2019-2020宁波市中考数学试卷(附答案)

合集下载

2019年浙江省宁波市中考数学试卷附解析

2019年浙江省宁波市中考数学试卷附解析

2019年浙江省宁波市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ) A .11000B .1200C .12D .152.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D .小于45m 33.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( ) A .平均数B .方差C .中位数D .众数4.下列图形中是四棱柱的侧面展开图的是( )A .B .C .D .5.以下各组数为边长的三角形中,能组成直角三角形的是( ) A .3,4,6B .15,20,25C .5,12,15D .10,16,25 6.下列分式中是最简分式的是( )A .122+x x B .x24C .112--x xD .11--x x7.如图△ABC 与△A ′B ′C ′关于直线MN 对称,P 为MN 上任意一点,下列说法不正确的是( ) A .AP=A ′PB .MN 垂直平分AA ′,CC ′ C .这两个三角形面积相等D .直线AB ,A ′B ′的交点不一定在MN 上8.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时, 指针最可能停留的区域是( ) A .1B . 2C . 3D . 49.下面的算式: 2-(-2)=0;(-3)-(+3)=0;(3)|3|0---=;0-(- 1)=1,其中正确的算式有( ) A .1 个B .2个C .3 个D .4个二、填空题10.计算:2sin303cos60tan 45o o O -+的结果是 .11. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .12.直线y=kx-4与y 轴相交所成的锐角的正切值为12,则k 的值为 . 13.β为锐角,若2cos 2β=,则β= ;若3tan 3β=,则β= .14.已知扇形的弧长为20πcm ,圆心角为150°,则这个扇形的半径为 cm.. 15.钢筋的横截面面积是0.25π,长度为h ,则钢筋的体积V=0.257πh ,这里常量是 ,变量是 .16.已知点P(-1,2),PQ 垂直于x 轴,垂足为Q ,则点Q 的坐标为 . 17.若(1+x)(2x 2+mx+5)的计算结果中x 2项的系数为-3,则m= _. 18. 二元一次方程270x y -+=,若x= 3,则y= ;若x= ,则3l y =-. 19.222(2)-+-= , -8÷2×21=______ ,425-= .20.若(1)35a a x -+=-是关于x 的一元一次方程,则a = ,x = .21.如图,AD 为△ABC 中BC 边上的中线,则S △ADB S △ADC 12S △ABC (填“>”或“<”或“一”号)三、解答题22.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是31.求: (1) 口袋里黄球的个数; (2) 任意摸出1个红球的概率.23.已知:如图,⊙O 与⊙C 内切于点A ,⊙O 的弦AB 交⊙C 于D 点,DE ⊥OB ,E 为垂足. 求证:(1)AD=DB ; (2)DE 为⊙O 的切线.24.如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,E ,F 分别是AB ,BC •的中点,EF 与BD 相交于点M . (1)求证:△EDM ∽△FBM ;(2)若DB =9,求BM .25.点 C 是线段 AB 的黄金分割点,且AC>BC .若 AB=2. 求:(1)AC 与 BC 的长度的积;(2)AC 与 BC 的长度的比.26.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题(π≈3.14).⑴甲工人用的刷具是一根细长的棍子(如图①),长度AB 为20㎝(宽度忽略不计),他用刷具绕A 点旋转90°,则刷具扫过的面积是多少?⑵乙工人用的刷具形状是圆形(如图②),直径CD 为20㎝,点O 、C 、D 在同一直线上,OC=30㎝,他把刷具绕O 点旋转90°,则刷具扫过的面积是多少?OE DCBAA B 图①D图②O C27.若不等式2123x a x b -<⎧⎨->⎩的解集为11x -<<,求(1)(1)a b +-的值.28.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.29.用如图的大正方形纸片 3 张,小正方形纸片2 张,长方形纸片5 张,将它们拼成一个大长方形,并运用面积的关系,将多项式22352a ab b ++ 分解因式.22352(32)()a ab b a b a b ++=++30.已知一个角的补角比它的余角的2倍多100,求这个角的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.答案:B4.A5.B6.A7.D8.B9.A二、填空题10.111.2(2+12. 2±13.45°,60°14.2415.0.25π;V,h16.(-l ,O)17.-518.13,-519.0,-2,25-20.-1,421.=,=三、解答题 22.(1)6;(2)任意摸出一个红球的概率:154. 23.(1)连结OD ,证OD ⊥AB ;(2)连结CD ,利用三角形的中位线证明CD ∥OB .24.(1)略(2)3.25.∵点 C 是线段 AB 的黄金分割点,且 AC>BC .∴1AB =,21)3BC AB AC =-=-=(1)1)(38AC BC ⋅==(2)AC==BC26.(1)314㎝2;(2)1570㎝2.27.-628.略29.22++=++30.a ab b a b a b352(32)() 10°。

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求) 1.2-的绝对值为( ) A .12-B .2C .12D .2-2.下列计算正确的是( ) A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯ D .101.52610⨯4.若分式12x -有意义,则x 的取值范围是 ( )A .2x >B .2x ≠C .0x ≠D .2x ≠-5.如图,下列关于物体的主视图画法正确的是( )ABC D6.不等式32x->x 的解为( )A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为 ( ) A .1m =- B .0m = C .4m = D .5m =8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差2S 2( ) A .甲 B .乙 C .丙 D .丁9.已知直线m n P ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为( )A .60°B .65°C .70°D .7510.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3.5 cmB .4 cmC .4.5 cmD .5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷数学答案解析1.【答案】B 【解析】解:22-=故答案为:B【考点】绝对值及有理数的绝对值2.【答案】D【解析】解:A 、∵2a 和3a 不是同类项,∴不能加减,故此答案错误,不符合题意; B 、∵3256a a a a ⋅=≠,∴此答案错误,不符合题意;C 、∵()3265a a a =≠,∴此答案错误,不符合题意;D 、∵624a a a ÷=,∴此答案正确,符合题意。

故答案为:D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方 3.【答案】C【解析】解:91526000000=1.52610⨯。

故答案为:C【考点】科学记数法—表示绝对值较大的数4.【答案】B【解析】解:由题意得:20x -≠,解得: 2.x ≠故答案为:B【考点】分式有意义的条件5.【答案】C【解析】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C 。

【考点】简单几何体的三视图6.【答案】A【解析】解:去分母得:32x x ->,移项得:23x x --->,合并同类项得:33x -->,系数化为1得: 1.x ﹤故答案为:A【考点】解一元一次不等式7.【答案】D【解析】解:∵()2²44410b ac m -=--⨯⨯≥, 解不等式得:4x ≤,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当5m =时,方程²40x x m -+=没有实数根。

