(2010-2019)十年高考数学真题分类汇编:立体几何(含解析)
十年真题(2010-2019)高考数学(理)分类汇编专题01 集合(新课标Ⅰ卷)(解析版)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1理科01】已知集合M={|﹣4<<2},N={|2﹣﹣6<0},则M∩N=()A.{|﹣4<<3} B.{|﹣4<<﹣2} C.{|﹣2<<2} D.{|2<<3}【解答】解:∵M={|﹣4<<2},N={|2﹣﹣6<0}={|﹣2<<3},∴M∩N={|﹣2<<2}.故选:C.2.【2018年新课标1理科02】已知集合A={|2﹣﹣2>0},则∁R A=()A.{|﹣1<<2} B.{|﹣1≤≤2} C.{|<﹣1}∪{|>2} D.{|≤﹣1}∪{|≥2}【解答】解:集合A={|2﹣﹣2>0},可得A={|<﹣1或>2},则:∁R A={|﹣1≤≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={|<1},B={|3<1},则()A.A∩B={|<0} B.A∪B=R C.A∪B={|>1} D.A∩B=∅【解答】解:∵集合A={|<1},B={|3<1}={|<0},∴A∩B={|<0},故A正确,D错误;A∪B={|<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={|2﹣4+3<0},B={|2﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={|2﹣4+3<0}=(1,3),B={|2﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={|2﹣2﹣3≥0},B={|﹣2≤<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(﹣3)(+1)≥0,解得:≥3或≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={|2﹣2>0},B={|},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={|2﹣2>0}={|>2或<0},∴A∩B={|2<或<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(,y)|∈A,y∈A,﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,=5时,y=1,2,3,4,=4时,y=1,2,3,=3时,y=1,2,=2时,y=1综上知,B中的元素个数为10个故选:D.8.【2010年新课标1理科01】已知集合A={∈R|||≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:A={∈R|||≤2,}={∈R|﹣2≤≤2},故A∩B={0,1,2}.应选D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =I ( ) A .{}|32x x -<< B .{}|52x x -<< C .{}|33x x -<< D .{}|53x x -<<【答案】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =I ( ) A .[2,3] B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤Q ,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =I ( ) A .{3,2,1,0}--- B .{}1,0,1,2,3- C .{}3,2-- D .{}3,2,1,0,1,2,3---【答案】B 【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B .4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =I ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]U A =-∞ð,所以()U A B =I ð(]1,2,故选B. 5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1 B .2 C .3 D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂ð=( ) A .{-1,0,1,2,3} B .{-1,0,1,2} C .{-1,0,1} D .{-1,3}【答案】D 【解析】由题意,集合{}2log (1)2{|13}M x x x x =+<=-<<,则{|1R M x x =≤-ð或3}x ≥ 又由{1,0,1,2,3}N =-,所以(){1,3}R M N ⋂=-ð,故选D.7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B I ð=( ) A .{}1,0- B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】因为{}{}lg(1)1A x y x x x ==-=>,所以{}1R C A x x =≤, 又{}1,0,1,2,3B =-,所以{}()1,0,1R C A B =-I . 故选B8.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =R I ð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】1|2B x x 禳镲=?睚镲铪Q1|2R C B x x 禳镲\=<睚镲铪即(){1,0}R A C B ?-故选A 。
十年真题(2010-2019)高考数学(理)分类汇编专题10 立体几何与空间向量解答题(新课标Ⅰ卷)(解析版)
专题10立体几何与空间向量解答题历年考题细目表历年高考真题汇编1.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD =60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.【解答】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且,又MB∥AA1,MB,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为轴,以DC所在直线为y轴,以DD1所在直线为轴建立空间直角坐标系,则N(,,2),M(,1,2),A1(,﹣1,4),,,设平面A1MN的一个法向量为,由,取,得,又平面MAA1的一个法向量为,∴cos.∴二面角A﹣MA1﹣N的正弦值为.2.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE,又因为,所以PH,所以在△PHD中,sin∠PDH,即∠PDH为DP与平面ABFD所成角的正弦值为:.3.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴P A⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵P A∩PD=P,且P A⊂平面P AD,PD⊂平面P AD,∴AB⊥平面P AD,又AB⊂平面P AB,∴平面P AB⊥平面P AD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面P AD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由P A=PD,∠APD=90°,可得△P AD为等腰直角三角形,设P A=AB=2a,则AD.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为、y、轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面P AD,AD⊂平面P AD,∴AB⊥PD,又PD⊥P A,P A∩AB=A,∴PD⊥平面P AB,则为平面P AB的一个法向量,.∴cos.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.【2016年新课标1理科18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴(0,2a,0),(,﹣2a,a),(﹣2a,0,0)设平面BEC的法向量为(1,y1,1),则,则,取(,0,﹣1).设平面ABC的法向量为(2,y2,2),则,则,取(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ,则二面角E﹣BC﹣A的余弦值为.5.【2015年新课标1理科18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG,且EG⊥AC,在直角△EBG中,可得BE,故DF,在直角三角形FDG中,可得FG,在直角梯形BDFE中,由BD=2,BE,FD,可得EF,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD••1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣y,由(Ⅰ)可得A(0,,0),E(1,0,),F(﹣1,0,),C(0,,0),即有(1,,),(﹣1,,),故cos,.则有直线AE与直线CF所成角的余弦值为.6.【2014年新课标1理科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴(0,,),(1,0,),(﹣1,,0),设向量(,y,)是平面AA1B1的法向量,则,可取(1,,),同理可得平面A1B1C1的一个法向量(1,,),∴cos,,∴二面角A﹣A1B1﹣C1的余弦值为7.【2013年新课标1理科18】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则(1,0,),(﹣1,,0),(0,,),设(,y,)为平面BB1C1C的法向量,则,即,可取y=1,可得(,1,﹣1),故cos,,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.8.【2012年新课标1理科19】如图,直三棱柱ABC﹣A1B1C1中,AC=BC AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°9.【2011年新课标1理科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB =2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面P AD.故P A⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D﹣y,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).(﹣1,,0),(0,,﹣1),(﹣1,0,0),设平面P AB的法向量为(,y,),则即,因此可取(,1,)设平面PBC的法向量为(,y,),则,即:可取(0,1,),cos故二面角A﹣PB﹣C的余弦值为:.10.【2010年新课标1理科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为,y,轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m,n=1,故C(),设(,y,)为平面PEH的法向量则即因此可以取,由,可得所以直线P A与平面PEH所成角的正弦值为.考题分析与复习建议本专题考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以解答题题型出现,重点考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值.【答案】(1)详见解析;(2529. 【解析】解:(1)连接1AB 交1A E 于点G ,连接FG . 因为11AGA B GE ∆∆:,所以1112AA AG GB EB ==,又因为2AF FC =,所以1AF AGFC GB =,所以1//FG CB , 又1CB ⊄面1A EF ,FG ⊂面1A EF ,所以1//CB 面1A EF .(2)过C 作CO AB ⊥于O ,因为CA CB =,所以O 是线段AB 的中点.因为面CAB ⊥面11ABB A ,面CAB I 面11ABB A AB =,所以CO ⊥面1ABA .连接1OA , 因为1ABA ∆是等边三角形,O 是线段AB 的中点,所以1OA AB ⊥.如图以O 为原点,OA u u u v ,1OA u u ur ,OC u u u r 分别为x 轴,y 轴,轴的正方向建立空间直角坐标,不妨设2AB =,则(1,0,0)A ,13,0)A ,(0,0,1)C ,(1,0,0)B -,12(,0,)33F , 由11AA BB =u u u v u u u v ,得(3,0)B -,1BB 的中点33(2E -,133(,2A E =-u u u r ,112(,3,)33A F =--u u u u r . 设面1A FE 的一个法向量为1111(,,)n x y z =u v ,则111100A E n A F n ⎧⋅=⎪⎨⋅=⎪⎩u u u v u v u u u u v u v ,即1111230333302x z x y ⎧-+=⎪⎪⎨⎪-=⎪⎩,得方程的一组解为111135 xyz=-⎧⎪=⎨⎪=⎩,即1(1,3,5)n=-u r.面1ABA的一个法向量为2(0,0,1)n=u u r,则121212529cos,29n nn nn n⋅<>==u r u u ru r u u ru r u u r,所以二面角1F A E A--的余弦值为529.2.如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,EF P 平面ABCD.(1)求证:平面ACF⊥平面BDF;(2)若60CBA∠=︒,求二面角A BC F--的大小.【答案】(1)见证明;(2)4π【解析】(1)∵菱形ABCD,∴AC BD⊥,∵FD⊥平面ABCD,∴FD AC⊥,∵BD FD D⋂=,∴AC⊥平面BDF,∵AC⊂平面ACF,∴平面ACF⊥平面BDF.(2)设AC BD O=I,以O为原点,OB为x轴,OA为y轴,过O作平面ABCD的垂线为轴,建立空间直角坐标系,则(3,0,0)B ,()0,1,0C -,(3,0,3)F -,(3,1,0)BC =--u u u r ,(23,0,3)BF =-u u u r,设平面BCF 的法向量(,,)n x y z =r,则302330n BC x y n BF x z ⎧⋅=--=⎪⎨⋅=-+=⎪⎩u u u v v u u u v v ,取1x =,得(1,3,2)n =-r , 平面ABC 的法向量(0,0,1)m =u r,设二面角A BC F --的大小为θ,则||2cos ||||28m n m n θ⋅===⋅r r r r , ∴4πθ=.∴二面角A BC F --的大小为4π. 3.如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)7. 【解析】(Ⅰ)因为11B A ⊥平面11ADD A , 所以111B A DD ⊥,又11111111DD D A B A D A A ⊥⋂=,, 所以1DD ⊥平面1111D C B A , 又因为11//DD CC ,所以1CC ⊥平面1111D C B A ,11B C ⊂平面1111D C B A ,所以111CC B C ⊥,因为平面11ADD A ⊥平面11CDD C , 平面11ADD A ⋂平面111CDD C DD =,111C D DD ⊥,所以11C D ⊥平面11ADD A ,经计算可得1111B E BC EC = 从而2221111B E B C EC =+,所以在11B EC V 中,111B C C E ⊥,又11CC C E ⊂,平面1111CC E CC C E C ⋂=,, 所以11B C ⊥平面1CC E .(Ⅱ)如图,以点A 为原点建立空间直角坐标系,依题意得()()()10001,0,00,2,2A C B ,,,,, ()()11,2,10,1,0C E ,.∵1(1,1,1)(1,2,1)CE B C =--=--u u u r u u u r,,设平面1B CE 的一个法向量(,,)m x y z =则100m B C m CE ⎧⋅=⎨⋅=⎩u u u vu u u v ,, 即200x y z x y z --=⎧⎨-+-=⎩,,消去x 得20y z +=, 不妨设1z =,可得()3,2,1m =--,又()111,0,1B C =-u u u u r,设直线11B C 与平面1B CE 所成角为θ,于是111111427sin cos ,142||m B C m B C m B C θ⋅-====⨯⋅u u u u ru u u u r u u u u r ,故直线11B C 与平面1B CE 所成角的正弦值为77. 4.如图,在四凌锥P ABCD -中,PC ABCD ⊥底面,底面ABCD 是直角梯形,AB AD ⊥,AB CD ∥,222AB AD CD ===,4PC =,E 为线段PB 上一点(1)求证:EAC PBC ⊥平面平面; (2)若二面角P AC E --的余弦值为63,求BE BP 的值【答案】(1)见解析(2)13BE BP = 【解析】 (1)如图,由题意,得2AC BC ==,且2AB =,∴BC AC ⊥∵ABCD PC ⊥底面,∴PC AC ⊥又∵PC BC C ⋂=,∴AC ⊥底面PBC∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC(2)如图,以C 为原点,取AB 中点M ,以CM ,CD ,CP 所在直线为,,x y z 轴建立空间直角坐标系则()1,1,0B -,()0,0,4P ,()1,1,0A ,设(),,E x y z ,且()01BE BP λλ=<<u u u r u u u r ,得()()1,1,1,1,4x y z λ-+=-,即()1,1,4E λλλ--()()1,1,0,1,1,4CA CE λλλ==--u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r, 由00CE n CA n u u u r r u u u r r ⎧⋅=⎪⎨⋅=⎪⎩即()()11400x y z x y λλλ⎧-+-+=⎨+=⎩,令1x =,得11,1,2n r λλ-⎛⎫=- ⎪⎝⎭ 又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC故平面PAC 的法向量为()1,1,0m BC u u u r r ==-,由二面角P AC E --6 ()226cos ,312114m n m n m n λλ⋅===⋅-++r r r r r r ,解得1λ=-或13,由01λ<<得13λ=,即13BE BP = 5.如图,在三棱锥P ABC -中,20{ 28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45o .(1)求证平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。
