九年级数学——旋转、中心对称知识点总结
九年级《旋转》口诀
旋转知识归纳口诀
图形旋转三要素,中心方向和角度。
旋转性质很关键,对应点中心来关联,对应点中心等距离,旋转角在哪里,对应点中心来连起。
旋转前后作比较,全等对应解题妙。
中心对称属旋转,转了180度才能算。
对称中心对称点,性质要点在其间。
对称点连线过中心,中心恰好是中点。
中心对称两图形,重合自然也全等。
定义中心对称图,旋转一百八十度,与自身重合在一处。
对称中心怎么找,(对应点)连线中点就看到。
中心对称的图形,平行四边形最典型。
对称中心有大用,经过任意一条线,两边全等面积等。
关于原点对称的点特点,两点连线过原点,原点还是线中点。
若对称中心非原点,中心公式记心间,复杂问题就容易点!
图案设计要想转,平移轴对称加旋转。
中心对称轴对称,图形设计的根本。
九年级数学旋转与中心对称
旋转与中心对称知识点一旋转、中心对称的概念【知识梳理】1、旋转:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这个定点叫做旋转中心,旋转的角叫做旋转角,如果图形上的某点经过旋转变为另一点,那么这两个点叫做这个旋转的对应点。
2、旋转的性质:图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转前后图形的大小和形状没有改变。
3、中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点。
4、中心对称的性质:中心对称是一种特殊的旋转,因此它具有旋转的一切性质,除此之外,中心对称还具有以下特殊性质。
(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分。
(2)中心对称的两个图形是全等图形。
【例题精讲一】旋转、中心对称的概念及基本性质例1.1、下列图形中既是中心对称又是轴对称图形的是()2、如图,△ABC≌△ADE,点D落在BC上,且∠B=60°,则∠EDC的度数等于()A.45°B.30°C.60°D.75°3、将△ABC 绕O 点顺时针旋转50°得△A 1B 1C 1(A 、B 分别对应A 1、B 1),则直线AB 与直线A 1B 1的夹角(锐角)为( ) A .130°B .50°C .40°D .60°4、平面直角坐标系内与点P (-2,3)关于原点对称的点的坐标是( ) A .(3,-2)B .(2,3)C .(2,-3)D .(-3,-3)5、如图,点P 是等边三角形ABC 内一点,且PA =3,PB =4,PC =5,若将△APB 绕着点B 逆时针旋转后得到△CQB ,则∠APB 的度数为 。
中心对称与中心对称图形知识点复习:必备的初三上册数学
中心对称与中心对称图形知识点复习:必备的初三上册数学
中心对称与中心对称图形知识点复习:必备的初
三上册数学
学好知识就需要平时的积累。
知识积累越多,掌握越熟练,查字典数学网编辑了中心对称与中心对称图形知识点复习:必备的初三上册数学,欢迎参考!
1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:(1)关于中心对称的两个图形是全等形;
(2)在成中心对称的两个图形中,连接对称点的线段都经过
对称中心,并且被对称中心平分;
(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
三、轴对称与中心对称的区别与联系:
轴对称中心对称
有一条对称轴——直线有一个对称中心——点
图形沿对称轴对折(翻折180o)后重合图形绕对称中心旋转180 o后重合
关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。
通过对中心对称与中心对称图形知识点复习:必备的初三上册数学的学习,是否已经掌握了本文知识点,更多参考资料尽在查字典数学网!。
初中数学旋转的知识点
《初中数学旋转知识点全解析》在初中数学的学习中,旋转是一个重要的几何变换概念。
它不仅在数学知识体系中占据着关键地位,也为我们解决各种几何问题提供了有力的工具。
一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角称为旋转角。
如果图形上的点 P 经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
例如,时钟的指针围绕时钟的中心旋转,风车的叶片绕着中心轴旋转等,都是生活中常见的旋转现象。
二、旋转的性质1. 对应点到旋转中心的距离相等。
即旋转前后,图形上任意一点到旋转中心的距离始终保持不变。
例如,在一个正三角形绕其中心旋转的过程中,三角形的三个顶点到旋转中心的距离始终相等。
2. 对应点与旋转中心所连线段的夹角等于旋转角。
旋转过程中,对应点与旋转中心连接形成的线段之间的夹角大小与旋转角相等。
比如,一个矩形绕其对角线的交点旋转一定角度,任意一对对应点与旋转中心所连线段的夹角都等于旋转角。
3. 旋转前后的图形全等。
经过旋转,图形的形状和大小都不会发生改变。
无论旋转角度是多少,旋转后的图形与旋转前的图形完全相同。
例如,一个圆绕其圆心旋转任意角度,得到的图形仍然是与原来一样的圆。
三、旋转的三要素1. 旋转中心旋转中心是图形旋转时所围绕的那个定点。
它决定了图形旋转的位置。
不同的旋转中心会导致图形的旋转结果不同。