故答案为:D【考点】一元二次方程根的判别式及应用8.【答案】B【解析】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C 和D ;从方差看,乙的方差比甲的小,∴排除选项A 。

故答案为:B【考点】平均数及其计算,方差9.【答案】C【解析】解:设直线n 与AB 的交点为E 。

∵∠AED 是△BED 的一个外角, 1AED B ∴∠=∠+∠,45125B ∠=︒∠=︒,,452570AED ∴∠=︒+︒=︒m n ,270AED ∴∠=∠=︒。

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面几何体的俯视图正确的是( )A .B .C .D .2.如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要 35 片马赛克片. 已知每箱装有 125 片马赛克片,那么要铺满整个台面需购买马赛克( )A .6 箱B .7 箱C .8 箱D .9 箱 4.过⊙O 内一点M 的最长的弦长为6 cm ,最短的弦长为 4 cm ,则OM 的长为( ) A .3 cm B .2cm C .2 cm D .3 cm5.不等式025x >-的解集是( )A .25x <B .25x >C .52x <D .25-x < 6.等腰三角形形一个底角的余角等于30°,它的顶角等于( )A .30°B .60°C .90°D . 以上都不对7.如图,CD 是△ABC 的中线,DE 是△ACD 的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm 2,则△ABC 的面积是( )A . 4cm 2B .5 cm 2C . 6 cm 2D .8 cm 28.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS9.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1310.如图所示,已知△ABC ≌△DCB ,那么下列结论中正确的是( )A .∠ABC=∠CDB ,∠BAC=∠DCB ,∠ACB=∠DBCB .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠ABDC .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠DBCD .∠ABC=∠DBC ,∠BAC=∠CDB ,∠ACB=∠ACD二、填空题11.2cos45°的值等于 .12.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m ,左边的影子长为 1.5m ,且自己的身高为 1.80 m ,两盏路灯的高相同,两盏路灯之间的距离为 12m ,则路灯的高度为 m .13.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.14.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.15.设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).16.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅ 【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101πa ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1 x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。

从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这A. 165cm ,165cm B. 165cm ,170cm C. 170cm ,165cm D. 170cm ,170cm 【答案】B. 【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B. 考点:中位数;众数.8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为 A. 40° B. 50° C. 60° D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为 A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 2【答案】C. 【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm 2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D. 考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分)13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE=,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=xxy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOE BOD S S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOCBOD,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S .考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形; (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。

2019-2020宁波市中考数学试卷(附答案)

2019-2020宁波市中考数学试卷(附答案)

2019-2020宁波市中考数学试卷(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是()A .点AB .点BC .点CD .点D3.已知二次函数y =ax 2+bx bx++c ,且a>b>c a>b>c,,a +b +c =0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax 22+bx bx++c=0的一个实数根;②二次函数y =ax 22+bx bx++c 的开口向下;③二次函数y =ax 2+bx bx++c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立.A .①②B .①③C .①④D .③④4.下列运算正确的是()A .23a a a +=B .()2236a a =C.623a a a ÷=D .34a a a ⋅=5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为()A .53B .255C .52D .236.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且7.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.如图,在⊙O 中,中,AE AE 是直径,半径OC 垂直于弦AB 于D ,连接BE BE,若,若AB=27,CD=1CD=1,,则BE 的长是( )A .5B .6C .7D .810.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5211.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.若一个数的平方等于5,则这个数等于_____.16.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .18.正六边形的边长为8cm ,则它的面积为____cm 2.19.如图①,在矩形 MNPQ 中,动点中,动点 R 从点从点 N 出发,沿出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于关于 x 的函数图象如图②所的函数图象如图②所示,则矩形 MNPQ 的面积是的面积是________.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.两个全等的直角三角形两个全等的直角三角形 ABC ABC ABC 和和 DEF DEF 重叠在一起,其中∠A=60°,重叠在一起,其中∠A=60°,重叠在一起,其中∠A=60°,AC=1AC=1AC=1.固定△ABC .固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段)如图,△DEF 沿线段 AB AB AB 向右平移(即向右平移(即向右平移(即 D D D 点在线段点在线段点在线段 AB AB AB 内移动),连接内移动),连接内移动),连接 DC DC DC、、CF CF、、FB FB,四边形,四边形,四边形 CDBF CDBF CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当)如图,当 D D D 点移到点移到点移到 AB AB AB 的中点时,请你猜想四边形的中点时,请你猜想四边形CDBF CDBF 的形状,并说明理由.的形状,并说明理由.(3)如图,△DEF 的)如图,△DEF 的 D D D 点固定在点固定在点固定在 AB AB AB 的中点,然后绕的中点,然后绕的中点,然后绕 D D D 点按顺时针方向旋转△DEF,使点按顺时针方向旋转△DEF,使点按顺时针方向旋转△DEF,使 DF DF 落在落在落在 AB AB AB 边上,此时边上,此时边上,此时 F F F 点恰好与点恰好与点恰好与 B B B 点重合,连接点重合,连接点重合,连接 AE AE AE,请你求出,请你求出,请你求出 sinα的值.22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由. (3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 由科学记数法知90.000000007710-=⨯; 【详解】 解:90.000000007710-=⨯;故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10na ⨯中a 与n 的意义是解题的关键.2.B解析:B【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】解:∵△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1, ∴连接PP 1、NN 1、MM 1, 作PP 1的垂直平分线过B 、D 、C , 作NN 1的垂直平分线过B 、A , 作MM 1的垂直平分线过B , ∴三条线段的垂直平分线正好都过B , 即旋转中心是B . 故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.C解析:C 【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确;根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确故④正确.. 故选:C.4.D 解析:D 【解析】 【分析】 【详解】解:A 、a+a 2不能再进行计算,故错误; B 、(3a )2=9a 2,故错误;C 、a 6÷a 2=a 4,故错误; D 、a·a·a a 3=a 4,正确; 故选:D .本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB 222252AC BC =+=+=()3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 53AC AB==.故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.D 解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.B解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B .8.B解析:B 【解析】 【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】 ∵AB ∥CD , ∴∠BAC+∠C=180°, ∵∠C=70°,∴∠CAB=180°CAB=180°-70°-70°-70°=110°=110°, 又∵AE 平分∠BAC , ∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°, 故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.B 解析:B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=12AB=7 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2+(7 )2, 解得,OA=4 ∴OD=OC-CD=3,∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.C解析:C 【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案. 详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD ∥GF , ∴∠GFH=∠PAH , 又∵H 是AF 的中点, ∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APH ≌△FGH (ASA ), ∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1, ∵CG=2、CD=1, ∴DG=1, 则GH=12PG=12×22PD DG +=22, 故选:C .点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.D解析:D【解析】【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程用的时间相等即可列出一元一次方程..【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键. 12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形. 【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】 本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题. 二、填空题13.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分. ∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6, ∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 解析:5. 【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA =,根据三角函数的定义即可得到结论. 【详解】 过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒, ∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:,∴252512BOD OAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA =, ∴tan 5OB BAO OA∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质键是熟知平方根的性质解析:5±【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5±.故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD 解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×8×443=163cm2.∴S正六边形=6S△OCD=6×=6×16163=963cm2.考点:正多边形和圆19.2020【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是2020【点【点睛】本题为动点问题的函数图象探究题考查了动点到达睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】Q共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中 ∠ACB=90°∠ABC=30°∴AB=2 ……………………………………………………………………………………22分∴………3分(2)菱形………………………………………4分∵D 是AB 的中点的中点 ∴AD=DB=CF=1 在Rt △ABC 中,CD 是斜边中线是斜边中线∴CD=1CD=1………………55分 同理 BF=1 ∴CD=DB=BF=CF ∴四边形CDBF 是菱形…………………………6分(3)在Rt △ABE 中∴……………………………7分 过点D 作DH ⊥AE 垂足为H则△ADH ∽△AEB ∴即∴ DH=……8分 在Rt △DHE 中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE ,再结合两条平行线间的距离相等,则三角形ACD 的面积等于三角形BEF 的面积,所以要求的梯形的面积等于三角形ABC 的面积.根据60度的直角三角形ABC 中AC=1,即可求得BC 的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形; (3)过D 点作DH ⊥AE 于H ,可以把要求的角构造到直角三角形中,根据三角形ADE 的面积的不同计算方法,可以求得DH 的长,进而求解.22.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】 (1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°tan67°==AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.(1)详见解析;()详见解析;(22)存在,)存在,223+4+4;(;(;(33)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23;(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°BDC=60°++∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴AD=12AC=2,∴CD=22224223 AC AD-=-=,∴DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷t=2÷1=21=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°BDC=60°++∠BDC , 而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷t=14÷1=141=14(s ); 综上所述:当t=2s 或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D 在运动过程中,△DBE 是等边三角形这一点得到DE=CD ,从而可知当CD ⊥AB 时,CD 最短,则DE 最短,由此即可由已知条件解得DE 的最小值;(2)解第3小题的关键是:根据点D 的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t 的值了.。