十年真题(2010-2019)高考数学(理)分类汇编专题11 平面解析几何选择填空题(新课标Ⅰ卷)(解析版)
专题11平面解析几何选择填空题历年考题细目表填空题2015 圆的方程2015年新课标1理科14填空题2011 椭圆2011年新课标1理科14填空题2010 圆的方程2010年新课标1理科15历年高考真题汇编1.【2019年新课标1理科10】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 1【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|,∴|AF2|=a,|BF1|a,在Rt△AF2O中,cos∠AF2O,在△BF1F2中,由余弦定理可得cos∠BF2F1,根据cos∠AF2O+cos∠BF2F1=0,可得0,解得a2=3,∴a.b2=a2﹣c2=3﹣1=2.所以椭圆C的方程为:1.故选:B.2.【2018年新课标1理科08】设抛物线C:y2=4的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•()A.5 B.6 C.7 D.8【解答】解:抛物线C:y2=4的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2+4,联立直线与抛物线C:y2=4,消去可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•(0,2)•(3,4)=8.故选:D.3.【2018年新课标1理科11】已知双曲线C:y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:y2=1的渐近线方程为:y,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y,则:解得M(,),解得:N(),则|MN|3.故选:B.4.【2017年新课标1理科10】已知F为抛物线C:y2=4的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|•|y1﹣y2|8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为θ,根据焦点弦长公式可得|AB||DE|∴|AB|+|DE|,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.5.【2016年新课标1理科05】已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.【2016年新课标1理科10】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2p,如图:|AB|=4,|AM|=2,|DE|=2,|DN|,|ON|,A,|OD|=|OA|,5,解得:p=4.C的焦点到准线的距离为:4.故选:B.7.【2015年新课标1理科05】已知M(0,y0)是双曲线C:1上的一点,F1,F2是C的左、右两个焦点,若0,则y0的取值范围是()A.B.C.D.【解答】解:由题意,(0,﹣y0)•(0,﹣y0)=02﹣3+y02=3y02﹣1<0,所以y0.故选:A.8.【2014年新课标1理科04】已知F为双曲线C:2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【解答】解:双曲线C:2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为0,∴点F到C的一条渐近线的距离为.故选:A.9.【2014年新课标1理科10】已知抛物线C:y2=8的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵4,∴|PQ|=3d,∴不妨设直线PF的斜率为2,∵F(2,0),∴直线PF的方程为y=﹣2(﹣2),与y2=8联立可得=1,∴|QF|=d=1+2=3,故选:B.10.【2013年新课标1理科04】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y B.y C.y=±D.y【解答】解:由双曲线C:(a>0,b>0),则离心率e,即4b2=a2,故渐近线方程为y=±,故选:D.11.【2013年新课标1理科10】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【解答】解:设A(1,y1),B(2,y2),代入椭圆方程得,相减得,∴.∵1+2=2,y1+y2=﹣2,.∴,化为a2=2b2,又c=3,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.12.【2012年新课标1理科04】设F1、F2是椭圆E:1(a>b>0)的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线上一点∴∴故选:C.13.【2012年新课标1理科08】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线y2=16的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【解答】解:设等轴双曲线C:2﹣y2=a2(a>0),y2=16的准线l:=﹣4,∵C与抛物线y2=16的准线l:=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得4,∴a=2,2a=4.故选:C.14.【2011年新课标1理科07】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e.故选:B.15.【2010年新课标1理科12】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E 相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【解答】解:由已知条件易得直线l的斜率为=PN=1,设双曲线方程为,A(1,y1),B(2,y2),则有,两式相减并结合1+2=﹣24,y1+y2=﹣30得,从而 1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.16.【2019年新课标1理科16】已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.【解答】解:如图,∵,且•0,∴OA⊥F1B,则F1B:y,联立,解得B(,),则,,∴4c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴,e.故答案为:2.17.【2017年新课标1理科15】已知双曲线C:1(a>0,b>0)的右顶点为A,以A为圆心,b 为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线b+ay=0的距离为:b cos30°,可得:,即,可得离心率为:e.故答案为:.18.【2015年新课标1理科14】一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.则该圆标准方程为.【解答】解:一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a,圆的半径为:,所求圆的方程为:()2+y2.故答案为:()2+y2.19.【2011年新课标1理科14】在平面直角坐标系Oy,椭圆C的中心为原点,焦点F1F2在轴上,离心率为.过F1的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即,则a c,将a c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为1;故答案为:1.20.【2010年新课标1理科15】过点A(4,1)的圆C与直线﹣y=1相切于点B(2,1),则圆C的方程为.【解答】解:设圆的方程为(﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,1,解得a=3,b=0,r,故所求圆的方程为(﹣3)2+y2=2.故答案为:(﹣3)2+y2=2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r ,则该双曲线的离心率为( )ABCD【答案】A【解析】由题意得直线l 的方程为b x y c a=+,不妨取1a =,则x by c =+,且221b c =-. 将x by c =+代入2221y x b -=,得()4234120b y b cy b -++=. 设()11,A x y ,()22,B x y ,则312421b c y y b +=--,41241b y y b =-. 由3AF FB u u u r u u u r =,得123y y =-,所以324422422131bc y b by b ⎧-=-⎪⎪-⎨⎪-=⎪-⎩,得22431b c b =-,解得214b =,所以2c ===c e a ==,故选A 。
十年真题(2010-2019)高考数学(理)分类汇编专题12 平面解析几何解答题(新课标Ⅰ卷)(原卷版)
专题12平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 抛物线2019年新课标1理科19解答题2018 椭圆2018年新课标1理科19解答题2017 椭圆2017年新课标1理科20解答题2016 圆的方程2016年新课标1理科20解答题2015 抛物线2015年新课标1理科20解答题2014 椭圆2014年新课标1理科20解答题2013 圆的方程2013年新课标1理科20解答题2012 抛物线2012年新课标1理科20解答题2011 抛物线2011年新课标1理科20解答题2011 圆的方程2011年新课标1理科22解答题2010 椭圆2010年新课标1理科20历年高考真题汇编1.【2019年新课标1理科19】已知抛物线C:y2=3的焦点为F,斜率为的直线l与C的交点为A,B,与轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3,求|AB|.2.【2018年新课标1理科19】设椭圆C:y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.3.【2017年新课标1理科20】已知椭圆C:1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l 过定点.4.【2016年新课标1理科20】设圆2+y2+2﹣15=0的圆心为A,直线l过点B(1,0)且与轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.5.【2015年新课标1理科20】在直角坐标系Oy中,曲线C:y与直线l:y=+a(a>0)交于M,N两点.(Ⅰ)当=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当变动时,总有∠OPM=∠OPN?(说明理由)6.【2014年新课标1理科20】已知点A(0,﹣2),椭圆E:1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.7.【2013年新课标1理科20】已知圆M:(+1)2+y2=1,圆N:(﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.8.【2012年新课标1理科20】设抛物线C:2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,F A为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.9.【2011年新课标1理科20】在平面直角坐标系Oy中,已知点A(0,﹣1),B点在直线y=﹣3上,M 点满足∥,•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.10.【2011年新课标1理科22】如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于的方程2﹣14+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.11.【2010年新课标1理科20】设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|P A|=|PB|,求E的方程.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x y C a b a b +=>>的离心率为6,椭圆22222:1(0)33x y C a b a b +=>>经过点33,22⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆1C 的标准方程;(2)设点M 是椭圆1C 上的任意一点,射线MO 与椭圆2C 交于点N ,过点M 的直线l 与椭圆1C 有且只有一个公共点,直线l 与椭圆2C 交于,A B 两个相异点,证明:NAB △面积为定值.2.如图,在平面直角坐标系Oy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,3-),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点.(1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点.4.已知椭圆22221(0)x y a b a b+=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r ,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r ?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值;(2)求||||AB AF ⋅的最小值.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r ,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ.(Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.7.已知椭圆2222:1(0)x y C a b a b +=>>F 是椭圆C 的一个焦点.点(02)M ,,直线MF 的(1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A B ,两点,线段AB 的中点为N ,且AB MN =.求l 的方程.8.已知椭圆2222:1(0)x y C a b a b +=>>过点(,右焦点F 是抛物线28y x =的焦点. (1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标若不存在,说明理由.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=. (1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △(1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r 为定值?若存在,求点Q 的坐标;若不存在,请说明理由.11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =.(1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值.13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义()PF d P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2.(1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.15.已知曲线C 上的任意一点到直线l :=12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程;(2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (1,0)为定点,设直线AQ 的斜率为1,直线BQ 的斜率为2,直线AB 的斜率为,证明:22212112k k k +-为定值.。
2010-2019“十年高考”数学真题 立体几何解析版专项汇总(理数 可下载)
因为 E,F 分别是 PA,AB 的中点,所以 EF P PB .又 CEF 90 ,即 EF⊥CE,
所以 PB⊥CE,得 PB⊥平面 PAC.所以 PB⊥PA,PB⊥PC. 又因为 PA PB PC ,△ABC 是正三角形, 所以 △PAC≌△PBC≌△PAB ,故 PA PC ,所以正三棱锥 P ABC 的三
【解析】如图所示,联结 BE , BD .因为点 N 为正方形 ABCD 的中心, △ECD 为正三角形,平面 ECD 平面 ABCD , M 是线段 ED 的中点,所以 BM 平面 BDE , EN 平面 BDE ,因为 BM 是△BDE 中 DE 边上的中线, EN 是△BDE 中 BD 边上的中线, 直线 BM , EN 是相交直线,设 DE a ,则
则点 D 到平面 ABC 的最大距离 d1 d 4 6 ,
所以三棱锥
D
ABC
体积的最大值 Vmax
1 3
S
ABC
6
19 3
3 6 18
3.
故选 B.
8.(2018 北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
对于 B, 内有两条相交直线与 平行,则∥ ;
对于 C, , 平行于同一条直线,则 与 相交或∥ ,排除;
对于 D, , 垂直于同一平面,则 与 相交或∥ ,排除.故选 B.
2.(2019 全国Ⅲ理 8)如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥ 平面 ABCD,M 是线段 ED 的中点,则 A.BM=EN,且直线 BM、EN 是相交直线 B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM、EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线 【答案】B.
