如何运用_几何画板_制作立体图形的动态画面

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的教学.数学是把人教聪明起来的一门学科,不是仅仅教会解几道数学题.GSP使学生的想象力得以发挥,能力得到发展,增强了创新意识,有益无害.

评述:教育短视是有害的.当前正在向素质教育转轨,必须要摈弃分数至上的顽固思想,而应把眼光放在提高学生的数学素质上.许多教育问题(包括计算机辅助教学)的成功解决不仅仅需要观念转变,更要大量的实践探索.我们衷心地希望CAMI不仅能够带来教学观念、手段、方法的改变、改进,更能培养出高素质的创新人才.

被采访者简介:

陶维林,男,1947年生,1968年参加工作.1982年毕业于南京师大数学系.现任南京师大附中数学教研组长,江苏省中学数学教学专业委员会理事,计算机辅助教学专题研究协作组负责人.近年来在《数学通报》、《中学数学教学参考》、

《中学数学月刊》、

《数学通讯》等杂志发表文章30余篇.编著的《几何画板实用范例教程》由清华大学出版社于2001年4月出版.多篇论文或课件获省级以上一等奖.多次参加全国研讨会议.

CA I专题

如何运用《几何画板》制作立体图形的动态画面山东临沂兰山高考补习学校 尹怀国 刘存刚

《几何画板》是一个适合于研究平面几何、解析几何等问题的软件,可以用来展示动态的几何关系.但由于《画板》是一个二维的软件,即对于每一个点都只用(x,y)两个值来表示,而三维空间中的点则需要(x,y,z)三个值来表示,因此《画板》目前的版本对立体几何图形的表现并不方便.怎样使画出的几何图形有较强的立体感?如何实现立体几何图形的运动变化?《画板》使用者面前的一个问题.

一般来说,一个图形从一个位置(形状)运动到另一个位置(形状),从《画板》的角度,需要定义三个图形:运动图形、源图形(运动前)、目的图形(运动后).将“运动图形”的各点和“源图形”的各点对应顺序选择,定义一个运动;再将“运动图形”的各点和“目的图形”的各点对应顺序选择,定义另一个运动.这两个运动中的一个为图形变化用,另一个为复原用.

按照这种思路,画水平放置的正方形的直观图的步骤如下:

①画线段AB,度量线段AB的长度并标记距离.画点C,按照标记的距离向右平移得点C′.双击点C 标记为中心,将点C′逆时针旋转90°得点C″.将点C′逆时针旋转45°,并将所得的点缩放(新1旧2)得点

C .

②画点D,将点D按照标记的距离向右平移得点D′.连结CD、DD′、C′D′、CC′.

③定义点D到点C″的移动按扭,用文本工具将按钮标签记为“原图”;定义点D到点C 的移动按钮并改名为“直观图”.

④隐藏不必要显示的图形对象.双击按钮“原图”,再双击按钮“直观图”,即可看到一个正方形“躺下”变为符合斜二测画法法则的水平放置的直观图———平行四边形;拖动点B改变线段AB的长度可以改变图形的大小.

但由于《画板》在实现点到点的移动时都走直线,这样制作出的动画并不符合实际情况的要求.这是因为点E在空间中的运动轨迹应该是一段圆弧,而不是一条线段.对于观察者来说,他所看到的运动轨迹应该是椭圆上的一段弧,其中椭圆的中心为点C且过点C ,以点C″为长轴的一个端点.因此动画的制作步骤应该为:

①同上.

②作以C为圆心、过点C″的圆,过点C 作直线CC″(椭圆的长轴所在的直线)的垂线和平行线,取垂线与圆的右交点为D,连CD与平行线交于点E,作以C为圆心过点E的圆.在大圆上任取一点F,连CF与小圆交于点G,过F作CC″的垂线,过G作CC″的平行线,两线交点为H.同时选中点G、H,利用“作图”菜单构造轨迹.这样,符合条件的椭圆就制作好了.

③在椭圆上另取一点J,将点J按照标记的向量向右平移得点J′,连结CJ、JJ′、C′J′、CC′.定义点J到点C″的移动按钮并改名为“原图”,定义点J到点C 的移动按钮并改名为“直观图”.

④隐藏不必要显示的图形对象.双击按钮“原图”,再双击按钮“直观图”,即可看到一个正方形以CC′所在的直线为旋转轴在空间中旋转,“躺下”变为水平放置的符合斜二测画法的直观图(图1).由于点J定义

在椭圆上,所以在动画过程中,点J 的运动轨迹是椭圆上的一段弧

.

根据这一制作思路,我们就可以制作出一个比较复杂的动画:将一个平面图形折叠成正方体.北京、安徽、内蒙古三地

2001年春考第11题是这样的:如图2是正方体的平面展开图,在这个正方体中(以下略).