最新2019年浙江省宁波市中考数学试卷含答案

最新2019年浙江省宁波市中考数学试卷含答案

最新浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.12.(4分)中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a54.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.96.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.39.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC 长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣411.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4分)计算:|﹣|=.14.(4分)要使分式有意义,x的取值应满足.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A 交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.最新浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.【解答】解:550000=5.5×105,故选:B.3.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.4.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.5.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.6.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.8.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.9.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.10.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∵S△ABC∴k1﹣k2=8.故选:A.11.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.12.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.二、填空题(每小题4分,共24分)13.【解答】解:|﹣|=.故答案为:.14.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.15.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣1516.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)17.【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.18.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.三、解答题(本大题有8小题,共78分)19.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.20.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.21.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.22.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.23.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°24.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.25.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.26.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

浙江省宁波市2020年中考数学试题(Word版,含答案与解析)

浙江省宁波市2020年中考数学试题(Word版,含答案与解析)

浙江省宁波市2020年中考数学试卷一、选择题(每小题4分,共40分)(共10题;共40分)1.-3的相反数为()A. -3B. −13C. 13D. 3【答案】 D【考点】相反数及有理数的相反数【解析】【解答】解:-3的相反数为 3;故答案为:D.【分析】相反数是指绝对值相等,正负号相反的两个数称作互为相反数,求一个数的相反数只要在这个数前加负号就可求得,0的相反数是0。