【精品】立体几何十年高考题(带详细解析)
【精品】立体几何十年高考题(带详细解析) ●考点阐释高考试卷中,立体几何考查的立足点放在空间图形上,突出对空间观念和空间想象能力的考查.立体几何的基础是对点、线、面的各种位置关系的讨论和研究,进而讨论几何体,而且采用了公理化体系的方法,在中学数学教育中,通过这部分内容培养学生空间观念和公理化体系处理数学问题的思想方法,这又是考生进入高校所必须具备的一项重要的数学基础,因此高考命题时,突出空间图形的特点,侧重于直线与直线、直线与平面、平面与平面的各种位置关系的考查,以便审核考生立体几何的知识水平和能力.多面体和旋转体是在空间直线与平面的理论基础上,研究以柱、锥、台、球为代表的最基本的几何体的概念、性质、各主要元素间的关系、直观图画法、侧面展开图以及表面和体积的求法等问题.它是“直线和平面”问题的延续和深化.在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题.近些年来即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.本章主要考查平面的性质、空间两直线、直线和平面、两个平面的位置关系以及空间角和距离面积及体积.●试题类编一、选择题1.(2003京春文11,理8)如图9—1,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( )A.90°B.60°C.45°D.0°2.(2003上海春,13)关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是( )A.若a ∥M ,b ∥M ,则a ∥bB.若a ∥M ,b ⊥a ,则b ⊥MC.若a M ,b M ,且l ⊥a ,l ⊥b ,则l ⊥MD.若a ⊥M ,a ∥N ,则M ⊥N3.(2002北京春,2)已知三条直线m 、n 、l ,三个平面α、β、γ.下面四个命题中,正确的是( )A.⇒⎭⎬⎫⊥⊥γβγαα∥β B.⇒⎭⎬⎫⊥m l m β//l ⊥βC.⇒⎭⎬⎫γγ////n m m ∥n D.⇒⎭⎬⎫⊥⊥γγn m m ∥n4.(2002北京文,4)在下列四个正方体中,能得出AB ⊥CD 的是( ) 图9—15.(2002上海,14)已知直线l 、m ,平面α、β,且l ⊥α,m β,给出下列四个命题:(1)若α∥β,则l ⊥m (2)若l ⊥m ,则α∥β(3)若α⊥β,则l ∥m(4)若l ∥m ,则α⊥β其中正确命题的个数是( )A.1B.2C.3D.46.(2002京皖春,7)在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图9—2),若将△ABC 绕直线BC 旋转一周,则所形成的旋转体的体积是( ) A.29π B.27π C.25π D.23π 7.(2002京、皖、春,12)用一张钢板制作一个容积为4 m 3的无盖长方体水箱.可用的长方形钢板有四种不同的规格(长×宽的尺寸如选项所示,单位均为m )若既要够用,又要所剩最少,则应选择钢板的规格是( )A.2×5B.2×5.5C.2×6.1D.3×58.(2002全国文8,理7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )A.43 B.54 C.53 D.-53 9.(2002北京文5,理4)64个直径都为4a 的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a 的球,记其体积为V 乙,表面积为S 乙,则( )A.V 甲>V 乙且S 甲>S 乙B.V 甲<V 乙且S 甲<S 乙C.V 甲=V 乙且S 甲>S 乙D.V 甲=V 乙且S 甲=S 乙10.(2002北京理,10)设命题甲:“直四棱柱ABCD -A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD -A 1B 1C 1D 1是正方体”.那么,甲是乙的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件11.(2002全国理,8)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是( )A.90°B.60°C.45°D.30° 图9—212.(2001上海,15)已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α, b⊥β,则下列命题中的假命题...是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交13.(2001京皖春,11)图9—3是正方体的平面展开图.在这个正方体...中,①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN垂直以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④14.(2001全国文,3)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是()A.3πB.33πC.6πD.9π15.(2001全国,11)一间民房的屋顶有如图9—4三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.图9—4若屋顶斜面与水平面所成的角都是α,则()A.P3>P2>P1B.P3>P2=P1C.P3=P2>P1D.P3=P2=P116.(2001全国,9)在正三棱柱ABC—A1B1C1中,若AB=2BB1,则AB1与C1B 所成的角的大小为()A.60°B.90°C.105°D.75°17.(2001京皖春,9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30°B.45°C.60°D.90°18.(2000上海,14)设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题:(1)若a∥α,b∥α,则a∥b.(2)若a∥α,a∥β,则α∥β.(3)若α⊥γ,β⊥γ,则α∥β.其中正确的个数是()A.0 B.1 C.2 D.319.(2000京皖春,5)一个圆锥的底面直径和高都同一个球的直径相等,那么圆锥与球的体积之比是()图9—3A.1∶3B.2∶3C.1∶2D.2∶920.(2000全国,3)一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A.23 B.32 C.6 D.621.(2000全国文,12)如图9—5,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )A.321B.21C.21D.421 22.(2000全国理,9)一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.ππ221+B.ππ441+C.ππ21+D.ππ241+ 23.(1999全国,7)若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面的高度为6 cm.若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )A.63cm B .6 cm C.2318cm D.3312cm24.(1999全国,12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R 等于( )A.10B.15C.20D.2525.(1999全国理,10)如图9—6,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积是( )A.29B.5C.6D.215 26.(1998全国,7)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( )A.120°B.150°C.180°D.240°27.(1998全国,9)如果棱台的两底面积分别是S 、S ′,中截面的面积是S 0,那么( )A.S S S '+=02B.S S S '=0C.2S 0=S +S ′D.S 02=2S ′S图9—5图9—628.(1998全国,13)球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( ) A.43 B.23 C.2 D. 329.(1998上海)在下列命题中,假命题是( )A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥βB.若平面α内任一直线平行于平面β,则α∥βC.若平面α⊥平面β,任取直线l α,则必有l ⊥βD.若平面α∥平面β,任取直线l α,则必有l ∥β30.(1997全国,8)长方体一个顶点上三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,这个球的表面积是( )A.202πB.252πC.50πD.200π31.(1997全国,12)圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是( )A.332πB.23πC.637πD.337π 32.(1996全国理,14)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于( ) A.322π B.332π C.2π D.362π 33.(1996全国文12,理9)将边长为a 的正方体ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为( )A.63aB.123aC.3123aD.3122a 34.(1996全国文7,理5)如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ35.(1996上海,4)在下列命题中,真命题是( )A.若直线m 、n 都平行于平面α,则m ∥nB.设α—l —β是直二面角,若直线m ⊥l ,则m ⊥βC.若直线m 、n 在平面α内的射影依次是一个点和一条直线,且m ⊥n ,则n 在α内或n 与α平行D.设m 、n 是异面直线,若m 与平面α平行,则n 与α相交36.(1996全国文,10)圆锥母线长为1,侧面展开图的圆心角为240°,该圆锥的体积等于( )A.8122πB.818πC.8154π D.8110π 37.(1995全国文,10)如图9—7,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( ) A.1715 B.21 C.178 D.23 38.(1995全国,4)正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是( )A.32a π B.22a π C.2πa 2 D.3πa 239.(1995上海,4)设棱锥的底面面积为8 cm 2,那么这个棱锥的中截面(过棱锥高的中点且平行于底面的截面)的面积是( )A.4 cm 2B.22 cm 2C.2 cm 2D. 2 cm 240.(1995全国理,10)已知直线l ⊥平面α,直线m 平面β,有下面四个命题: ①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ; ③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β 其中正确的两个命题是( )A.①②B.③④C.②④D.①③41.(1995全国理,15)如图9—8,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.1030B.21C.1530D.1015 42.(1994全国,11)对于直线m 、n 和平面α、β,α⊥β的一个充分条件是( )A.m ⊥n ,m ∥α,n ∥βB.m ⊥n ,α∩β=m ,n ⊂αC.m ∥n ,n ⊥β,m ⊂αD.m ∥n ,m ⊥α,n ⊥β43.(1994上海,14)已知a 、b 是异面直线,直线c 平行于直线a ,那么c 与b ( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线44.(1994全国,7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( )A.323B.283C.243D.20345.(1994全国,13)已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( )A.916πB.38π C.4π D.964π 二、填空题46.(2003京春理13,文14)如图9—9,一个底面半径为R 的圆柱形量杯中装有适量图9—8的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r,则r R =.图9—947.(2003上海春,10)若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的大小等于 (结果用反三角函数值表示).48.(2002上海春,12)如图9—10,若从点O 所作的两条射线OM 、ON 上分别有点 M 1、M 2与点N 1、N 2,则三角形面积之比21212211ON ON OM OM S S N OM N OM ⋅=∆∆.若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上,分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为 .图9—10 图9—1149.(2002京皖春,15)正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图9—11所示).M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为 . 50.(2002北京,15)关于直角AOB 在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角.其中正确判断的序号是 (注:把你认为是正确判断的序号都填上).51.(2002上海春,10)图9—12表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有 对.图9—1252.(2002上海,4)若正四棱锥的底面边长为23cm,体积为4 cm3,则它的侧面与底面所成的二面角的大小是.53.(2001京皖春,16)已知m、n是直线,α、β、γ是平面,给出下列命题:①若α⊥β,α∩β=m,n⊥m,则n ⊥α或n⊥β;②若α∥β,α∩γ=m,β∩γ=n,则m∥n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α∩β=m,n∥m且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题序号是(注:把你认为正确的命题的序号都.填上).54.(2001春季北京、安徽,13)已知球内接正方体的表面积为S,那么球体积等于.55.(2001全国理,13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是.56.(2000上海春,9)若两个长方体的长、宽、高分别为5 cm、4 cm、3 cm,把它们两个全等的面重合在一起组成大长方体,则大长方体的对角线最长为_____cm.57.(2000上海春,8)如图9—13,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成角的大小为_____.58.(2000年春季北京、安微,18)在空间,下列命题正确的是_____(注:把你认为正确的命题的序号都填上).①如果两直线a、b分别与直线l平行,那么a∥b.②如果直线a与平面β内的一条直线b平行,那么a∥β.③如果直线a与平面β内的两条直线b、c都垂直,那么a⊥β.④如果平面β内的一条直线a垂直平面γ,那么β⊥γ.59.(2000春季北京、安徽,16)如图9—14是一体积为72的正四面体,连结两个面的重心E、F,则线段EF的长是_____.60.(2000全国,16)如图9—15(1),E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图9—15(2)的(要求:把可能的图的序号都.填上).图9—1 图9—15(1)图9—15(2)61.(2000上海,7)命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.图9—13命题A 的等价命题B可以是:底面为正三角形,且 的三棱锥是正三棱锥.62.(1999全国,18)α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线.给出四个论断:①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: . 63.(1998全国,18)如图9—16,在直四棱柱A 1B 1C 1D 1—ABCD中,当底面四边形ABCD 满足条件 (或任何能推导出这个条件的其他条件,例如ABCD 是正方形、菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).64.(1998上海)棱长为2的正四面体的体积为 .65.(1997全国,19)已知m 、l 是直线,α、β是平面,给出下列命题①若l 垂直于α内的两条相交直线,则l ⊥α②若l 平行于α,则l 平行于α内的所有直线③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β④若l ⊂β,且l ⊥α,则α⊥β⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l其中正确的命题的序号是_____(注:把你认为正确的命题的序号都填上).66.(1997上海)圆柱形容器的内壁底半径为5 cm ,两个直径为5 cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降_____ cm.67.(1996上海,18)把半径为3 cm 、中心角为32π的扇形卷成一个圆锥形容器,这个容器的容积为 cm 3(结果保留π).68.(1996上海,18)如图9—17,在正三角形ABC 中,E 、F 依次是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,F G⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,则其中由阴影部分所产生的旋转体的体积与V 的比值是 .图9—17 图9—1869.(1996全国,19)如图9—18,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是_____.70.(1995全国,17)已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为3π,则圆台的体积与球体积之比为_____.71.(1995上海理)把圆心角为216°,半径为5分米的扇形铁皮焊成一个圆锥形容器(不计焊缝),那么容器的容积是_____.72.(1994全国,19)设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB图9—16的距离为3,AB和圆锥的轴的距离为1,则该圆锥的体积为_____.73.(1994上海)有一个实心圆锥体的零部件,它的轴截面是边长为10 cm的等边三角形,现在要在其整个表面上镀一层防腐材料,已知每平方厘米的工料价为0.10元,则需要的费用为_____元(π取3.2).三、解答题74.(2003京春文,19)如图9—19,ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.(Ⅰ)求三棱锥D1—DBC的体积;(Ⅱ)证明BD1∥平面C1DE;(Ⅲ)求面C1DE与面CDE所成二面角的正切值.图9—1 图9—2075.(2003京春理,19)如图9—20,正四棱柱ABCD—A1B1C1D1中,底面边长为22,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.(Ⅰ)求证:平面B1EF⊥平面BDD1B1;(Ⅱ)求点D1到平面B1EF的距离d;(Ⅲ)求三棱锥B1—EFD1的体积V.76.(2002京皖春文,19)在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55.(如图9—21)(Ⅰ)证明:SC⊥BC;(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;(Ⅲ)求三棱锥的体积V S-AB C.77.(2002京皖春理,19)在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29.(Ⅰ)证明:SC⊥BC;(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;(Ⅲ)求异面直线SC与AB所成的角的大小(用反三角函数表示).图9—22 图9—2378.(2002全国文,19)四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD,图9—21如图9—22所示.(Ⅰ)若面P AD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明无论四棱锥的高怎样变化,面P AD 与面PCD 所成的二面角恒大于90°. 79.(2002北京文,18)如图9—23,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的正切值;(Ⅱ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V=6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明. (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) 80.(2002北京理,18)如图9—24,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的大小; (Ⅱ)证明:EF ∥面ABCD ;(Ⅲ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V =6h(S 上底面+4S 中截面+S 下底面), 试判断V 估与V 的大小关系,并加以证明.(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) 81.(2002全国文,22)(Ⅰ)给出两块相同的正三角形纸片(如图(1),图(2)),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图(1)、图(2),并作简要说明;(Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;图9—2582.(2002全国理,18)如图9—26,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a (0<a <2).(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.图9—24图9—26 图9—2783.(2001春季北京、安徽,19)如图9—27,已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB =a ,VC 与AB 之间的距离为h ,点M ∈V C.(Ⅰ)证明∠MDC 是二面角M —AB —C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC ⊥平面AMB ;(Ⅲ)若∠MDC =∠CVN =θ(0<θ<2),求四面体MABC 的体积.84.(2001上海,19)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .