结合律和交换律,适合消去 律; P nn 上的乘法适合结合律,不适合消去 律,当 n 1时不适合交换律.
2020/8/20
设 A 是一个非空集合. f 是 A 上的一个二
元运算.于是,对于任意的 a, b A ,存在唯
一的 c A ,使得 f (a, b) c .我们约定,将等
式 f (a, b) c 改写成 afb c .
2020/8/20
数学与计算科学学院Company Logo
§1 代数运算
近世代数又称为抽象代数,主要研究各式 各样的代数运算,是现代数学的一个内容丰富 有趣的分支.它不仅渗透到其它所有的数学分 支,而且在许多自然科学领域都有重要的应用.
(1)若对于任意的 a, b, c A 总有 (ab)c a(bc) ,
则称“ ”适合结合律. (2)若对于任意的 a, b A 总有 ab ba ,
2020/8/20
数学与计算科学学院Company Logo
§1 代数运算
则称“ ”适合交换律. (3)若对于任意的 a, b, c A ,由 ab ac
本课程只介绍最基本的一些近世代数知 识,主要讨论二元运算.
2020/8/20
数学与计算科学学院ห้องสมุดไป่ตู้ompany Logo
§1 代数运算
在讨论二元运算时,一般不用字母 f 或 g
等 表 示 二 元 运 算 , 而 是 用“”,“” ,
“ ” ,“-”,“”,“”或“”等记号表示二
元运算.特别地,我们常常用记号“ ”来表示任

《近世代数》PPT课件

《近世代数》PPT课件

例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 群 论
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
§1 代数运算
设 A1, A2 , , An ( n 为正整数)都是集合.我们将 集合
{(a1, a2 , , an ) | ai Ai , i 1, 2, n} 称为 A1, A2 , , An 的直积或笛卡儿积,记作
设 A 是一个非空集合. f 是 A 上的一个二 元运算.于是,对于任意的 a, b A ,存在唯 一的 c A ,使得 f (a, b) c .我们约定,将等 式 f (a, b) c 改写成 afb c .
§1 代数运算
近世代数又称为抽象代数,主要研究各式 各样的代数运算,是现代数学的一个内容丰富 有趣的分支.它不仅渗透到其它所有的数学分 支,而且在许多自然科学领域都有重要的应用.
则称“ ”适合结合律. (2)若对于任意的 a, b A 总有 ab ba ,
§1 代数运算
则称“ ”适合交换律. (3)若对于任意的 a, b, c A ,由 ab ac
可以推得 b c ,则称“ ”适合左消去律;若对 于 任 意 的 a, b, c A , 由 ba ca 可 以 推 得 b c ,则称“ ”适合右消去律;若“ ”既适合 左消去律,又适合右消去律,则称“ ”适合消 去律.
§1 代数运算
例如,对于我们刚才提到的集合 K4 上的那个乘 法“ ”,从乘法表立即可以看出“ ”适合交换律和消 去律.
设“ ”是非空集合 A 上的乘法.根据定义,我 们每一次只能对 A 中的两个元素进行运算.要对 A 中 n ( n 3 )个元素 a1, a2 , , an 施行运算,必需添 加 n2 次括号,规定运算次序.一般说来,随着加 括号的方式不同,运算的结果有可能不同.
§1 代数运算
例 3 设V 是实数域 R 上的三维欧几里得 空间.于是,向量的加法“”,减法“-”以及向 量与向量的叉乘“”都是V 上的二元运算;实数 与向量乘法“ ”是 R ,V 到V 的代数运算,不是 V 上 的 二 元 运 算 ; 向 量 与 向 量 的 点 乘“ ”是 V ,V 到 R 的代数运算,不是V 上的二元运算.
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵 组成的集合.则矩阵的加法、减法和乘法都是 P nn 上 的二元运算.数与矩阵的乘法是 P , P nn 到 P nn 的代 数运算,不是 P nn 上的二元运算.
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“”和交换律,不适合消去律; R 上 减法“-”不适合结合律和交换律,但适合消 去律.
注意: R \{0} 上的乘法“”适合结合律、 交换律和消去律.
§1 代数运算
例 6 令 P nn 表示某个数域 P 上的全 体 n 阶方阵构成的集合.则 P nn 上的加法 适合结合律、交换律和消去律; P nn 上的 减法不适合结合律和交换律,适合消去 律; P nn 上的乘法适合结合律,不适合消去 律,当 n 1时不适合交换律.
§1 代数运算
例 7 向量空间上的加法适合结合律、交换律 和消去律;向量空间上的减法不适合结合律和交换 律,适合消去律.
设“ ”是有限集 A {a1, a2 , , an} 上的乘法,其 乘法表如前所述.令 X (aij )nn .显而易见,“ ”适合 交换律当且仅当 X 为对称矩阵; “ ”适合左(右)消 去律当且仅当 X 的每一行(列)都是 a1, a2 , , an 的一 个排列.
§1 代数运算
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
· eabc e eabc aaecb bb c e a c cba e
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个 代数运算.
(1)若对于任意的 a, b, c A 总有 (ab)c a(bc) ,
本课程只介绍最基本的一些近世代数知 识,主要讨论二元运算.
§1 代数运算
在讨论二元运算时,一般不用字母 f 或 g 等 表 示 二 元 运 算 , 而 是 用“”,“” , “ ” ,“-”,“”,“”或“”等记号表示二 元运算.特别地,我们常常用记号“ ”来表示任 意一个二元运算,并将其称为乘法.当 ab c 时, c 称为 a 与 b 的乘积;甚至还将等式 ab c 简写成 ab c .
§1 代数运算
以下,如无特别声明,凡是提到代数运算 都是指二元运算.
有限集 A 上的每一个代数运算“ ”都可 以用一张表(称为乘法表)来定义.
设 A {a1, a2 , , an} ,“ ”A 是上的乘法 “ ”,则相应的乘法表如下:
§1 代数运算
· a1 a2 … an a1 a11 a12 … a1n a2 a21 a22 … a2n an an1 an2 … ann 其中, aia j aij A , i, j 1, 2, , n .
相关文档
最新文档