2.下列计算正确的是()A. a3⋅a2=a6B. (a3)2=a5C. a6÷a3=a3D. a2+a3=a5【答案】C【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、a3⋅a2=a3+2=a5 ,不符合题意;B、(a3)2=a3×2=a6 , 不符合题意;C、a6÷a3=a6−3=a3 ,符合题意;D、a2和a3不是同类项,不能合并,不符合题意.故答案为:C.【分析】同底数幂相乘,底数不变指数相加;幂的乘方,底数不变,指数相乘;同底数相除,底数不变,指数相减;只有同类项才能相加减.3.2019年宁波舟山港货物吞吐量为1 120 000 000吨,比上年增长3.3%,连续11年蝉联世界首位.数1 120 000 000用科学记数法表示为()A. 1.12×108B. 1.12×109C. 0.112×109D. 0.112×1010【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1 120 000 000 =1.12×109.故答案为:B.【分析】用科学记数法表示绝对值较大的数,一般表示为a×10n的形式,其中1≤|a|<10,n等于原数的整数位数-1.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A. B.C. D.【答案】 B【考点】简单组合体的三视图【解析】【解答】解:从前向后看,上面的球在正面的投影是一个圆,下面的长方体在正面的投影是一个矩形.∴主视图是B.故答案为:B.【分析】主视图是由从前向后看物体在正面形成的投影,据此分析即可判断.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A. 14B. 13C. 12D. 23【答案】 D【考点】简单事件概率的计算【解析】【解答】解: 从袋中任意摸出一个球有6种情况,其中摸出一个球是红色的有4种情况,= 故答案为:D.【分析】 首先确定从袋中任意摸出一个球共有几种情况,再确定摸出一个球是红色的有几种情况,然后用概率公式求概率即可.6.二次根式 √x −2 中字母x 的取值范围是( )A. x >2B. x ≠2C. x ≥2D. x ≤2【答案】 C【考点】二次根式有意义的条件【解析】【解答】解:由题意得:x-2≥0,∴ x ≥2 .故答案为:C.【分析】二次根式有意义的条件是被开方数大于等于0,据此列不等式即可求出x 的取值范围. 7.如图,在Rt △ABC 中,∠ACB=90°,CD 为中线,延长CB 至点E ,使BE=BC ,连结DE ,F 为DE 中点,连结BF.若AC=8,BC=6,则BF 的长为( )A. 2B. 2.5C. 3D. 4【答案】 B【考点】勾股定理,三角形的中位线定理,直角三角形斜边上的中线【解析】【解答】解:∵∠ACB=90°,∴AB=√AC 2+BC 2=√62+82=10 ,∵CD 为中线,∴CD=12AB=5,∵ BE=BC ,F 为DE 中点,∴BF 为△CDF 的中位线,∴BF=12CD=2.5,故答案为:B.【分析】先利用勾股定理求出AB 的长,再由直角三角形斜边中线等于斜边一半求出CD 的长,最后结合三角形的中位线定理即可求出BF 的长.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A. {y =x +4.50.5y =x −1B. {y =x +4.5y =2x −1C. {y =x −4.50.5y =x +1D. {y =x −4.5y =2x −1【答案】A【考点】二元一次方程的应用【解析】【解答】解:设木条长x尺,绳子长y尺,根据题意可得:{y=x+4.50.5y=x−1.故答案为:A.【分析】设木条长x尺,绳子长y尺,由“用一根绳子去量一根木条,绳子还剩余4.5尺”可得y=x+4.5, 由“将绳子对折再量木条,木条剩余1尺,”可得0.5y=x-1,;将两式联立为二元一次方程组即可.9.如图,一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是()A. abc<0B. 4ac−b2>0C. c−a>0D. 当x=−n2−2(n为实数)时,y≥c【答案】 D【考点】二次函数图象与坐标轴的交点问题,二次函数图象上点的坐标特征【解析】【解答】解:A、∵图象开口向上,∴a>0,∵对称轴在y轴左侧,∴x=-b2a<0,∴b>0;∵图象与y轴的交点在y轴上方,∴c>0,∴abc>0, 不符合题意;B、∵抛物线与x轴有两个交点,∴∆=b2−4ac>0,即4ac−b2<0 ,不符合题意;C、设图象的顶点为(1,k),∴k<0,则y=a(x+1)2+k=ax2+2ax+a+k,∴c=a+k,∴c-a=k<0,不符合题意;D、∵当x≥0, y≥c, 又∵n2≥0,x+n22=−1,∴x=-n2-2,由对称的性质可知这时的y≥c.故答案为:D.【分析】根据图象的张口即可得出a的正负,再结合对称轴方程可得b的正负,C的正负可由抛物线与y 轴的交点得到c>0,于是得出abc>0;由抛物线与x轴有两个交点,即二次方程有两个不相等的实数根,可得△>0,则4ac−b2<0;设图象设图象的顶点为(1,k), 结合k<0,据此列解析式,可得c=a+k, 于是可得c-a=k<0;由于n2≥0,结合x≥0, y≥c和二次函数对称的性质可得x=-n2-2, y≥c.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A. △ABC的周长B. △AFH的周长C. 四边形FBGH的周长D. 四边形ADEC的周长【答案】A【考点】全等三角形的判定与性质,等边三角形的性质【解析】【解答】解:∵△BDE和△FGH是等边三角形,△BDE≌△FGH,∴DE=FH=BE,∴DE+EC=BE+EC=BC,FH+FD=BD+DF=BF,∵∠EHG=60°,∴∠AHF+∠GHC=120°,∵∠A=60°,∴∠AFH+∠AHF=120°,∴∠AFH=∠GHC,∵FH=GH,∠A=∠C,∴△AFH≌△CHC(AAS),∴HC=FA,∴FH+FD+HC=BF+FA=BA,∴△ABC的周长,故答案为:A.【分析】根据等边三角形的性质,结合全等三角形的性质和等式的性质可得DE+EC=BC,FH+FD=BF,再利用角角边定理证明△AFH≌△CHC可得HC=FA,推出FH+FD+HC=BA,最后可得五边形DECHF的周长是△ABC二、填空题(每小题5分,共30分)(共6题;共30分)11.实数8的立方根是________.【答案】2【考点】立方根及开立方【解析】【解答】∵ 23=8,∴ 8的立方根是2.故答案为:2.【分析】本题考查了立方根的定义,找出2的立方是8是解题的关键.12.分解因式:2a2−18=________.【答案】2(a+3)(a-3)【考点】因式分解﹣运用公式法【解析】【解答】解:原式=2(a2-9)=2(a+3)(a-3).故答案为:2(a+3)(a-3).【分析】先提取公因式,再用平方差公式分解即可得出结果.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种________.【答案】甲【考点】平均数及其计算,方差【解析】【解答】解:∵甲、乙、丙作比较,甲、乙平均数较大,∴产量高,甲、乙比较,甲的方差较小,∴产量较稳.∴甲的产量既高又稳定.故答案为:甲.【分析】先比平均数,平均数越大,则产量越高,再比方差,方差较小,产量越稳定,据此分步分析可得结果.⌢的长为________cm(结果保留π).14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB【答案】 18π【考点】弧长及其计算【解析】【解答】解: AB ⌢ =120π×27180= 18π (cm). 