(Ⅰ)求证:A ′F ⊥C ′E ;(Ⅱ)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示).85.(2001全国理17,文18)如图9—28,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.86.(2000京皖春理20,文21)在直角梯形ABCD 中,如图9—29,∠D =∠BAD =90°,AD =21AB =a (如图(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为γ.图9—29(Ⅰ)若二面角α—AC —β为直二面角(如图(2)),求二面角β—BC —γ的大小; (Ⅱ)若二面角α—AB —β为60°(如图(3)),求三棱锥D ′—ABC 的体积.87.(2000全国理,18)如图9—30,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.(Ⅰ)证明:C 1C ⊥BD ;图9—28(Ⅱ)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(Ⅲ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.图9—30 图9—3188.(2000全国文,19)如图9—31,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(Ⅰ)证明:C 1C ⊥BD ;(Ⅱ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 89.(2000上海,18)如图9—32所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角大小为arccos 1010,求四面体ABCD 的体积.图9—32 图9—3390.(1999全国文22,理21)如图9—33,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B ,且面EAC 与底面ABCD 所成的角为45°,AB =a .(Ⅰ)求截面EAC 的面积;(Ⅱ)求异面直线A 1B 1与AC 之间的距离; (Ⅲ)求三棱锥B 1-EAC 的体积.91.(1998全国理,23)已知如图9—34,斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C.(Ⅰ)求侧棱A 1A 与底面ABC 所成角的大小;(Ⅱ)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (Ⅲ)求顶点C 到侧面A 1ABB 1的距离.图9—34 图9—3592.(1998全国文,23)已知如图9—35,斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C.(Ⅰ)求侧棱A 1A 与底面ABC 所成角的大小;(Ⅱ)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (Ⅲ)求侧棱B 1B 和侧面A 1ACC 1的距离.93.(1997全国,23)如图9—36,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点.(Ⅰ)证明:AD ⊥D 1F ;(Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1;(Ⅳ)(理)设AA 1=2,求三棱锥F —A 1ED 1的体积11ED A F V -. (文)设AA 1=2,求三棱锥E —AA 1F 的体积F AA E V 1-.图9—36图9—3794.(1997上海理)如图9—37在三棱柱ABC —A ′B ′C ′中,四边形A ′ABB ′是菱形,四边形BCC ′B ′是矩形,C ′B ′⊥A B.(1)求证:平面CA ′B ⊥平面A ′AB ; (2)若C ′B ′=3,AB =4,∠ABB ′=60°,求AC ′与平面BCC ′所成的角的大小(用反三角函数表示).95.(1996上海,21)如图9—38,在二面角α—l —β中,A 、B ∈α,C 、D ∈l ,ABCD为矩形,P ∈β,P A ⊥α,且P A =AD ,M 、N 依次是AB 、PC 的中点.(1)求二面角α—l —β的大小; (2)求证:MN ⊥AB ;(3)求异面直线P A 与MN 所成角的大小.图9—38 图9—3996.(1995全国文24,理23)如图9—39,圆柱的轴截面ABCD 是正方形,点E 在底面的圆周上,AF ⊥DE ,F 是垂足.(Ⅰ)求证:AF ⊥DB ; (Ⅱ)(理)如果圆柱与三棱锥D —ABE 的体积比等于3π,求直线DE 与平面ABCD 所成的角.(文)求点E 到截面ABCD 的距离.97.(1995上海,23)如图9—40,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又P A ⊥AB ,P A =4,∠P AD =60°.(Ⅰ)求四棱锥P —ABCD 的体积;(Ⅱ)求二面角P —BC —D 的大小(用反三角函数表示).图9—40 图9—4198.(1994全国,23)如图9—41,已知A 1B 1C 1—ABC 是正三棱柱,D 是AC 中点. (Ⅰ)证明:AB 1∥平面DBC 1; (Ⅱ)(理)假设AB 1⊥BC 1,求以BC 1为棱的DBC 1与CBC 1为面的二面角α的度数. (文)假设AB 1⊥BC 1,BC =2,求线段AB 1在侧面B 1BCC 1上的射影长. 99.(1994上海,23)如图9—42在梯形ABCD 中,AD ∥BC , ∠ABC =2,AB =a ,AD =3a ,且∠ADC =arcsin55,又P A ⊥平面ABCD ,P A =a .求(1)二面角P —CD —A 的大小(用反三角函数表示).(2)点A 到平面PBC 的距离. ●答案解析 1.答案:B解析:将三角形折成三棱锥如图9—43所示.HG 与IJ 为一对异面直线.过点D 分别图9—42图9—43作HG 与IJ 的平行线,即DF 与AD .所以∠ADF 即为所求.因此,HG 与IJ 所成角为60°.评述:本题通过对折叠问题处理考查空间直线与直线的位置关系,在画图过程中正确理解已知图形的关系是关键.通过识图、想图、画图的角度考查了空间想象能力.而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空间想象能力的主要方向.2.答案:D解析:A 选项中,若a ∥M ,b ∥M ,则有a ∥b 或a 与b 相交或a 与b 异面.B 选项中,b 可能在M 内,b 可能与M 平行,b 可能与M 相交.C 选项中须增加a 与b 相交,则l ⊥M . D 选项证明如下:∵a ∥N ,过a 作平面α与N 交于c ,则c ∥a ,∴c ⊥M .故M ⊥N .评述:本题考查直线与直线、直线与平面、平面与平面的基本性质. 3.答案:D解析:垂直于同一平面的两直线必平行,因此选D.评述:判断元素之间的位置关系问题,也可以从元素之间所有关系分析入手,再否定若干选项.如A ,因为α、β有两种位置关系,在α与β相交情况下,仍有α⊥r ,β⊥r .因此,α∥β是错误的.4.答案:A解析:∵CD 在平面BCD 内,AB 是平面BCD 的斜线,由三垂线定理可得A. 5.答案:B 解析:(1)、(4)是正确命题.因为α∥β,l ⊥α,∴l ⊥β. 又m ⊂β,∴l ⊥m .因为l ∥m ,l ⊥α,∴m ⊥α,∴β⊥α. 6.答案:D解析:如图9—44,该旋转体的体积为圆锥C —ADE 与圆锥B —ADE 体积之差又∵求得AB =1∴23133125331πππ=⋅⋅⋅-⋅⋅⋅=-=--ADE B ADE C V V V7.答案:C解析:设该长方体水箱的长、宽、高分别为x 、y 、z ,∴x ·y ·z =4 ∴原长方形中用于制作水箱的部分的长、宽应分别为x +2z ,y +2z (如图9—45中(2)所示)从而通过对各选项的考查,确定C 答案.图9—458.答案:C解析:如图9—46,作出轴截面,设公共底面圆的半径为R ,圆锥的高为h∴V 锥=31πR 2h ,V 半球=21·43πR 3图9—44图9—47∵V 锥=V 半球,∴h =2R ∴tan α=21 ∴cos θ=53411411tan 1tan 122=+-=+-αα 9.答案:C 解析:V 甲=64·34π·(4a ·21)3=61πa 3, S 甲=64·4π·(4a ·21)2=4πa 2 V 乙=34π(a ·21)3=61πa 3,S 乙=4π(a ·21)2=πa 2 ∴V 甲=V 乙,S 甲>S 乙. 10.答案:C解析:若命题甲成立,命题乙不一定成立,如底面为菱形时. 若命题乙成立,命题甲一定成立. 11.答案:B解析:连结FE 1、FD ,则由正六棱柱相关性质得FE 1∥BC 1. 在△EFD 中,EF =ED =1,∠FED =120°,∴FD =3.在Rt △EFE 1和Rt △EE 1D 中,易得E 1F =E 1D =3.∴△E 1FD 是等边三角形.∴∠FE 1D =60°. ∴BC 1与DE 1所成的角为60°.评述:本题主要考查正六棱柱的性质及异面直线所成的角的求法. 12.答案:D解析:①∵a ∥b ,a ⊥α,∴b ⊥α,又∵b ⊥β,∴α∥β ②∵a ⊥α,α⊥β ∴a ∥β或a ∈β 又∵b ⊥β ∴b ⊥a ③若α∥β,则a ∥b④若α、β相交,则a 、b 可能相交也可能异面,显然D 不对. 13.答案:C解析:展开图可以折成如图9—47的正方体,由图可知①②不正确. ∴③④正确. 14.答案:A 解析:∵S =21ab sin θ 图9—47∴21a 2sin60°=3 ∴a 2=4,a =2,a =2r ∴r = 1 S 全=2πr +πr 2=2π+π=3π 15.答案:D解析:由S 底=S 侧cos θ可得P 1=P 2 而P 3=θθθcos )(2)cos sin (22121S S S S +=+ 又∵2(S 1+S 2)=S 底 ∴P 1=P 2=P 316.答案:B解析:如图9—48,D 1、D 分别为B 1C 1、BC 中点,连结AD 、D 1C ,设BB 1=1,则AB =2,则AD 为AB 1在平面BC 1上的射影,又32cos ,22,3311====BC BC BC C BD BE∴DE 2=BE 2+BD 2-2BE ·BD ·cos C 1BC =6132223322131=⋅⋅⋅-+ 而BE 2+DE 2=216131=+=BD 2 ∴∠BED =90° ∴AB 1与C 1B 垂直 17.答案:C解析:设圆锥底面半径为r ,母线长为l ,依条件则有2πr =πl ,如图9—49∴21=l r ,即∠ASO =30°,因此圆锥顶角为60°. 18.答案:A解析:(1)如果a ,b 是平面M 中的两条相交直线,面M ∥α, ∴有a ∥α,b ∥α,但a b ,所以(1)错.(2)如果α∩β=b ,而a ∥b ,∴有a ∥α,a ∥β,但αβ,所以(2)错. (3)如果α∩β=b ,而b ⊥γ,∴有β⊥γ,α⊥γ,但αβ,(3)错. 19.答案:C解析:设圆锥的底面半径为R ,则V 圆锥=32πR 3,V 球=34πR 3, ∴V 圆锥∶V 球=1∶2. 20.答案:D解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为图9—48图9—49l =6222=++c b a .21.答案:D解析:如图9—50,由题意知,31πr 2h =61πR 2h , ∴r =2R. 又△ABO ∽△CAO ,∴R OA OA r =,∴OA 2=r ·R =422,2R OA R =, ∴cos θ=421=R OA . 22.答案:A解析:设圆柱的底面半径为r ,高为h ,则由题设知h =2πr . ∴S 全=2πr 2+(2πr )2=2πr 2(1+2π).S侧=h 2=4π2r 2,∴ππ221+=侧全S S . 评述:本题考查圆柱的侧面展开图、侧面积和全面积等知识.23.答案:B解析:设水面半径为x cm , 则水面高度为3x cm则由已知得:π·22·6=31πx 2·3x (3x )3=63,3x =6.评述:本题重点考查柱体、锥体的体积公式及灵活的运算能力. 24.答案:D解析:由已知得中截面圆的半径r ′=25+R . 设圆台的母线长为l ,则中截面截圆台所得上面小圆台的母线长l ′=2l,且上面小圆台的侧面积S ′与圆台侧面积S 之比为1∶3,由圆台侧面积公式得:31)5(21)255(=+⋅++='l R R S S ππ,解得R =25 评述:本题主要考查圆台及其侧面积公式,立足课本,属送分题.图9—5025.答案:D解析:连EB 、E C.四棱锥E —ABCD 的体积V E —ABCD =31·32·2=6.由于AB =2EF ,EF ∥AB ,所以S △EAB =2S △BEF∴V F —EBC =V C —EFB =21V C —ABE =21V E —ABC =21·21V E —ABCD =23 ∴多面体EF —ABCD 的体积V EF —ABCD =V E —ABCD +V F —EBC =6+21523=. 此题也可利用V EF —ABCD >V E —ABCD =6.故选D.评述:本题考查多面体体积的计算以及空间想象能力和运算能力. 26.答案:C解析:设圆锥底面半径为r ,母线长为l ,由已知得:πr 2+πrl =3πr 221=⇒l r , ∴θ=lr×2π=π. 评述:本小题考查圆锥的概念、性质及侧面积公式.侧面展开是立体问题平面化的重要手段应引起广大考生的注意. 27.答案:A解析:设该棱台为正棱台来解即可.评述:本题考查棱台的中截面问题.根据选择题的特点本题选用“特例法”来解,此种解法在解选择题时很普遍,如选用特殊值、特殊点、特殊曲线、特殊图形等等.28.答案:B 解析:设球心为O ,由题设知三棱锥O —ABC 是正四面体,且△ABC 的外接圆半径是2,设球半径为R ,则33R =2,∴R =23. 29.答案:C解析:A 中直线l ⊥β,l α,所以α⊥β,A 为真命题.B 中,在α内取两相交直线,则此二直线平行于β,则α∥β,B 为真命题.D 为两平面平行的性质,为真命题.C 为假命题,l 只有在垂直交线时才有l ⊥β,否则l 不垂直β.故选C.评述:本题考查平面与平面垂直、直线与平面平行的判定和性质. 30.答案:C解析:长方体的对角线长等于球的直径,于是(2R )2=32+42+52,R 2=225, 则S 球=4πR 2=4π·225=50π. 评述:本题考查长方体、球的有关概念和性质.。
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)
专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。
十年真题(2010-2019)高考数学(理)分类汇编专题11 平面解析几何选择填空题(新课标Ⅰ卷)(解析版)
专题11平面解析几何选择填空题历年考题细目表填空题2015 圆的方程2015年新课标1理科14填空题2011 椭圆2011年新课标1理科14填空题2010 圆的方程2010年新课标1理科15历年高考真题汇编1.【2019年新课标1理科10】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 1【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|,∴|AF2|=a,|BF1|a,在Rt△AF2O中,cos∠AF2O,在△BF1F2中,由余弦定理可得cos∠BF2F1,根据cos∠AF2O+cos∠BF2F1=0,可得0,解得a2=3,∴a.b2=a2﹣c2=3﹣1=2.所以椭圆C的方程为:1.故选:B.2.【2018年新课标1理科08】设抛物线C:y2=4的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•()A.5 B.6 C.7 D.8【解答】解:抛物线C:y2=4的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2+4,联立直线与抛物线C:y2=4,消去可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•(0,2)•(3,4)=8.故选:D.3.【2018年新课标1理科11】已知双曲线C:y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:y2=1的渐近线方程为:y,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y,则:解得M(,),解得:N(),则|MN|3.故选:B.4.【2017年新课标1理科10】已知F为抛物线C:y2=4的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|•|y1﹣y2|8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为θ,根据焦点弦长公式可得|AB||DE|∴|AB|+|DE|,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.5.【2016年新课标1理科05】已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.【2016年新课标1理科10】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2p,如图:|AB|=4,|AM|=2,|DE|=2,|DN|,|ON|,A,|OD|=|OA|,5,解得:p=4.C的焦点到准线的距离为:4.故选:B.7.【2015年新课标1理科05】已知M(0,y0)是双曲线C:1上的一点,F1,F2是C的左、右两个焦点,若0,则y0的取值范围是()A.B.C.D.【解答】解:由题意,(0,﹣y0)•(0,﹣y0)=02﹣3+y02=3y02﹣1<0,所以y0.故选:A.8.【2014年新课标1理科04】已知F为双曲线C:2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【解答】解:双曲线C:2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为0,∴点F到C的一条渐近线的距离为.故选:A.9.【2014年新课标1理科10】已知抛物线C:y2=8的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵4,∴|PQ|=3d,∴不妨设直线PF的斜率为2,∵F(2,0),∴直线PF的方程为y=﹣2(﹣2),与y2=8联立可得=1,∴|QF|=d=1+2=3,故选:B.10.【2013年新课标1理科04】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y B.y C.y=±D.y【解答】解:由双曲线C:(a>0,b>0),则离心率e,即4b2=a2,故渐近线方程为y=±,故选:D.11.【2013年新课标1理科10】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【解答】解:设A(1,y1),B(2,y2),代入椭圆方程得,相减得,∴.∵1+2=2,y1+y2=﹣2,.∴,化为a2=2b2,又c=3,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.12.【2012年新课标1理科04】设F1、F2是椭圆E:1(a>b>0)的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线上一点∴∴故选:C.13.【2012年新课标1理科08】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线y2=16的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【解答】解:设等轴双曲线C:2﹣y2=a2(a>0),y2=16的准线l:=﹣4,∵C与抛物线y2=16的准线l:=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得4,∴a=2,2a=4.故选:C.14.【2011年新课标1理科07】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e.故选:B.15.【2010年新课标1理科12】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E 相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【解答】解:由已知条件易得直线l的斜率为=PN=1,设双曲线方程为,A(1,y1),B(2,y2),则有,两式相减并结合1+2=﹣24,y1+y2=﹣30得,从而 1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.16.【2019年新课标1理科16】已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.【解答】解:如图,∵,且•0,∴OA⊥F1B,则F1B:y,联立,解得B(,),则,,∴4c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴,e.故答案为:2.17.【2017年新课标1理科15】已知双曲线C:1(a>0,b>0)的右顶点为A,以A为圆心,b 为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线b+ay=0的距离为:b cos30°,可得:,即,可得离心率为:e.故答案为:.18.【2015年新课标1理科14】一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.则该圆标准方程为.【解答】解:一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a,圆的半径为:,所求圆的方程为:()2+y2.故答案为:()2+y2.19.【2011年新课标1理科14】在平面直角坐标系Oy,椭圆C的中心为原点,焦点F1F2在轴上,离心率为.过F1的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即,则a c,将a c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为1;故答案为:1.20.【2010年新课标1理科15】过点A(4,1)的圆C与直线﹣y=1相切于点B(2,1),则圆C的方程为.【解答】解:设圆的方程为(﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,1,解得a=3,b=0,r,故所求圆的方程为(﹣3)2+y2=2.故答案为:(﹣3)2+y2=2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r ,则该双曲线的离心率为( )ABCD【答案】A【解析】由题意得直线l 的方程为b x y c a=+,不妨取1a =,则x by c =+,且221b c =-. 将x by c =+代入2221y x b -=,得()4234120b y b cy b -++=. 设()11,A x y ,()22,B x y ,则312421b c y y b +=--,41241b y y b =-. 由3AF FB u u u r u u u r =,得123y y =-,所以324422422131bc y b by b ⎧-=-⎪⎪-⎨⎪-=⎪-⎩,得22431b c b =-,解得214b =,所以2c ===c e a ==,故选A 。
十年高考真题分类汇编(2010-2019) 数学 专题01 集合
A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}
【答案】C
【解析】由已知得∁UA={1,6,7},∴B∩∁UA={6,7}.故选C.