2. 旋转方向旋转方向分为顺时针和逆时针两种。
明确旋转方向对于准确描述和进行旋转操作至关重要。
3. 旋转角度旋转角度是指图形绕旋转中心转动的角度大小。
旋转角度的不同会使图形的位置发生不同程度的变化。
四、旋转的应用1. 解决几何问题在证明三角形全等、相似等问题时,常常可以通过旋转图形,使分散的条件集中起来,从而找到解题的思路。
例如,对于两个有公共顶点的等腰三角形,可以通过旋转其中一个三角形,使它们的对应边重合,进而证明全等。
2. 设计图案利用旋转可以设计出各种美丽的图案。
九年级数学上册第二十三章旋转知识点汇总(带答案)
九年级数学上册第二十三章旋转知识点汇总单选题1、下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.答案:B分析:根据中心对称图形和轴对称图形的定义判断即可.解:∵A中的图形旋转180°后不能与原图形重合,∴A中的图象不是中心对称图形,∴选项A不正确;∵B中的图形旋转180°后能与原图形重合,∴B中的图形是中心对称图形,但不是轴对称图形,∴选项B正确;∵C中的图形旋转180°后能与原图形重合,∴C中的图形是中心对称图形,也是轴对称图形,∴选项C不正确;∵D中的图形旋转180°后不能与原图形重合,∴D中的图形不是中心对称图形,∴选项D不正确;故选:B.小提示:本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键.2、有一个正n边形旋转90∘后与自身重合,则n为()A.6B.9C.12D.15答案:C分析:根据选项求出每个选项对应的正多边形的中心角度数,与90∘一致或有倍数关系的则符合题意.如图所示,计算出每个正多边形的中心角,90∘是30∘的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.小提示:本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.3、如图,在边长为6的正方形ABCD中,点E是边CD的中点,F在BC边上,且∠EAF=45°,连接EF,则BF 的长为()A.2B.3√2C.3D.2√22答案:A分析:把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,首先证明△AFE≌△AGE,进而得到EF=FG,问题即可解决.解:∵四边形ABCD是正方形,∴AB=AD,∴把△ABF绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图:∴∠BAF=∠DAG,AB=AG∵∠BAD=90°,∠EAF=45°,∴∠BAF+∠DAE=∠DAG+∠DAE=45°,∴∠EAF=∠EAG,∵∠ADG=∠ADC=∠B=90°,∴∠EDG=180°,点E、D、G共线,在△A FE和△AGE中,AG=AF,∠FAE=∠EAG,AE=AE,∴△AFE≌△AGE(SAS),∴EF=EG,即:EF=EG=ED+DG,∵E为CD的中点,边长为6的正方形ABCD,∴CD=BC=6,DE=CE=3,∠C=90°,∴设BF=x,则CF=6−x,EF=3+x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(3+x)2=32+(6−x)2,解得:x=2,即BF=2,故选:A.小提示:本题考查了正方形的性质、全等三角形的判定及其性质的应用,解题的关键是作辅助线,构造全等三角形.4、如图,将直角三角板ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C= 90°,则∠BAC′为()A.90°B.60°C.45°D.30°答案:B分析:根据直角三角形两锐角互余,求出∠BAC的度数,由旋转可知∠BAC=∠B′AC′,在根据平角的定义求出∠BAC′的度数即可.∵∠B=30°,∠C=90°,∴∠BAC=90°−∠B=90°−30°=60°,∵由旋转可知∠BAC=∠B′AC′=60°,∴∠BAC′=180°−∠BAC−∠B′AC′=180°−60°−60°=60°,故答案选:B.小提示:本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.5、将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A.B.C.D.答案:D分析:把一个图形绕某一点O转动一个角度的图形变换叫做旋转.解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.小提示:本题考察了旋转的定义.6、如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.答案:B分析:根据绕点B按顺时针方向旋转90°逐项分析即可.A、Rt△A′O′B是由Rt△AOB关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、Rt△A′O′B是由Rt△AOB绕点B按顺时针方向旋转90°后得到,故B选项符合题意;C、Rt△A′O′B与Rt△AOB对应点发生了变化,故C选项不符合题意;D、Rt△AOB是由Rt△AOB绕点B按逆时针方向旋转90°后得到,故D选项不符合题意.故选:B.小提示:本题考查旋转变换.