故答案为: 18π .【分析】已知扇形圆心角和半径,利用弧长公式求值即可.15.如图,⊙O 的半径OA=2,B 是⊙O 上的动点(不与点A 重合),过点B 作⊙O 的切线BC ,BC=OA ,连结OC ,AC.当△OAC 是直角三角形时,其斜边长为________.【答案】 2 √2 或2 √3【考点】勾股定理,切线的性质【解析】【解答】解:如图,连接OB ,∵OA=OB ,OA=BC ,∴BC=OC=2,∵BC 为切线,∴OB ⊥BC ,∴OC=√OB 2+BC 2=2√2 ,当AC 为斜边,∠AOC=90°,∴AC=√OA 2+OC 2=√4+8=2√3 ,当OC 为斜边,OC=2√2.故答案为: 2 √3 .【分析】连接OB ,利用切线的性质,结合同圆的半径相等,利用勾股定理求出OC 的长,然后在△AOC 中,分别设OC 和AC 为斜边求值即可.16.如图,经过原点O 的直线与反比例函数 y =ax (a>0)的图象交于A ,D 两点(点A 在第一象限),点B ,C ,E 在反比例函数 y =b x (b<0)的图象上,AB ∥y 轴,AE ∥CD ∥x 轴,五边形ABCDE 的面积为56,四边形ABCD 的面积为32,则 a −b 的值为________, b a 的值为________.【答案】 24;−13【考点】三角形的面积,平行线分线段成比例,反比例函数图象上点的坐标特征【解析】【解答】解:1、如图,作EH ⊥x 轴,DK ⊥x 轴,连接KD 交x 轴于点M , ∵△ADE 的面积=五边形ABCDE 的面积-四边形ABCD 的面积=56-32=24,∴△ADE 的面积=S △AON +S 矩形ONEH +S △EHM +S △MDO=S △AON +S 矩形ONEH +S △EHM +S △DOK-S △DMK=12a-b+S △EHM +12a -S △DMK,∵A 、D 关于原点对称,∴DK=y A,∵AE ∥x 轴,∴EH=y A ,∴EH=DK ,∵∠EHM=∠DKM=90°,∠KMH=∠KMD ,∴△DKM ≌△EHM (AAS ),∴S△EHM=S△DMK,∴△ADE的面积=a-b=24;2、∵A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=bx的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=24,∴S△AOE=S△DEO=12,∵S△AOC=S△AOB=12,∴BC∥AD,∴BCAD =QBQA,∵S△ACB=S四边形ABCD-S△ACD=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴QB:QA=1:3,设QB=k,则QA=3k,∴AP=QP=1.5k,BP=0.5k,∴AP:BP=3:1,∴S△BOPS△AOP =−12b12a=BPAP=13,∴ba =−13.【分析】(1)作EH⊥x轴,DK⊥x轴,连接KD交x轴于点M,由△ADE的面积=五边形ABCDE的面积-四边形ABCD的面积求得△ADE的面积为24,然后根据反比例函数图象点的坐标特点列出△ADE的代数式,由于A、D关于原点对称,结合AE∥CD,利用角角边定理可证△DKM≌△EHM,即此两个三角形面积相等,最后推得△ADE的面积=a-b=24;(2)连接AC,OE,OC,OB,延长AB交DC的延长线于Q,设AB交x轴于P.根据反比例函数图象关于原点对称的特点,结合AE∥CD,求出证明四边形ACDE是平行四边形,从而推出S△ADE=S△ADC,推出S△AOC=S△AOB,可得BC∥AD,根据平行线分线段成比例的性质可得AD=3BC,从而推出QB:QA=1:3,,可求AP=3BP,根据面积的关系可求ba的值.三、解答题(本大题有8小题,共80分)(共8题;共80分)17.计算(1)计算:(a+1)2+a(2−a).(2)解不等式:3x−5<2(2+3x).【答案】(1)解:原式=a²+2a+1+2a-a²=4a+1(2)解:去括号,得3x-5<4+6x移项,得3x-6x<4+5合并同类项,得-3x≤9两边同除以-3,得x>-3【考点】整式的混合运算,解一元一次不等式【解析】【分析】(1)第一项利用完全平方式展开,第二项用单项式乘以多项式展开,然后合并同类项即得结果;(2)先去括号、移项,然后合并同类项,最后根据不等式的性质将x的系数化为1可得结果.18.图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)解:画出下列其中一种即可(2)解:画出下列其中一种即可.【考点】轴对称图形,中心对称及中心对称图形【分析】(1)分别取A、B、C、D、E,图1可以BE为对称轴,或以BD为对称轴根据对称的定义作图即可;图2可以MN为对称轴,根据对称的定义作图即可;(2)由于平行四边形是中心对称图形,在图1或图2的基础上选取一个三角形补充形成一个平行四边形即可.19.图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【答案】(1)解:过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△ABH中,∠B=47°,AB=50,∴BH=AB·cosB=50cos 47°≈50×0.68=34,∴BC=2BH=68cm(2)解:在Rt△ABH中,AH=AB·sinB=50sin47°≈50×0.73=36.5(cm) ,∴当车位锁上锁时,这辆汽车不能进入该车位【考点】等腰三角形的性质,解直角三角形的应用【解析】【分析】(1)过点A作AH⊥BC于点H,根据等腰三角形的性质可知BH=HC,再利用三角函数知识求出BH,则BC长可求;(2)利用三角形函数知识求出AH,由于汽车底盘低于车位锁底边BC上的高AH,可知上锁时,这辆汽车不能进入该车位.20.如图,在平面直角坐标系中,二次函数y=ax2+4x−3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式. 【答案】(1)解:把B(1,0)代入y=ax²+4x-3,得0=a+4-3,解得a=-1,∴y=-x²+4x-3=-(x-2)2+1,∴点A坐标为(2,1),∵抛物线的对称轴为直线x-2,且点C与点B关于对称轴对称,∴点C(3,0),∴当y>0时,x的取值范围是1<x<3(2)解:D(0,-3),∴点D移到点A时,抛物线向右平移2个单位,向上平移4个单位,y=-(x-4)2+5【考点】二次函数图象的几何变换,待定系数法求二次函数解析式【解析】【分析】(1)把B点坐标代入函数式即可求出a值,然后用配方法求出抛物线的顶点A的坐标,再利用对称的性质即可求出C点的坐标,现知B、C点坐标,看图可知1<x<3时,图象在x轴上方,即y>0;(2)令x=0, 即可得出D点坐标,比较A、D点坐标,可知D是由A向右平移2个单位,向上平移4个单位得到,再根据平移的特点即可得出这时的二次函数表达式.21.某学校开展了防疫知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了如下统计图(部分信息未给出).由图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等级?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?【答案】(1)解:30÷15%=200(人),200-30-80-40=50(人)补全频数直方图:=144°(2)解:360°× 80200(3)解:这次测试成绩的中位数的等级是良好。