3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()
【答案】C
【解析】由题意,得A∩B=(-1,2),故选C.
5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()
A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}
【答案】A
【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.
A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}
【答案】B
【解析】∁RB={x|x<1},A∩(∁RB)={x|0<x<1}.故选B.
15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()
13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()
A.{0,1}B.{-1,0,1}
C.{-2,0,1,2}D.{-1,0,1,2}
【答案】A
【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.
十年高考真题分类汇编(2010-2019) 数学(理) 专题10 立体几何 Word版含解析
十年高考真题分类汇编(2010—2019)数学专题10立体几何1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+62×3×6=162.2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF=90°,则球O 的体积为( ) A.8√6π B.4√6π C.2√6π D.√6π【答案】D【解析】设PA=PB=PC=2x. ∵E ,F 分别为PA ,AB 的中点, ∴EF ∥PB ,且EF=12PB=x.∵△ABC 为边长为2的等边三角形, ∴CF=√3.又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x. 在△AEC 中,由余弦定理可知cos ∠EAC=x 2+4-(3-x 2)2×2·x .作PD ⊥AC 于点D ,∵PA=PC , ∴D 为AC 的中点,cos ∠EAC=AD PA =12x . ∴x 2+4-3+x 24x=12x. ∴2x 2+1=2.∴x 2=12,即x=√22. ∴PA=PB=PC=√2. 又AB=BC=AC=2, ∴PA ⊥PB ⊥PC. ∴2R=√2+2+2=√6. ∴R=√62. ∴V=43πR 3=43π×6√68=√6π.故选D.3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( ) A.BM=EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM=EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图,连接BD ,BE.在△BDE 中,N 为BD 的中点,M 为DE 的中点, ∴BM ,EN 是相交直线,排除选项C 、D. 作EO ⊥CD 于点O ,连接ON. 作MF ⊥OD 于点F ,连接BF.∵平面CDE ⊥平面ABCD ,平面CDE ∩平面ABCD=CD ,EO ⊥ CD ,EO ⊂平面CDE ,∴EO ⊥平面ABCD. 同理,MF ⊥平面ABCD.∴△MFB 与△EON 均为直角三角形. 设正方形ABCD 的边长为2,易知 EO=√3,ON=1,MF=√32,BF=√22+94=52, 则EN=√3+1=2,BM=√34+254=√7,∴BM ≠EN.故选B.5.(2019·浙江·T8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( ) A.β<γ,α<γ B.β<α,β<γ C.β<α,γ<α D.α<β,γ<β 【答案】B【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O ,则点P 在底面ABC 上的投影点D 在线段AO 上,过点D 作DE 垂直AE ,易得PE ∥VG ,过点P 作PF ∥AC 交VG 于点F ,过点D 作DH ∥AC ,交BG 于点H ,则α=∠BPF ,β=∠PBD ,γ=∠PED ,所以cos α=PFPB=EG PB=DH PB<BDPB=cos β,所以α>β,因为tan γ=PDED>PDBD=tan β,所以γ>β.故选B.6.(2018·全国3·理T10文T12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( ) A.12√3 B.18√3C.24√3D.54√3【答案】B【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a ,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.设球的半径为R ,如图,OO 1=√R 2-r 2=√42-(2√3)2=2.当D 在O 的正上方时,V D-ABC =1S △ABC ·(R+|OO 1|)=1×9√3×6=18√3,最大.故选B.7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.2√17 B.2√5 C.3 D.2【答案】B【解析】如图所示,易知N 为CD ⏜的中点,将圆柱的侧面沿母线MC 剪开,展平为矩形MCC'M',易知CN=14CC'=4,MC=2,从M 到N 的路程中最短路径为MN.在Rt△MCN中,MN=√MC2+NC2=2√5.8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4【答案】C【解析】由该四棱锥的三视图,得其直观图如图.由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面PAD和PDC都是直角三角形.由俯视图为直角梯形,易知DC⊥平面PAD.又AB∥DC,所以AB⊥平面PAD,所以AB⊥PA,所以侧面PAB也是直角三角形.易知PC=2√2,BC=√5,PB=3,从而△PBC不是直角三角形.故选C.10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D【解析】设正六棱柱为ABCDEF-A1B1C1D1E1F1,以侧面AA1B1B,AA1F1F为底面矩形的阳马有E-AA 1B 1B ,E 1-AA 1B 1B ,D-AA 1B 1B ,D 1-AA 1B 1B ,C-AA 1F 1F ,C 1-AA 1F 1F ,D-AA 1F 1F ,D 1-AA 1F 1F ,共8个,以对角面AA 1C 1C ,AA 1E 1E 为底面矩形的阳马有F-AA 1C 1C ,F 1-AA 1C 1C ,D-AA 1C 1C ,D 1-AA 1C 1C ,B-AA 1E 1E ,B 1-AA 1E 1E ,D-AA 1E 1E ,D 1-AA 1E 1E ,共8个,所以共有8+8=16(个),故选D.11.(2018·全国1·文T10)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A.8 B.6√2 C.8√2 D.8√3【答案】C【解析】在长方体ABCD-A 1B 1C 1D 1中,AB ⊥平面BCC 1B 1,连接BC 1,则∠AC 1B 为AC 1与平面BB 1C 1C 所成的角,∠AC 1B=30°,所以在Rt △ABC 1中,BC 1=AB tan∠AC 1B =2√3,又BC=2,所以在Rt △BCC 1中,CC 1=√(2√3)2-22=2√2,所以该长方体体积V=BC ×CC 1×AB=8√2.12.(2018·全国2·理T9)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1=√3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15B.√56C.√55D.√22【答案】C【解析】以DA ,DC ,DD 1所在直线为坐标轴建立空间直角坐标系如图, 则D 1(0,0,√3),A(1,0,0),D(0,0,0),B 1(1,1,√3).∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,√3),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,√3).设异面直线AD 1与DB 1所成的角为θ. ∴cos θ=|AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·DB1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||DB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||=|2×√5|=√55.∴异面直线AD 1与DB 1所成角的余弦值为√55.13.(2018·全国2·文T9)在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A.√22 B.√32C.√52D.√72【答案】C【解析】如图,因为AB∥CD,所以AE与CD所成的角为∠EAB. 在Rt△ABE中,设AB=2,则BE=√5,则tan∠EAB=BEAB =√52,所以异面直线AE与CD所成角的正切值为√52.14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.15.(2018·浙江·T3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8【答案】C【解析】由三视图可知该几何体为直四棱柱.∵S底=12×(1+2)×2=3,h=2,∴V=Sh=3×2=6.16.(2017·全国2·理T4文T6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【答案】B【解析】由三视图知,该几何体是一个圆柱截去一部分所得,如图所示.其体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V=π×32×4+π×32×6×12=63π.17.(2017·全国1·理T7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A.10B.12C.14D.16【答案】B【解析】由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧面是全等的直角梯形,且该直角梯形的上底长为2,下底长为4,高为2,则S 梯=(2+4)×2÷2=6,所以这些梯形的面积之和为12.18.(2017·全国2·理T10)已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.√32 B.√155C.√105D.√33【答案】C【解析】方法一:把三棱柱ABC-A 1B 1C 1补成四棱柱ABCD-A 1B 1C 1D 1,如图, 连接C 1D ,BD ,则AB 1与BC 1所成的角为∠BC 1D. 由题意可知BC 1=√2,BD=√22+12-2×2×1×cos60°=√3,C 1D=AB 1=√5.可知B C 12+BD 2=C 1D 2,所以cos ∠BC 1D=√2√5=√105,故选C.方法二:以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图所示.由已知条件知B 1(0,0,0),B(0,0,1),C 1(1,0,0),A(-1,√3,1),则BC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,-√3,-1).所以cos<AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|=√5×√2=√105.所以异面直线AB 1与BC 1所成角的余弦值为√105.19.(2017·北京·理T7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3√2B.2√3C.2√2D.2【答案】B【解析】由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE=√22+22+22=2√3.故选B.20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4C.π2D.π4【答案】B【解析】由题意可知球心即为圆柱体的中心,画出圆柱的轴截面如图所示,则AC=1,AB=12,底面圆的半径r=BC=√32,所以圆柱的体积是V=πr 2h=π×(√32)2×1=3π4,故选B.21.(2017·全国1·文T6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )【答案】A【解析】易知选项B 中,AB ∥MQ ,且MQ ⊂平面MNQ ,AB ⊄平面MNQ ,则AB ∥平面MNQ;选项C 中,AB ∥MQ ,且MQ ⊂平面MNQ ,AB ⊄平面MNQ ,则AB ∥平面MNQ;选项D 中,AB ∥NQ ,且NQ ⊂平面MNQ ,AB ⊄平面MNQ ,则AB ∥平面MNQ ,故排除选项B ,C ,D;故选A.4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 【答案】C【解析】对于选项A ,∵α∩β=l ,∴l ⊂α,∵m ∥α,∴m 与l 可能平行,也可能异面,故选项A 不正确; 对于选项B ,D ,∵α⊥β,m ∥α,n ⊥β,∴m 与n 可能平行,可能相交,也可能异面,故选项B ,D 不正确. 对于选项C ,∵α∩β=l ,∴l ⊂β. ∵n ⊥β,∴n ⊥l.故选C.22.(2016·天津·文T3)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得该长方体沿相邻三个面的对角线截去一个棱锥,如下图所示.易知其左视图为B 项中图.故选B.23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB=6,BC=8,AA 1=3,则V 的最大值是( ) A.4π B.9π2C.6πD.32π3【答案】B【解析】先计算球与直三棱柱三个侧面相切的球的半径,再和与直三棱柱两底面相切的球的半径相比较,半径较小的球即为所求.设球的半径为R ,∵AB ⊥BC ,AB=6,BC=8,∴AC=10.当球与直三棱柱的三个侧面相切时,有12(6+8+10)×R=12×6×8,此时R=2;当球与直三棱柱两底面相切时,有2R=3,此时R=32.所以在封闭的直三棱柱中,球的最大半径只能为32,故最大体积V=43π(32)3=9π2.24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B. π C.8π D.4π 【答案】A【解析】设正方体的棱长为a ,由a 3=8,得a=2. 由题意可知,正方体的体对角线为球的直径, 故2r=√3a 2,则r=√3.所以该球的表面积为4π×(√3)2=12π,故选A.25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.√32 B.√22C.√33D.13【答案】A【解析】∵α∥平面CB 1D 1,平面ABCD ∥平面A 1B 1C 1D 1,α∩平面ABCD=m ,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴m ∥B 1D 1.∵α∥平面CB 1D 1,平面ABB 1A 1∥平面DCC 1D 1,α∩平面ABB 1A 1=n ,平面CB 1D 1∩平面DCC 1D 1=CD 1, ∴n ∥CD 1.∴B 1D 1,CD 1所成的角等于m ,n 所成的角, 即∠B 1D 1C 等于m ,n 所成的角.∵△B 1D 1C 为正三角形,∴∠B 1D 1C=60°, ∴m ,n 所成的角的正弦值为√32.26.(2016·全国1·理T6文T7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π 【答案】A【解析】由三视图可知该几何体是球截去18后所得几何体,则78×4π3×R 3=28π3,解得R=2,故其表面积为78×4πR 2+34×πR 2=14π+3π=17π. 27.(2016·全国2·理T6文T7)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A.20πB.24πC.28πD.32π 【答案】C【解析】因为原几何体由同底面的一个圆柱和一个圆锥构成, 所以其表面积为S=π×(42)2+4π×4+12×4π×√(2√3)2+22=28π,故选C.28.(2016·全国3·理T9文T10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+36√5 B.54+18√5 C.90D.81【答案】B【解析】由题意知该几何体为四棱柱,且四棱柱的底面是边长为3的正方形,侧棱长为3√5,所以所求表面积为(3×3+3×6+3×3√5)×2=54+18√5,故选B.29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( ) A.13+23πB.13+√23πC.13+√26πD.1+√26π【答案】C【解析】由三视图可知,上面是半径为√22的半球,体积为V 1=12×43π×(√22)3=√2π6,下面是底面积为1,高为1的四棱锥,体积V 2=13×1×1=13,故选C.30.(2016·北京·理T6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13C.12D.1【答案】A【解析】由三视图可得,三棱锥的直观图如图,则该三棱锥的体积V=13×12×1×1×1=16,故选A.31.(2015·全国1·理T6文T6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛 【答案】B【解析】设底面圆弧半径为R ,∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π. ∴体积V=14×13π×(16π)2×5.∵π≈3,∴V ≈3209(尺3).∴堆放的米约为3209×1.62≈22(斛). 32.(2015·全国2·理T6文T6)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】D【解析】由题意知该正方体截去了一个三棱锥,如图所示,设正方体棱长为a ,则V 正方体=a 3,V截去部分=16a 3,故截去部分体积与剩余部分体积的比值为16a 3∶56a 3=1∶5.33.(2015·重庆·理T5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2πD.23+2π【答案】A【解析】由题中三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V 1=13×12×2×1×1=13;其右边是一个半圆柱,底面半径为1,高为2,所以体积V 2=π·12·2·12=π,所以该几何体的体积V=V 1+V 2=13+π.34.