解题的关键是弄清旋转的方向和旋转的度数.7、如图,先将该图沿着它自己的右边缘翻折,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形是()A.B.C.D.答案:A分析:将图沿着它自己的右边缘翻折,则圆在正方形图形的右上角,然后绕着右下角的一个端点按顺时针方向旋转180°,则圆在正方形的左下角,利用此特征可对四个选项进行判断.先将图沿着它自己的右边缘翻折,得到,再绕着右下角的一个端点按顺时针方向旋转180°,之后所得到的图形为.故选:A小提示:本题考查了利用旋转设计图案:由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换一些复合图案.8、在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,−450°)C.Q(3,600°)D.(3,−120°)答案:B分析:根据中心对称的性质解答即可.解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选:B.小提示:本题考查了中心对称的问题,关键是根据中心对称的性质解答.9、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°,则∠BAA'的度数是()A.70°B.65°C.60°D.55°答案:B分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故选:B.小提示:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10、如图,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,若点D恰好在BC的延长线上,则∠BDE的度数为()A.100°B.80°C.70°D.60°答案:B分析:由旋转的性质可知∠B=∠ADE,AB=AD,由等腰三角形的性质和三角形的内角和定理可求得∠B=∠BDA=∠ADE=40°,从而可求得∠BDE=80°.解:由旋转的性质可知:∠B=∠ADE,AB=AD,∠BAD=100°.∵AB=AD,∠BAD=100°,∴∠B=∠BDA=40°,∴∠ADE=40°,∴∠BDE=∠BDA+∠ADE=40°+40°=80°.故选B.小提示:本题考查旋转的性质,等腰三角形的性质,三角形内角和定理.由旋转的性质得到△ABD为等腰三角形是解题的关键.填空题11、如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是__.答案:38°分析:根据旋转变换的性质得到∠AOD=31°,∠BOC=31°,结合图形,计算即可.解:由旋转的性质可知,∠AOD=31°,∠BOC=31°,∴∠DOB=∠AOC−∠AOD−∠BOC=38°,所以答案是:38°.小提示:本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.12、在平面直角坐标系内,点P(−3,2)关于原点的对称点Q的坐标为______.答案:(3,−2)分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即可直接作答.根据中心对称性质可知:点P (−3,2)关于原点的对称点Q 的坐标为(3,−2),故答案为(3,−2).小提示:本题考查了关于原点对称点的坐标,属于基础问题,熟记知识点是解题关键.13、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是______________答案:2S 1=3S 2分析:过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,根据点O 是平行四边形ABCD 的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM ,再根据S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,则可得到答案.过点O 分别作OM ⊥BC ,垂足为M ,作ON ⊥AB ,垂足为N ,∵点O 是平行四边形ABCD 的对称中心,∴S 平行四边形ABCD =AB •2ON , S 平行四边形ABCD =BC•2OM ,∴AB•ON=BC•OM ,∵S 1=12EF•ON ,S 2=12GH•OM ,EF =12AB ,GH =13BC ,∴S 1=14AB•ON ,S 2=16BC•OM , ∴2S 1=3S 2,故答案为2S 1=3S 2.小提示:本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.14、如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为___________.答案:(−√2,√6+1)##(−√2,1+√6)分析:连接OB,OB′由题意可得∠BOB′=75°,可得出∠COB′=30°,可求出B′的坐标,即可得出点B″的坐标.