2020年浙江省宁波市中考数学试卷附详细答案解析

2020年浙江省宁波市中考数学试卷附详细答案解析

2020年浙江省宁波市中考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)在店,1, 0, -2这四个数中,为无理数的是()乙A. A/3B. —C. 0D. - 2122.(4分)下列计算正确的是()A. a2+a -a'B. (2a) MaC. a— a-aD. (a~) -a53.(4分)2020年2月13 0,宁波舟山港45万吨原油码头首次挂靠全球最大油轮-- “泰欧”轮,其中45万吨用科学记数法表示为()A. 0.45X10"吨B. 4. 5X105吨 c. 45乂10」吨口. 4. 5X10,吨4.(4分)要使二次根式G有意义,则x的取值范围是()A. x#3B. x>3C. xW3D. x235.(4分)如图所示的几何体的俯视图为()声^^见方向6.(4分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率7.(4分)已知直线m〃n,将一块含30°角的直角三角板ABC按如图方式放置(NABC=30° ),其中A, B两点分别落在直线叫n上,若Nl=20° ,则N2的度数为()A. 20°B. 30°C. 45°D. 50°8.(4分)若一组数据2, 3, x, 5, 7的众数为7,则这组数据的中位数为()A. 2B. 3C. 5D. 79.(4 分)如图,在RtZiABC 中,ZA=90° , BC=2五,以BC 的中点0为圆心分别与AB, AC相切于D, E两点,则前的长为()A. 2LB.—C. JID. 2兀 4 210.(4分)抛物线y=x2-2x+m2+2 (m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限11. (4分)如图,四边形ABCD是边长为6的正方形,点E在边AB 上,BE=4,过点E作EF〃BC,分别交BD, CD于G, F两点.若M, N 分别是DG, CE的中点,则MN的长为()A. 3B. 273C. V13D- 412. (4分)一个大矩形按如图方式分割成九个小矩形,且只有标号 为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知 道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面 积,则n 的最小值是(A. 3B. 4C. 5D. 6二、填空题(每题4分,满分24分,将答案填在答题纸上)13. (4分)实数-8的立方根是.14. (4分)分式方程2二反的解是 3-x 2 -15. (4分)如图,用同样大小的 黑色棋子按如图所示的 规律摆放: 则第⑦个图案有 个黑色棋子.• • • ・ • • ••• ••• • ♦ ・ • • • ① ② ③ ®16. (4分)如图,一名滑雪运动员沿着倾斜角为34。