(2015·浙江·理T2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( ) A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3【答案】C【解析】由题中三视图知该几何体是一个正方体与正四棱锥的组合体,其中正方体与正四棱锥的底面边长为2 cm ,正四棱锥的高为2 cm ,则该几何体的体积V=2×2×2+13×2×2×2=323(cm 3),故选C.35.(2015·山东·理T7)在梯形ABCD 中,∠ABC=π2,AD ∥BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π【答案】C【解析】由题意可得旋转体为一个圆柱挖掉一个圆锥,如图所示. V 圆柱=π×12×2=2π,V 圆锥=13×π×12×1=π3. ∴V 几何体=V 圆柱-V 圆锥=2π-π3=5π3.36.(2015·湖南·文T10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.827πC.24(√2-1)3πD.8(√2-1)3π【答案】A【解析】由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=√l 2-r 2=2√2.故该圆锥的体积V=π3×12×2√2=2√2π3.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH 的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN 中,由O 1G ∥ON可得,O 1GON=SO 1SO ,即√22x 1=√2-2√2,解得x=2√23.所以正方体的体积为V 1=(2√23)3=16√227.所以该工件的利用率为V1V =16√22722π3=89π.故选A.37.(2015·全国1·理T11文T11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A.1 B.2 C.4D.8【答案】B【解析】由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r ×2r+2×12πr 2+πr ×2r+12×4πr 2=5πr 2+4r 2=16+20π, 解得r=2.38.(2015·北京·理T5)某三棱锥的三视图如图所示,则该三棱锥的表面积是( ) A.2+√5B.4+√5C.2+2√5D.5【答案】C【解析】作出三棱锥的直观图如图,在△ABC 中,作AB 边上的高CD ,连接SD.在三棱锥S-ABC 中,SC ⊥底面ABC ,SC=1,底面三角形ABC 是等腰三角形,AC=BC=√5,AB 边上的高CD=2,AD=BD=1,斜高SD=√5.所以S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×√5+12×1×√5+12×2×√5=2+2√5.39.(2015·陕西·理T5文T5)一个几何体的三视图如图所示,则该几何体的表面积为( ) A.3π B.4π C.2π+4 D.3π+4【答案】D【解析】由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S 1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S 2=12π×12=12π.故该几何体的表面积为S=S 1+2S 2=2π+4+2×π2=3π+4.故选D.40.(2015·浙江·理T8)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A'CD ,所成二面角A'-CD-B 的平面角为α,则( ) A.∠A'DB ≤α B.∠A'DB ≥α C.∠A'CB ≤α D.∠A'CB ≥α【答案】B【解析】设∠ADC=θ,设AB=2,则由题意AD=BD=1. 在空间图形中,设A'B=t.在△A'BD 中, cos ∠A'DB=A 'D 2+DB 2-AB 22A 'D×DB =12+12-t 22×1×1=2-t 22. 在空间图形中,过A'作A'N ⊥DC ,过B 作BM ⊥DC ,垂足分别为N ,M.过N 作NP MB ,连接A'P ,所以NP ⊥DC.则∠A'NP 就是二面角A'-CD-B 的平面角, 所以∠A'NP=α.在Rt △A'ND 中,DN=A'Dcos ∠A'DC=cos θ,A'N=A'Dsin ∠A'DC=sin θ. 同理,BM=PN=sin θ,DM=cos θ.故BP=MN=2cos θ. 显然BP ⊥面A'NP ,故BP ⊥A'P.在Rt △A'BP 中,A'P 2=A'B 2-BP 2=t 2-(2cos θ)2=t 2-4cos 2θ.在△A'NP 中,cos α=cos ∠A'NP=A 'N 2+NP 2-A 'P 22A 'N×NP=sin 2θ+sin 2θ-(t 2-4cos 2θ)2sinθ×sinθ=2+2cos 2θ-t 22sin 2θ=2-t 22sin 2θ+cos 2θsin 2θ=1sin 2θcos ∠A'DB+cos 2θsin 2θ.因为1sin 2θ≥1,cos 2θsin 2θ≥0,所以cos α≥cos∠A'DB (当θ=π2时取等号),因为α,∠A'DB ∈[0,π],而y=cos x 在[0,π]上为递减函数,所以α≤∠A'DB.故选B.41.(2015·全国2·理T9文T10)已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为 ( ) A.36π B.64π C.144π D.256π 【答案】C【解析】因为∠AOB=90°,所以S △AOB =12R 2. 因为V O-ABC =V C-AOB ,而△AOB 面积为定值,所以三棱锥底面OAB 上的高最大时,其体积最大.因为高最大为半径R ,所以V C-AOB =13×12R 2×R=36,解得R=6,故S 球=4πR 2=144π.42.(2015·安徽·理T5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...,则在α内不存在...与β平行的直线D.若m,n不平行...垂直于同一平面...,则m与n不可能【答案】D【解析】A选项α,β可能相交;B选项m,n可能相交,也可能异面;C选项若α与β相交,则在α内平行于它们交线的直线一定平行于β;由垂直于同一个平面的两条直线一定平行,可知D选项正确.43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A【解析】若l⊥β,又l⊂α,由面面垂直的判定定理,得α⊥β,故选项A正确;选项B,l⊥m或l∥m或l与m相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l∥m或l与m异面都有可能.44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D【解析】l1与l在平面α内,l2与l在平面β内,若l1,l2与l都不相交,则l1∥l,l2∥l,根据直线平行的传递性,则l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.45.(2014·浙江·理T3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A.90 cm2B.129 cm2C.132 cm2D.138 cm2【答案】D【解析】由题干中的三视图可得原几何体如图所示.故该几何体的表面积S=2×4×6+2×3×4+3×6+3×3+3×4+3×5+2××3×4=138(cm2).故选D.46.(2014·陕西·文T5)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A.4πB.3πC.2πD.π【答案】C【解析】依题意,知所得几何体是一个圆柱,且其底面半径为1,母线长也为1,因此其侧面积为2π×1×1=2π,故选C.47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B【解析】对A:m,n还可能异面、相交,故A不正确.对C:n还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D【解析】如图,在正方体ABCD-A1B1C1D1中,取l1为BC,l2为CC1,l3为C1D1.满足l1⊥l2,l2⊥l3.若取l4为A1D1,则有l1∥l4;若取l4为DD1,则有l1⊥l4.因此l1与l4的位置关系不确定,故选D.49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【答案】C【解析】当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误;当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n⊥β,β⊥α,但m⊥α不成立,故选项D错误.50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3B.4π C.2π D.4π3【答案】D【解析】依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径R ,则2R=√12+12+(√2)2=2,解得R=1,所以V=4π3R 3=4π3.51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B.16πC.9πD.27π4【答案】A【解析】由图知,R 2=(4-R)2+2, ∴R 2=16-8R+R 2+2,∴R=94, ∴S 表=4πR 2=4π×8116=814π,选A. 52.(2014·湖南·理T7文T8)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.4【答案】B【解析】由三视图可得原石材为如右图所示的直三棱柱A 1B 1C 1-ABC ,且AB=8,BC=6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆的半径相等,故半径r=6+8-102=2.故选B.53.(2014·全国1·理T12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6√2B.6C.4√2D.4【答案】B【解析】如图所示的正方体ABCD-A1B1C1D1的棱长为4.取B1B的中点G,即三棱锥G-CC1D1为满足要求的几何体,其中最长棱为D1G,D1G=√(4√2)2+22=6.54.(2014·全国1·文T8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由所给三视图可知该几何体是一个三棱柱(如图).55.(2014·北京·理T7)在空间直角坐标系O-xyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,√2).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( ) A.S1=S2=S3 B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【答案】D【解析】三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2. 综上,S 2=S 3,S 3≠S 1.故选D.56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( ) A.14B.√24C.√34D.12【答案】B【解析】如图,在平面α内过C 作CE ∥AB ,则∠ECD 为异面直线AB 与CD 所成的角或其补角,不妨取CE=1,过E 作EO ⊥β于O. 在平面β内过O 作OH ⊥CD 于H , 连EH ,则EH ⊥CD.因为AB ∥CE ,AB ⊥l ,所以CE ⊥l. 又因为EO ⊥平面β,所以CO ⊥l.故∠ECO 为二面角α-l-β的平面角,所以∠ECO=60°. 而∠ACD=135°,CO ⊥l ,所以∠OCH=45°.在Rt △ECO 中,CO=CE ·cos ∠ECO=1·cos 60°=12.在Rt △COH 中,CH=CO ·cos ∠OCH=12·sin 45°=√24. 在Rt △ECH 中,cos ∠ECH=CHCE=√241=√24.所以异面直线AB 与CD 所成角的余弦值为√24.故选B.57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16B.√36C.13D.√33【答案】B【解析】如图所示,取AD 的中点F ,连EF ,CF ,则EF ∥BD ,∴异面直线CE 与BD 所成的角即为CE 与EF 所成的角∠CEF.由题知,△ABC ,△ADC 为正三角形,设AB=2,则 CE=CF=√3,EF=12BD=1.∴在△CEF 中,由余弦定理, 得cos ∠CEF=CE 2+EF 2-CF 22CE ·EF=√3)22√3)22×√3×1=√36.故选B.58.(2014·全国2·理T6文T6)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59C.1027D.13【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示. 切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3). 故所求比值为V1V 2=20π54π=1027.59.(2014·全国2·文T7)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为√3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为( )A.3B.32C.1D.√32【答案】C【解析】∵D 是等边△ABC 的边BC 的中点,∴AD ⊥BC. 又ABC-A 1B 1C 1为正三棱柱, ∴AD ⊥平面BB 1C 1C. 又四边形BB 1C 1C 为矩形,∴S △DB 1C 1=12S 四边形BB 1C 1C =12×2×√3=√3. 又AD=2×√32=√3,∴V A -B 1DC 1=13S △B 1DC 1·AD=13×√3×√3=1.60.(2013·全国1·理T8文T11)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π【答案】A【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱= π×22×4=8π,V 长方体=4×2×2=16. 所以所求体积为16+8π.故选A.61.(2013·浙江·文T5)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( ) A.108 cm 3B.100 cm 3C.92 cm 3D.84 cm 3【答案】B【解析】由三视图可知,该几何体是如图所示长方体去掉一个三棱锥,故几何体的体积是6×3×6-13×12×3×42=100(cm 3).故选B.62.(2013·山东·理T4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为9,底面是边长为√3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12B.π3C.π4D.π6【答案】B【解析】如图所示,由棱柱体积为94,底面正三角形的边长为√3,可求得棱柱的高为√3.设P 在平面ABC 上射影为O ,则可求得AO 长为1,故AP 长为√12+(√3)2=2.故∠PAO=π3,即PA 与平面ABC 所成的角为π3.63.(2013·全国2·理T7文T9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为 ( )【答案】A【解析】该四面体在空间直角坐标系O-xyz 中的图象如图所示.则它在平面zOx 上的投影,即正视图为.64.(2013·湖南·理T7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( ) A.1 B.√2 C.√2-12 D.√2+12【答案】C【解析】当俯视图是面积为1的正方形时,其正视图的最小面积等于一个面的面积1,最大面积等于对角面的面积√2.故正视图面积S 的取值范围为1≤S≤√2. 因为√2-12<1,故选C.65.(2013·全国1·理T6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ) A.500π3 cm 3B.866π3 cm 3C.1372π3 cm 3D.2048π3cm 3【答案】A【解析】设球半径为R ,由题可知R ,R-2,正方体棱长的一半可构成直角三角形,即△OBA 为直角三角形,如图. BC=2,BA=4,OB=R-2,OA=R , 由R 2=(R-2)2+42,得R=5,所以球的体积为4π3×53=5003π(cm 3),故选A.66.(2013·辽宁·理T10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3√172 B.2√10C.132D.3√10【答案】C。
(2010-2019)高考数学真题分类汇编专题09立体几何文(含解析)
专题09立体几何历年考题细目表历年高考真题汇编1.【2018年新课标1文科05】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R,则该圆柱的表面积为:12π.故选:B.2.【2018年新课标1文科09】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1文科10】在长方体ABCD﹣A1B1C1D1中,AB =BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC12.可得BB12.所以该长方体的体积为:28.故选:C.4.【2017年新课标1文科06】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.5.【2016年新课标1文科07】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1文科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1文科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1。
2010年高考数学试题分类汇编立体几何