制作步骤如下:

①(接上)将点J ′按照标记的距离向右平移得点

J ″,再将点J ″按照标记的距离向右平移得点J ,将点J

按照标记的距离左移得点J ′.依次同时选中点C 、J 并

标记向量,同时选中水平排列的五个点J ′、J 、J ′、J ″、J ,按照标记的向量平移,分别得点J ″、J ′、J ″、J 、J ″″;

同时选中这五个点中的左起第二、第三点J ′、J ″,按照

标记的向量平移,分别得点J ″、J ,连结相应的线段,即可得到折叠前的图形.

②双击按扭“直观图”,将点的标签改为原题中对

应的字母(图3),选中A 、B 、C 、D 四点(正方体下底面的顶点),按照标记的距离向上平移得点A ′、B ′、C ′、

D ′,将点B ′按照标记的距离向上平移得点B ″.

③左侧面的折叠:作以点A 为圆心过点A ′的圆,在圆上任取一点K ,将点K 按照标记的向量平移得点

K ′,连结A K 、K K ′、D K 、D K ′,定义点K 到点E 的“移

动2”按钮,定义点K 到点A ′的“移动1”按钮.隐藏不

必要显示的图形对象,双击“移动2”,再双击“移动1”,即可看到一个四边形以A D 所在的直线为旋转轴“立起来”成为正方体左侧面.在这一动画过程中点K 的运动轨迹是圆上的一段弧.

④右侧面的折叠:作以点B 为圆心过点B ′的圆,在圆上任取一点L ,将点L 按照标记的向量平移得点L ′,连结BL 、BL ′、CL 、L L ′.作点B 关于L 的对称点

B ′,作点

C 关于L ′的对称点C ′,连结B ′L 、B ′C ′、C ′L ′.

同选中B ′、C ′两点和线段B ′L 、B ′C ′、C ′L ′,制作“显示

1”、“隐藏1”两个按钮.定义点L 到点B ′

(点B 上方的点)的“移动3”按钮和复原用按钮“移动4”.隐藏不必

要显示的图形对象,双击“移动3”即可使两个小正方形一起以B C 所在的直线为旋转轴“立起来”.

⑤上底面的折叠:作以B ′(点B 上方的点)为圆心过点B ″的圆,在圆上任取一点M ,将点M 按照标记的向量平移得点M ′,连结B ′M 、M M ′、M ′C ′,同时选中这三条线段和M 、M ′两点,制作“显示2”、“隐藏2”两个按钮,定义点M 到A ′的“移动5”按钮和点M 到

B ″的“移动6”按钮.

⑥前侧面的折叠:制作以点B 为中心、点B ′为长

轴的上顶点且过点F 的椭圆,在椭圆上另取一点S ,将点S 按照标记的距离向左平移得点S ′,连结A S ′、

S S ′、A S 、BS.同时选中这四条线段和S 、S ′两点,制作

“显示3”、“隐藏3”两个按钮;同时选中折叠之前的图形中对应的四条线段和两个顶点,制作“显示4”、“隐藏4”两个按钮.定义点S 到点B ′的“移动7”按钮和点S 到点F 的“移动8”按钮.

⑦后侧面的折叠:制作以点D 为中心、点D ′为长轴的上顶点且过点N 的椭圆,在椭圆上另取一点Y ,将点Y 按照标记的距离右移得点Y ′,连结D Y 、Y Y ′、

C Y 、C Y ′.同时选中这四条线段和Y 、Y ′两点,制作“显示5”

、“隐藏5”两个按钮;同时选中折叠前的图形中对应的四条线段和两个顶点,制作“显示6”、“隐藏6”两个按钮.定义点Y 到点D ′的“移动9”按钮和点Y 到点N 的“移动10”按钮.

⑧依次同时选中如下按钮:“移动1”、“隐藏6”、“显示5”、“移动9”、“隐藏4”、“显示3”、“移动7”、“移动3”、“隐藏1”、“显示2”、“移动5”,制作“序列”按钮,用文本工具将按钮标签改为“折叠”;依次同时选中如

下按钮:

“移动6”、“隐藏2”、“显示1”、“移动4”、“隐藏

3”、“显示4”、“移动8”、“隐藏5”、“显示6”、“移动10”、

“移动2”,制作“序列”按钮,用文本工具将按钮标签改为“展开”.隐藏不必要显示的图形,并将一些点的标签改为原题中对应的字母,一个漂亮的动画就制作成功了.由斜二测画法的法则可知A D 和A F 两线重合(图

4),影响了直观图的立体感.这时可以拖动点A 以改

变视角(图5).按照上面的方法也可制作正三棱柱侧面展开图的动画.

参考文献

1 周建华.试论《几何画板》对立体几何图形的表现力.中学

数学月刊,1999,11

相关文档
最新文档