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷 (解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷 (解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷一、选择题(共10小题).1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为() A.5cm B.8cm C.10cm D.17cm3.(3分)如果a b>,那么下列不等式中正确的是()A.33a b->+B.22ab<C.ac bc>D.22a b-+<-+4.(3分)下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为3,4,5的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.46.(3分)若等腰三角形的一个内角为80︒,则底角的度数为()A .20︒B .20︒或50︒C .80︒D .50︒或80︒7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .138.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A 125cmB 75cmC .12cmD .13 cm10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<- B .11542a -<- C .11542a -- D .11542a -<<- 二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC ∆中,90C ∠=︒,65A ∠=︒,则B ∠= .12.(3分)用不等式表示:x 的两倍与3的差不小于5,则这个不等式是 .13.(3分)如图,在ABC ∆中,AB AC =,外角110ACD ∠=︒,则A ∠= ︒.14.(3分)如图,点P 在AOB ∠的平分线上,若使AOP BOP ∆≅∆,则需添加的一个条件是 (只写一个即可,不添加辅助线).15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <,则b 的值为 16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 本作业本.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 米.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 (填序号)19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE的长度是.20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩,并把解集在数轴上表示出来.22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =.(2)若25CDE ∠=︒,求A ∠的度数.23.(6分)对于任意实数a ,b ,定义关于@的一种运算如下:@2a b a b =-,例如:5@31037=-=,(3)@56511-=--=-.(1)若@35x <,求x 的取值范围;(2)已知关于x 的方程2(21)1x x -=+的解满足@5x a <,求a 的取值范围.24.(6分)如图,ABC ∆中,45C ∠=︒,若MP 和NQ 分别垂直平分AB 和AC ,4CQ =,3PQ=,求BC的长.25.(8分)如图,在ABC∆中,AB AC=,点D,E,F分别在AB,BC,AC边上,且=,BD CE=.BE CF(1)求证:DEF∆是等腰三角形;(2)当50∠的度数;A∠=︒时,求DEF(3)若A DEF∆是否为等边三角形.∠=∠,判断DEF26.(8分)如图,已知ABCBC cm=,P、Q是ABC∆边上=,6AB cm∆中,90B∠=︒,8的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,PQB∆第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ∆成为等腰三角形的运动时间.参考答案一、单项选择题(每小题3分,共30分)1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A .B .C .D .解:A 、是轴心对称图形,故选项符合题意;B 、不是轴心对称图形,故本选项不符合题意;C 、不是轴心对称图形,故选项不符合题意;D 、不是轴心对称图形,故本选项不符合题意.故选:A .2.(3分)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm 解:三角形的两条边长分别为6cm 和10cm ,∴第三边长的取值范围是:416x <<,∴它的第三边长不可能为:17cm .故选:D .3.(3分)如果a b >,那么下列不等式中正确的是( )A .33a b ->+B .22a b <C .ac bc >D .22a b -+<-+ 解:由a b >,得到22a b -+<-+,故选:D .4.(3分)下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .等腰三角形的中线与高线重合C .三边长为3,4,5的三角形为直角三角形D .到线段两端距离相等的点在这条线段的垂直平分线上解:A 、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A 选项错误;B 、等腰三角形的底边上的中线与与底边上的高重合,所以B 选项错误;C 、因为222(3)(4)(5)+≠,所以三边长为3,4,5不为为直角三角形,所以B 选项错误;D 、到线段两端距离相等的点在这条线段的垂直平分线上,所以D 选项正确.故选:D .5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是( )A .1B .2C .3D .4解:因为第2块中有完整的两个角以及他们的夹边,利用ASA 易证三角形全等,故应带第2块.故选:B .6.(3分)若等腰三角形的一个内角为80︒,则底角的度数为( )A .20︒B .20︒或50︒C .80︒D .50︒或80︒解:当80︒是等腰三角形的顶角时,则顶角就是80︒,底角为1(18080)502︒-︒=︒ 当80︒是等腰三角形的底角时,则顶角是18080220︒-︒⨯=︒.∴等腰三角形的底角为50︒或80︒故选:D .7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .13 解:AB AC =,AD 平分BAC ∠,8BC =,AD BC ∴⊥,142CD BD BC ===, 点E 为AC 的中点,152DE CE AC ∴===, CDE ∴∆的周长45514CD DE CE =++=++=.故选:C .8.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆解:设甲种运输车安排x 辆,根据题意得(465)410x x +-÷,解得:6x ,故至少甲要6辆车.故选:C .9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A 125cmB 75cmC .12cmD .13 cm解:由题意得:AF AD =,EF DE =(设为)x , 四边形ABCD 为矩形,10AF AD BC ∴===,8DC AB ==;90ABF ∠=︒;由勾股定理得:22210836BF =-=,6BF ∴=,1064CF =-=;在直角三角形EFC 中,由勾股定理得:2224(8)x x =+-,解得:5x =,222105125AE ∴=+=,)AE cm ∴=.故选:A .10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<- B .11542a -<- C .11542a -- D .11542a -<<- 解:23824x x x a <-⎧⎨->⎩①②, 解不等式①得:8x >,解不等式②得:24x a <-,∴不等式组的解集是824x a <<-,关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,是9、10、11、12, 122413a ∴<-,解得:11542a -<-, 故选:B .二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC ∆中,90C ∠=︒,65A ∠=︒,则B ∠= 25︒ . 解:90C ∠=︒,65A ∠=︒,906525B ∴∠=︒-︒=︒.故答案为:25︒.x-.12.(3分)用不等式表示:x的两倍与3的差不小于5,则这个不等式是235解:x的两倍表示为2x,与3的差表示为23x-,x-,由题意得:235x-.故答案为:23513.(3分)如图,在ABC∠=40︒.∠=︒,则A∆中,AB ACACD=,外角110解:AB AC=,ABC ACB∴∠=∠.而110∠=︒,ACD18011070∴∠=∠=︒-︒=︒,ACB ABCA∴∠=︒-︒-︒=︒.180707040故答案为:40.14.(3分)如图,点P在AOB∠的平分线上,若使AOP BOP∆≅∆,则需添加的一个条件是∠=∠(答案不唯一)(只写一个即可,不添加辅助线).APO BPO解:APO BPO∠=∠等.理由:点P在AOB∠的平分线上,∴∠=∠,AOP BOP在AOP∆中∆和BOPAOP BOP OP OPOPA OPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOP BOP ASA ∴∆≅∆,故答案为:APO BPO ∠=∠(答案不唯一).15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <,则b 的值为 6 解:221x a b x a b -⎧⎨-<+⎩①②, 解不等式①得:x a b +,解不等式②得:212a b x ++<, ∴不等式组的解集是:212a b a b x +++<, 关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <, ∴32152a b a b +=⎧⎪⎨++=⎪⎩, 解得:3a =-,6b =,16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 7 本作业本. 解:设她还可以买x 本作业本,根据题意得出:10 1.830.6x -⨯,解得:273x , 故最多还可以买7本作业本.故答案为:7.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 2 米.解:如图.在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒, 2.20.7 1.5BD =-=(米),222BD A D A B +'=', 221.5 6.25A D ∴'+=,24A D ∴'=,0A D '>,2A D ∴'=米,故答案是:2.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 ①②③ (填序号)解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,EBG CBG ∴∠=∠,FCG BCG ∠=∠,//EF BC ,EGB GBC ∴∠=∠,FGC BCG ∠=∠,EGB EBG ∴∠=∠,FCG FGC ∠=∠,BE EG ∴=,FG CF =,EF EG FG BE CF ∴=+=+,故①正确;180A ABC ACB ∠+∠+∠=︒,180ABC ACB A ∴∠+∠=︒-∠,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G , 12CBG ABC ∴∠=∠,12BCG ACB ∠=∠, 111(180)222GBC GCB ABC ACB A ∴∠+∠=∠+∠=︒-∠ 1902A =︒-∠, 180()BGC GBC GCB ∴∠=︒-∠+∠1180(90)2A =︒-︒-∠ 1902A =︒+∠,故②正确;过G 作GQ AB ⊥于Q ,GW BC ⊥于W ,ABC ∠和ACB ∠的平分线相交于点G ,GD AC ⊥,GQ GW ∴=,GW GD =,GQ GW GD ∴==,即点G 到ABC ∆各边的距离相等,故③正确;故答案为:①②③.19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE 的长度是 27 .解:BE AC ⊥,D 为AB 中点,2248AB DE ∴==⨯=,在Rt ABE ∆中,2227BE AB AE =-=,故答案为:27.20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是 12解: 设POA θ∠=,则30POB θ∠=︒-,作PM OA ⊥与OA 相交于M ,并将PM 延长一倍到E ,即ME PM =.作PN OB ⊥与OB 相交于N ,并将PN 延长一倍到F ,即NF PN =.连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则PQR ∆即为周长最短的三角形 .OA 是PE 的垂直平分线,EQ QP ∴=;同理,OB 是PF 的垂直平分线,FR RP ∴=, PQR ∴∆的周长EF =.12OE OF OP ===,且22(30)60EOF EOP POF θθ∠=∠+∠=+︒-=︒, EOF ∴∆是正三角形,12EF ∴=,即在保持12OP =的条件下PQR ∆的最小周长为 12 .故答案为: 12三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩,并把解集在数轴上表示出来.解:21512x x x x +>⎧⎪⎨+-⎪⎩①② 解不等式①得:1x >-,解不等式②得:3x ,则不等式组的解集是:13x -<,不等式组的解集在数轴上表示为:22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =. (2)若25CDE ∠=︒,求A ∠的度数.【解答】(1)证明:CD 是ACB ∠ 的平分线,BCD ECD ∴∠=∠,//DE BC ,EDC BCD ∴∠=∠,EDC ECD ∴∠=∠,DE CE ∴=.(2)解:25ECD EDC ∠=∠=︒,250ACB ECD ∴∠=∠=︒,AB AC =,50ABC ACB ∴∠=∠=︒,∴∠=︒-︒-︒=︒.A18050508023.(6分)对于任意实数a,b,定义关于@的一种运算如下:@2a b a b=-,例如:-=--=-.=-=,(3)@565115@31037(1)若@35x<,求x的取值范围;(2)已知关于x的方程2(21)1x a<,求a的取值范围.-=+的解满足@5x x解:(1)@35x<,235∴-<,x解得:4x<;(2)解方程2(21)1-=+,得:1x xx=,x a a a∴==-<,@1@25解得:3a>-.24.(6分)如图,ABCCQ=,∠=︒,若MP和NQ分别垂直平分AB和AC,4∆中,45CPQ=,求BC的长.3解:MP和NQ分别垂直平分AB和AC,∴=,AQ CQAP BP=,又45∠=︒,C∴∠=︒,90AQCPQ=,由勾股定理得53BP=,∴=++=.BC BP PQ CQ1225.(8分)如图,在ABC∆中,AB AC=,点D,E,F分别在AB,BC,AC边上,且=,BD CE=.BE CF(1)求证:DEF∆是等腰三角形;(2)当50∠的度数;A∠=︒时,求DEF(3)若A DEF∆是否为等边三角形.∠=∠,判断DEF解:(1)AB AC =,B C ∴∠=∠,在BDE ∆和CEF ∆中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;(2)DEC B BDE ∠=∠+∠,即DEF CEF B BDE ∠+∠=∠+∠,BDE CEF ∆≅∆,CEF BDE ∴∠=∠,DEF B ∴∠=∠, 又在ABC ∆中,AB AC =,50A ∠=︒,65B ∴∠=︒,65DEF ∴∠=︒;(3)由(1)知:DEF ∆是等腰三角形,即DE EF =, 由(2)知,DEF B ∠=∠,A DEF ∠=∠,A B ∴∠=∠,AB AC =,B C ∴∠=∠,A B C∴∠=∠=∠,ABC∴∆的等边三角形,60B DEF∴∠=∠=︒,DEF∴∆的等边三角形.26.(8分)如图,已知ABC∆中,90B∠=︒,8AB cm=,6BC cm=,P、Q是ABC∆边上的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,PQB∆第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ∆成为等腰三角形的运动时间.解:(1)224BQ cm=⨯=,8216BP AB AP cm=-=-⨯=,90B∠=︒,22224652213PQ BQ BP=+=+==;(2)2BQ t=,8BP t=-1⋯'28t t=-,解得:823t=⋯';(3)①当CQ BQ=时(图1),则C CBQ∠=∠,90ABC∠=︒,90CBQ ABQ∴∠+∠=︒,90A C∠+∠=︒,A ABQ∴∠=∠,BQ AQ∴=,5CQ AQ∴==,11BC CQ∴+=,112 5.5t∴=÷=秒.1⋯'②当CQ BC=时(如图2),则12BC CQ+=1226t∴=÷=秒.1⋯'③当BC BQ=时(如图3),过B点作BE AC⊥于点E,则6824105AB BCBEAC⨯===,所以185 CE===,故27.2CQ CE==,所以13.2BC CQ+=,13.22 6.6t∴=÷=秒.2⋯'由上可知,当t为5.5秒或6秒或6.6秒时,BCQ∆为等腰三角形.。