2010年高考数学试题分类汇编——立体几何1.(2010年山东卷理科)在空间,下列命题正确的是( )(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 2.( 2010年全国卷I 理科)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )(A)3(B)3(C) (D)33.(2010年福建卷理科)如图,若Ω是长方体1111ABC D -A B C D 被平面E F G H 截去几何体11EFG H B C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1B B 上异于1B 的点,且E H ∥11A D ,则下列结论中不.正确..的是( ) A. E H ∥F G B.四边形E F G H 是矩形 C. Ω是棱柱 D. Ω是棱台3题图 4题图4.(2010年安徽卷理科)一个几何体的三视图如图,该几何体的表面积为( )A 、280B 、292C 、360D 、3725.(2010年广东卷理科)如图,△ ABC 为直角三角形,A A '//B B ' //C C ' , C C ' ⊥平面ABC 且3A A '=32B B '=C C ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )6.(2010年宁夏卷)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) (A) 2a π(B)273a π(C)2113a π (D) 25a π7.(2010年浙江卷)设m,l 是两条不同的直线,α是一个平面,则下列命题正确的是( )CA9.(2010年全国2卷理数)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点( )(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个10.(2010年湖北卷理科)圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm . 11.(2010年江西卷理科)如图,在三棱锥O A B C -中,三条棱O A ,O B ,O C 两两垂直,且O A O B O C >>,分别经过三条棱O A ,O B ,O C 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则1S ,2S ,3S 的大小关系为 .12.(2010年浙江卷)若某几何体的正视图(单位:cm )如图所示,则此几何体的体积是____cm 3. 13.(2010年全国2卷理数)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,A B 为圆M 与圆N 的公共弦,4A B =.若3O M O N ==,则两圆圆心的距离M N = . 14.(2010年上海市理科)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去A O B ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。
2010年高考数学试题分类汇编——立体几何
2010年高考数学试题分类汇编——立体几何一、选择题1、(2010浙江理数)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //解析:选B ,可对选项进行逐个检查。
本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题2、(2010全国卷2理数)(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.3、(2010全国卷2理数)(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3 【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4、(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )13解析:本题考查立体图形三视图及体积公式 如图,该立体图形为直三棱柱 所以其体积为122121=⨯⨯⨯5、(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,A B B C ⊥,1SA A B ==,BC =O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=7、(2010全国卷2文数)(11)与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个221【解析】D :本题考查了空间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,8、(2010全国卷2文数)(8)已知三棱锥S A B C -中,底面ABC 为边长等于2的等边三角形,S A 垂直于底面ABC ,S A =3,那么直线A B 与平面S B C 所成角的正弦值为(A )4(B)4(C)4(D) 34【解析】D :本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
2019高考数学(文)真题分类汇编-立体几何含答案
2019高考数学(文)真题分类汇编-立体几何含答案立体几何专题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是α内有两条相交直线与β平行。
解析:根据面面平行的判定定理,α内有两条相交直线都与β平行是α∥β的充分条件。
又根据面面平行性质定理,若α∥β,则α内任意一条直线都与β平行。
因此,α内两条相交直线都与β平行是α∥β的必要条件。
所以选B。
名师点睛:本题考查了空间两个平面的判定与性质及充要条件,需要运用面面平行的判定定理与性质定理进行判断。
容易犯的错误是记不住定理,凭主观臆断。
2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BM≠EN,且直线BM,EN是相交直线。
解析:连接ON,BD,容易得到直线BM,EN是三角形EBD的中线,是相交直线。
过M作MF⊥OD于F,连接BF,平面CDE⊥平面ABCD,EO⊥CD,EO⊥平面CDE,因此EO⊥平面ABCD,MF⊥平面ABCD,所以△MFB与△EON均为直角三角形。
设正方形边长为2,可以计算出EO=3,ON=1,EN=2,MF=35,BF=22,因此BM=7,BM≠EN,故选B。
名师点睛:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形。
解答本题时,先利用垂直关系,再结合勾股定理进而解决问题。
3.【2019年高考浙江卷】XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是162.解析:根据三视图,可以得到底面为直角梯形,上底为10,下底为18,高为9.因此,底面积S=1/2(10+18)×9=108,高h=9,代入公式V柱体=Sh可得V柱体=108×9=972,单位为cm3,故选B。
十年真题(2010-2019)高考数学(理)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(解析版)
专题05三角函数与解三角形历年考题细目表解答题2018 解三角形2018年新课标1理科17解答题2017 解三角形2017年新课标1理科17解答题2016 解三角形2016年新课标1理科17解答题2013 解三角形2013年新课标1理科17解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f()=sin||+|sin|有下述四个结论:①f()是偶函数②f()在区间(,π)单调递增③f()在[﹣π,π]有4个零点④f()的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣)=sin|﹣|+|sin(﹣)|=sin||+|sin|=f()则函数f()是偶函数,故①正确,当∈(,π)时,sin||=sin,|sin|=sin,则f()=sin+sin=2sin为减函数,故②错误,当0≤≤π时,f()=sin||+|sin|=sin+sin=2sin,由f()=0得2sin=0得=0或=π,由f()是偶函数,得在[﹣π,)上还有一个零点=﹣π,即函数f()在[﹣π,π]有3个零点,故③错误,当sin||=1,|sin|=1时,f()取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos,C2:y=sin(2),则下面结论正确的是()A.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原的倍,纵坐标不变,得到函数y=cos2图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2()=cos(2)=sin(2)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f()=sin(ω+φ)(ω>0,|φ|),为f()的零点,为y=f()图象的对称轴,且f()在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵为f()的零点,为y=f()图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f()在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=π,∈,∵|φ|,∴φ,此时f()在(,)不单调,不满足题意;当ω=9时,φ=π,∈,∵|φ|,∴φ,此时f()在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f()=cos(ω+φ)的部分图象如图所示,则f()的单调递减区间为()A.(π,π),∈B.(2π,2π),∈C.(,),∈D.(,2),∈【解答】解:由函数f()=cos(ω+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f ()=cos(π+ϕ).再根据函数的图象以及五点法作图,可得ϕ,∈,即ϕ,f()=cos(π).由2π≤π2π+π,求得2≤2,故f()的单调递减区间为(,2),∈,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f()=sin(ω)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与轴的正半轴重合,终边在直线y=2上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f()=sin(ω+φ)+cos(ω+φ)的最小正周期为π,且f(﹣)=f(),则()A.f()在单调递减B.f()在(,)单调递减C.f()在(0,)单调递增D.f()在(,)单调递增【解答】解:由于f()=sin(ω+ϕ)+cos(ω+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣)=f(),得φπ(∈),以及|φ|,得出φ.因此,f()cos2,若∈,则2∈(0,π),从而f()在单调递减,若∈(,),则2∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f()=2sin+sin2,则f()的最小值是.【解答】解:由题意可得T=2π是f()=2sin+sin2的一个周期,故只需考虑f()=2sin+sin2在[0,2π)上的值域,先求该函数在[0,2π)上的极值点,求导数可得f′()=2cos+2cos2=2cos+2(2cos2﹣1)=2(2cos﹣1)(cos+1),令f′()=0可解得cos或cos=﹣1,可得此时,π或;∴y=2sin+sin2的最小值只能在点,π或和边界点=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD,AE,DE,CD=m,∵BC=2,∴(+m)sin15°=1,∴+m,∴0<<4,而AB+m,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当=θ时,函数f()=sin﹣2cos取得最大值,则cosθ=.【解答】解:f()=sin﹣2cos(sin cos)sin(﹣α)(其中cosα,sinα),∵=θ时,函数f()取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a =2,△ABC 的面积,∴bc =4.①再利用余弦定理可得:a 2=b 2+c 2﹣2bc •cos A =(b +c )2﹣2bc ﹣bc =(b +c )2﹣3×4=4, ∴b +c =4.②结合①②求得b =c =2. 考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--,当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-. 故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A 【解析】由题意,函数13()cos 32cos 2cos 223f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错;④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -+=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=, 2a ∴=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4) B.(2, C. D.4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 2A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭,∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点( 2sin ϕ∴=sin 2ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈ 126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()1121x y x y ∴-++≥=-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin 3cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 32sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______65123-【解析】连接AC ,设ACB θ∠=,则120ACD θ∠=-o ,如图:故在Rt ABC ∆中,sin 4141θθ==, ()1313435cos 120cos 224141241θθθ--=-=-=o Q , 又在ACD ∆中由余弦定理有()22241343cos 1202341241AD θ+--==⨯⨯o,解得265123AD =-即65123AD =-65123-15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =.则a c +的取值范围为_____.【答案】(6,3] 【解析】cos cos 23sin A B C a b +=Q23cos cos sin b A a B C ∴+= 由正弦定理可得: 23sin cos sin cos sin sin 3B A A B BC +=, 可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,3]a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【答案】3【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解3c =.即AB故答案为317.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos B =,∴sin B =, ()13sin sin sin cos cos sin 23236C A B A B A B =+=+=⨯+⨯=, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 2223ABC S ab C ==⨯⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且sin sin B C +=,求ABC ∆的面积. 【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+---=sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为,12⎛⎤- ⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V19.在ABC ∆中,已知2AB =,cos B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)BC =(2【解析】解:(1)因为cos 10B =,0B π<<,所以sin 10B ===. 在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 55AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )1021025B C B C ⎛⎫=--=--= ⎪ ⎪⎝⎭, 于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭. 因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭241725225⎛⎫=⨯+-= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】61BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin 4CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-, 即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =. 21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b aB =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠= (Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
十年高考真题分类汇编(2010—2019)数学(20210417120444)
十年高考真题分类汇编(2010—2019)数学专题空间向量1. (2014 •全国2 •理T11)直三棱柱ABC-A6C 、中,N%4R00 ,MN 分别是A £, A6的中 点,则6y 与4V 所成角的余弦值为() r 同 u.— 102. (2013 •北京•文T8)如图,在正方体被〃中,尸为对角线做的三等分点,尸到各顶点的距离的不同取值有()3. (2012 •陕西•理T5)如图,在空间直角坐标系中有直三棱柱板。
1二8与纸则直线与直线必夹角的余弦值为(4. (2010 •大纲全国•文T6)直三棱柱ABC-ABQ 中,若NBAC =90° ,AB=AC=AA1,则异面直线BA : 与AQ 所成的角等于()A. 30°B. 45°C. 60°D. 90°5. (2019 •天津•理 T17)如图,AE,平面 ABCD, CF 〃AE , AD 〃BC, AD_LAB, AB=AD=1, AE=BC 二2.(1)求证:BF 〃平面ADE;B -l B. 4个C 5个 D.6个A.3个 C.这⑵求直线CE与平面BDE所成角的正弦值;⑶若二面角E-BD-F的余弦值为京求线段CF的长.EB6.(2019 •浙江• T 19)如图,已知三棱柱ABC-A&C,平面 4月平面ABC, ZABC^0° , Z 区灰>30° ,4月引。
泡尸分别是〃;43的中点.(1)证明:年J_6C;⑵求直线房与平面46。
所成角的余弦值.7.(2019 •全国1•理T18)如图,直四棱柱极〃的底面是菱形,例=1,止2, N 员切40° ,EM,V分别是比破,4。
的中点.⑴证明:/V〃平面C、DE;(2)求二面角力T4M的正弦值.8.(2019 •全国2 •理T17)如图,长方体力用a-4£4〃的底面月颜是正方形,点£在棱前[上,龙LEG.⑴证明:麻山平面微a;⑵若AE=A^求二面角B-EC-C的正弦值.9.(2019 •全国3 •理T19)图1是由矩形ADEB,Rt^ABC和菱形BFGC组成的一个平面图形,其中AB=1, BE=BF=2, ZFBC=60° .将其沿AB, BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A, C, G, D四点共面,且平面ABC_L平面BCGE;(2)求图2中的二面角B-CG-A的大小.10.(2018 •浙江• T 8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB 上的点(不含端点).设SE与BC所成的角为01,SE与平面ABCD所成的角为82,二面角S-AB-C的平面角为83,则()A.01<02<03B.03<02<61C.01<O3<02D.92<03<0111.(2018 •全国3 •理T19)如图,边长为2的正方形4加9所在的平面与半圆弧曲所在平面垂直,"是曲上异于的点.(1)证明:平面AMD_L平面BMC;⑵当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.12.(2018 •北京•理T16)如图,在三棱柱ABC-A瓜&中,CC_L平面ABCM & F, G分别为44:, AQ 4Q 能的中点,AB二BC二遍,AC=AA尸2.⑴求证:AC_L平面BEF;(2)求二面角B-CD-G的余弦值;16.(2018 •浙江• T9)如图,已知多面体ABCA瓜心, 44 £5 均垂直于平面ABC, Z板=120° , A.A^ GC=1, AB=BC=B-.B=^.(1)证明:四_L平面4A4;⑵求直线月a与平面月期所成的角的正弦值.17.(2018 •上海,T17)已知圆锥的顶点为P,底面圆心为0,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设P0=4, 0A, 0B是底面半径,且NA0B=90° , M为线段AB的中点,如图,求异面直线PM与0B 所成的角的大小.18.(2017 •北京•理T16)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD,平面ABCD, 点M在线段PB上,PD〃平面MAC, PA=PD二遍,AB=4.⑴求证:M为PB的中点;(2)求二面角B-PD-A的大小;⑶求直线MC与平面BDP所成角的正弦值.19.(2017 •全国 1 •理 T18)如图,在四棱锥 P-ABCD 中,AB〃CD,且NBAP=NCDP=90。
十年真题(2010-2019)高考数学(理)分类汇编专题11 平面解析几何选择填空题(新课标Ⅰ卷)(解析版)
专题11平面解析几何选择填空题历年考题细目表填空题2015 圆的方程2015年新课标1理科14填空题2011 椭圆2011年新课标1理科14填空题2010 圆的方程2010年新课标1理科15历年高考真题汇编1.【2019年新课标1理科10】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 1【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|,∴|AF2|=a,|BF1|a,在Rt△AF2O中,cos∠AF2O,在△BF1F2中,由余弦定理可得cos∠BF2F1,根据cos∠AF2O+cos∠BF2F1=0,可得0,解得a2=3,∴a.b2=a2﹣c2=3﹣1=2.所以椭圆C的方程为:1.故选:B.2.【2018年新课标1理科08】设抛物线C:y2=4的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•()A.5 B.6 C.7 D.8【解答】解:抛物线C:y2=4的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2+4,联立直线与抛物线C:y2=4,消去可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•(0,2)•(3,4)=8.故选:D.3.【2018年新课标1理科11】已知双曲线C:y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:y2=1的渐近线方程为:y,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y,则:解得M(,),解得:N(),则|MN|3.故选:B.4.【2017年新课标1理科10】已知F为抛物线C:y2=4的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|•|y1﹣y2|8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为θ,根据焦点弦长公式可得|AB||DE|∴|AB|+|DE|,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.5.【2016年新课标1理科05】已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.【2016年新课标1理科10】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2p,如图:|AB|=4,|AM|=2,|DE|=2,|DN|,|ON|,A,|OD|=|OA|,5,解得:p=4.C的焦点到准线的距离为:4.故选:B.7.【2015年新课标1理科05】已知M(0,y0)是双曲线C:1上的一点,F1,F2是C的左、右两个焦点,若0,则y0的取值范围是()A.B.C.D.【解答】解:由题意,(0,﹣y0)•(0,﹣y0)=02﹣3+y02=3y02﹣1<0,所以y0.故选:A.8.【2014年新课标1理科04】已知F为双曲线C:2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【解答】解:双曲线C:2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为0,∴点F到C的一条渐近线的距离为.故选:A.9.【2014年新课标1理科10】已知抛物线C:y2=8的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵4,∴|PQ|=3d,∴不妨设直线PF的斜率为2,∵F(2,0),∴直线PF的方程为y=﹣2(﹣2),与y2=8联立可得=1,∴|QF|=d=1+2=3,故选:B.10.【2013年新课标1理科04】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y B.y C.y=±D.y【解答】解:由双曲线C:(a>0,b>0),则离心率e,即4b2=a2,故渐近线方程为y=±,故选:D.11.【2013年新课标1理科10】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【解答】解:设A(1,y1),B(2,y2),代入椭圆方程得,相减得,∴.∵1+2=2,y1+y2=﹣2,.∴,化为a2=2b2,又c=3,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.12.【2012年新课标1理科04】设F1、F2是椭圆E:1(a>b>0)的左、右焦点,P为直线上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线上一点∴∴故选:C.13.【2012年新课标1理科08】等轴双曲线C的中心在原点,焦点在轴上,C与抛物线y2=16的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【解答】解:设等轴双曲线C:2﹣y2=a2(a>0),y2=16的准线l:=﹣4,∵C与抛物线y2=16的准线l:=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得4,∴a=2,2a=4.故选:C.14.【2011年新课标1理科07】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e.故选:B.15.【2010年新课标1理科12】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E 相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【解答】解:由已知条件易得直线l的斜率为=PN=1,设双曲线方程为,A(1,y1),B(2,y2),则有,两式相减并结合1+2=﹣24,y1+y2=﹣30得,从而 1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.16.【2019年新课标1理科16】已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.【解答】解:如图,∵,且•0,∴OA⊥F1B,则F1B:y,联立,解得B(,),则,,∴4c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴,e.故答案为:2.17.【2017年新课标1理科15】已知双曲线C:1(a>0,b>0)的右顶点为A,以A为圆心,b 为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线b+ay=0的距离为:b cos30°,可得:,即,可得离心率为:e.故答案为:.18.【2015年新课标1理科14】一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.则该圆标准方程为.【解答】解:一个圆经过椭圆1的三个顶点.且圆心在轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a,圆的半径为:,所求圆的方程为:()2+y2.故答案为:()2+y2.19.【2011年新课标1理科14】在平面直角坐标系Oy,椭圆C的中心为原点,焦点F1F2在轴上,离心率为.过F1的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即,则a c,将a c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为1;故答案为:1.20.【2010年新课标1理科15】过点A(4,1)的圆C与直线﹣y=1相切于点B(2,1),则圆C的方程为.【解答】解:设圆的方程为(﹣a)2+(y﹣b)2=r2,则(4﹣a)2+(1﹣b)2=r2,(2﹣a)2+(1﹣b)2=r2,1,解得a=3,b=0,r,故所求圆的方程为(﹣3)2+y2=2.故答案为:(﹣3)2+y2=2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r ,则该双曲线的离心率为( )ABCD【答案】A【解析】由题意得直线l 的方程为b x y c a=+,不妨取1a =,则x by c =+,且221b c =-. 将x by c =+代入2221y x b -=,得()4234120b y b cy b -++=. 设()11,A x y ,()22,B x y ,则312421b c y y b +=--,41241b y y b =-. 由3AF FB u u u r u u u r =,得123y y =-,所以324422422131bc y b by b ⎧-=-⎪⎪-⎨⎪-=⎪-⎩,得22431b c b =-,解得214b =,所以2c ===c e a ==,故选A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2010-2019)十年高考数学真题分类汇编:
立体几何
(含解析)
1.(2019·浙江·T4)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是
柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )
A.158
B.162
C.182
D.324
【答案】B
【解析】由三视图得该棱柱的高为6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2+62×3+4+6
2×3×6=162.
2.(2019·全国1·理T12)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF=90°,则球O 的体积为( )
A.8√6π
B.4√6π
C.2√6π
D.√6π
【答案】D
【解析】设PA=PB=PC=2x.
∵E ,F 分别为PA ,AB 的中点,
∴EF ∥PB ,且EF=12PB=x.
∵△ABC 为边长为2的等边三角形,
∴CF=√3.
又∠CEF=90°,∴CE=√3-x 2,AE=12PA=x.
在△AEC 中,由余弦定理可知
cos ∠EAC=x 2+4-(3-x 2)
2×2·x .
作PD ⊥AC 于点D ,∵PA=PC ,
∴D 为AC 的中点,cos ∠EAC=AD PA =12x .
∴x 2+4-3+x 24x =12x .
∴2x 2+1=2.∴x 2=12,即x=√22.
∴PA=PB=PC=√2.
又AB=BC=AC=2,
∴PA ⊥PB ⊥PC.
∴2R=√2+2+2=√6.
∴R=√62.
∴V=43πR 3=43π×
6√68=√6π.
故选D.
3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
【答案】B
【解析】由面面平行的判定定理知,“α内有两条相交直线与β平行”是“α∥β”的充分
条件.由面面平行的性质知,“α内有两条相交直线与β平行”是“α∥β”的必要条件,故选B.
4.(2019·全国3·理T8文T8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )
A.BM=EN ,且直线BM ,EN 是相交直线
B.BM ≠EN ,且直线BM ,EN 是相交直线
C.BM=EN ,且直线BM ,EN 是异面直线
D.BM ≠EN ,且直线BM ,EN 是异面直线
【答案】B
【解析】如图,连接BD ,BE.
在△BDE 中,N 为BD 的中点,M 为DE 的中点,
∴BM ,EN 是相交直线,排除选项C 、D.
作EO ⊥CD 于点O ,连接ON.
作MF ⊥OD 于点F ,连接BF.
∵平面CDE ⊥平面ABCD ,平面CDE ∩平面ABCD=CD ,EO ⊥
CD ,EO ⊂平面CDE ,∴EO ⊥平面ABCD.
同理,MF ⊥平面ABCD.
∴△MFB 与△EON 均为直角三角形.
设正方形ABCD 的边长为2,易知
EO=√3,ON=1,MF=√32,BF=√22+94=52,
则EN=√3+1=2,BM=√34+
254=√7, ∴BM ≠EN.故选B.
5.(2019·浙江·T 8)设三棱锥V-ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P-AC-B 的平面角为γ,则( )
A.β<γ,α<γ
B.β<α,β<γ
C.β<α,γ<α
D.α<β,γ<β
【答案】B
【解析】如图G 为AC 中点,点V 在底面ABC 上的投影为点O ,则点P 在底面ABC 上的投影点D
在线段AO 上,过点D 作DE 垂直AE ,易得PE ∥VG ,过点P 作PF ∥AC 交VG 于点F ,过点D 作DH ∥AC ,交BG 于点H ,则α=∠BPF ,β=∠PBD ,γ=∠PED ,所以cos α=PF PB =EG PB =
DH PB <BD PB =cos β,所以α>β,因为tan γ=PD ED >PD BD =tan β,所以γ>β.故选B.
6.(2018·全国3·理T10文T12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( )
A.12√3
B.18√3
C.24√3
D.54√3 【答案】B
【解析】由△ABC 为等边三角形且面积为9√3,设△ABC 边长为a ,则S=12a ·√32a=9√3.∴a=6,则△ABC 的外接圆半径r=√32×23a=2√3<4.
设球的半径为R ,如图,OO 1=√R 2-r 2=√42-(23)2=2.当D 在O 的正上方时,V D-ABC =13S △ABC ·(R+|OO 1|)=13×9√3×6=18√3,最大.故选B.
7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )
A.2√17
B.2√5
C.3
D.2
【答案】B
⏜的中点,将圆柱的侧面沿母线MC剪开,展平为矩形MCC'M',【解析】如图所示,易知N为CD
CC'=4,MC=2,从M到N的路程中最短路径为MN.
易知CN=1
4
在Rt△MCN中,MN=√MC2+NC2=2√5.
8.(2018·全国3·理T3文T3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )
【答案】A
【解析】由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应为A中图形.
9.(2018·北京·理T5文T6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 ( )。