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 3x + 2 = 7D. 3x - 2 = 7答案:B2. 求下列函数的值域:y = x^2 - 4x + 4A. (-∞, 0]B. [0, +∞)C. (-∞, 4]D. [4, +∞)答案:B3. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 = c^2,下列哪个选项是正确的?A. 三角形ABC是锐角三角形B. 三角形ABC是直角三角形C. 三角形ABC是钝角三角形D. 无法确定三角形ABC的类型答案:B4. 计算下列表达式的值:(3x - 2)(x + 1) = ?A. 3x^2 + x - 2B. 3x^2 - x - 2C. 3x^2 + x + 2D. 3x^2 - x + 2答案:A5. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. 1B. -1C. -5D. 5答案:C6. 计算下列概率:在一个装有5个红球和3个蓝球的袋子里随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 5/8D. 3/8答案:C7. 计算下列几何图形的面积:一个矩形的长为6cm,宽为4cm,求其面积。

A. 12cm^2B. 18cm^2C. 24cm^2D. 30cm^2答案:C8. 计算下列函数的反函数:y = 2x + 1,求x关于y的表达式。

A. x = (y - 1) / 2B. x = (y + 1) / 2C. x = 2y - 1D. x = 2y + 1答案:A9. 计算下列统计数据:一组数据的平均数为5,中位数为4,众数为3,下列哪个选项是正确的?A. 这组数据是对称的B. 这组数据不是对称的C. 无法确定这组数据是否对称D. 这组数据是均匀分布的答案:B10. 计算下列函数的导数:y = x^3 - 3x^2 + 2x,求y'。

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 0.5D. -0.5答案:C2. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 9D. 12答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 78.5B. 25πC. 50πD. 78.5π答案:D5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 一个数的立方等于-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B7. 一个数除以-2的结果是3,这个数是多少?A. -6B. 6C. -3D. 3答案:A8. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 9答案:A9. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A10. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A二、填空题(本大题共5小题,每小题4分,共20分)11. 一个数的平方是16,这个数是____。

答案:±412. 一个数的立方根是2,这个数是____。

答案:813. 一个数的绝对值是7,这个数是____。

答案:±714. 一个数的倒数是2,这个数是____。

答案:1/215. 一个数的相反数是-3,这个数是____。

答案:3三、解答题(本大题共4小题,共50分)16. 已知一个等腰三角形的底边长为6厘米,两腰相等,且两腰的长度之和为20厘米,求这个等腰三角形的高。

(10分)解:设等腰三角形的两腰长度为x厘米,根据题意得:2x + 6 = 202x = 14x = 7所以两腰的长度为7厘米。

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年宁波市中考数学试卷

2019年宁波市中考数学试卷

2019年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1.(4分)﹣2的绝对值为()A.﹣B.2C.D.﹣22.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a43.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15。

26×108C.1。

526×109D.1。

526×10104.(4分)若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣25.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.(4分)不等式>x的解为()A.x<1B.x<﹣1C.x>1D.x>﹣17.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1B.m=0C.m=4D.m=58.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320S22。

11。

92 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020宁波市中考数学试卷(附答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D3.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )①x=1是二次方程ax 2+bx +c=0的一个实数根;②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立.A .①②B .①③C .①④D .③④ 4.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷=D .34a a a ⋅= 5.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A 5B 25C 5D .23 6.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 7.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C.m>﹣94D.m>﹣94且m≠﹣348.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°9.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.810.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.23C.22D.5211.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+12.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠二、填空题13.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.若一个数的平方等于5,则这个数等于_____.16.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .18.正六边形的边长为8cm ,则它的面积为____cm 2.19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.B解析:B【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,∴连接PP 1、NN 1、MM 1,作PP 1的垂直平分线过B 、D 、C ,作NN 1的垂直平分线过B 、A ,作MM 1的垂直平分线过B ,∴三条线段的垂直平分线正好都过B ,即旋转中心是B .故选:B .【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.4.D解析:D【解析】【分析】【详解】解:A 、a+a 2不能再进行计算,故错误;B 、(3a )2=9a 2,故错误;C 、a 6÷a 2=a 4,故错误;D 、a·a 3=a 4,正确;故选:D .本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB ===3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 3AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.6.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.B解析:B【解析】【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B . 8.B解析:B【解析】【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.D解析:D【解析】【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键. 12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE 、BF 交于点H .∵∠A=∠FPB=60°,∴AH ∥PF ,∵∠B=∠EPA=60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN .∵CD=10-2-2=6,∴MN=3,即G 的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 5【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA =,根据三角函数的定义即可得到结论. 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆,∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.16.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.17.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22125+=.考点:1.轴对称-最短路线问题;2.正方形的性质.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.【解析】【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数大于的数有个(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可解析:12.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共6个数,大于3的数有3个,P∴(大于3)31 62 ==;故答案为12.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.(1)C;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。

相关文档
最新文档