解:如图:连接OB,OB′,作B′M⊥y轴∵ABCO是正方形,OA=2∴∠COB=45°,OB=2√2∵绕原点O逆时针旋转75°∴∠BOB′=75°∴∠COB′=30°∵OB′=OB=2√2∴MB′=√2,MO=√6∴B′(−√2,√6)∵沿y轴方向向上平移1个单位长度∴B″(−√2,√6+1)所以答案是:(−√2,√6+1)小提示:本题考查了坐标与图形变化﹣旋转,坐标与图形变化﹣平移,熟练掌握网格结构,准确确定出对应点的位置是解题的关键.15、如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P1AC,则∠PAP1等于________度.答案:60分析:利用旋转的性质即可得出答案.解:∵△ABC是正三角形,∴∠CAB=60°,由旋转的性质可知,∠PAP1=∠CAB=60°.所以答案是:60.小提示:本题考查正三角形的性质和旋转的性质,由旋转的性质得出∠PAP1=∠CAB是解题的关键.解答题16、如图1,二次函数y=a(x+3)(x﹣4)的图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求该二次函数的解析式;(2)过点P作PQ⊥x轴,分别交线段AB、抛物线于点Q,C,连接AC.若OP=1,求△ACQ的面积;(3)如图2,连接PB,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.答案:(1)y=16x2−16x−2;(2)SΔACQ=34;(3)D(3,−1)或D(−8,10)分析:(1)将B(0,−2)代入y=a(x+3)(x−4),即可求解;(2)先求直线AB的解析式为y=12x−2,则Q(1,−32),C(1,−2),可求SΔACQ=SΔACP−SΔAPQ=34;(3)设P(t,0),过点D作x轴垂线交于点N,可证明ΔPND≅ΔBOP(AAS),则D(t+2,−t),将D点代入抛物线解析式得−t=16(t+2+3)(t+2−4),求得D(3,−1)或D(−8,10).解:(1)将B(0,−2)代入y=a(x+3)(x−4),∴a=16,∴y=16(x+3)(x−4)=16x2−16x−2;(2)令y=0,则16(x+3)(x−4)=0,∴x=−3或x=4,∴A(4,0),设直线AB的解析式为y=kx+b,∴{b=−24k+b=0,∴{k=1 2b=−2,∴y=12x−2,∵OP=1,∴P(1,0),∵PQ⊥x轴,∴Q(1,−32),C(1,−2),∴AP=3,∴SΔACQ=SΔACP−SΔAPQ=12×3×2−12×3×32=34;(3)设P(t,0),如图2,过点D作x轴垂线交于点N,∵∠BPD=90°,∴∠OPB+∠NPD=90°,∠OPB+∠OBP=90°,∴∠NPD=∠OBP,∵BP=PD,∴ΔPND≅ΔBOP(AAS),∴OP=ND,BO=PN,∴D(t+2,−t),∴−t=16(t+2+3)(t+2−4),解得t=1或t=−10,∴D(3,−1)或D(−8,10).小提示:本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求抛物线解析式,三角形面积,全等三角形判定和性质,旋转的性质等,解题的关键是熟练掌握二次函数的图象及性质,分类讨论,数形结合.17、如图1,正方形ABCD的边长为4,点P在边AD上(P不与A,D重合),连接PB,PC.将线段PB绕点P顺时针旋转90°得到PE,将线段PC绕点P逆时针旋转90°得到PF.连接EF,EA,FD.(1)求证:PD2;①ΔPDF的面积S=12②EA=FD;(2)如图2,EA.FD的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.答案:(1)①见详解;②见详解;(2)4≤MN<2√5分析:(1)①过点F作FG⊥AD交AD的延长线于点G,证明△PFG≌△CPD,即可得到结论;②过点E作EH⊥DA交DA的延长线于点H,证明△PEH≌△BPA,结合△PFG≌△CPD,可得GD=EH,同理:FG=AH,从而得△AHE≌△FGD,进而即可得到结论;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,可得∠AMD=90°,EF,HG= 2AD=8,EH+FG=AD=4,然后求出当点P与点D重合时,EF最大值=4√5,当点P与AD的中点重合MN=12时,EF最小值= HG=8,进而即可得到答案.(1)①证明:过点F作FG⊥AD交AD的延长线于点G,∵∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∴∠FPG=∠CPD,又∵∠PGF=∠CDP=90°,PC=PF,∴△PFG≌△CPD(AAS),∴FG=PD,∴ΔPDF的面积S=12PD⋅FG=12PD2;②过点E作EH⊥DA交DA的延长线于点H,∵∠EPH+∠PEH=90°,∠EPH +∠BPA=90°,∴∠PEH =∠BPA,又∵∠PHE=∠BAP=90°,PB=PE,∴△PEH≌△BPA(AAS),∴EH=PA,由①得:FG=PD,∴EH+FG=PA+PD=AD=CD,由①得:△PFG≌△CPD,∴PG=CD,∴PD+GD= CD= EH+FG,∴FG+GD= EH+FG,∴GD=EH,同理:FG=AH,又∵∠AHE=∠FGD,∴△AHE≌△FGD,∴EA=FD;(2)过点F作FG⊥AD交AD的延长线于点G,过点E作EH⊥DA交DA的延长线于点H,由(1)得:△AHE≌△FGD,∴∠HAE=∠GFD,∵∠GFD+∠GDF=90°,∴∠HAE+∠GDF=90°,∵∠HAE=∠MAD,∠GDF=∠MDA,∴∠MAD+∠MDA=90°,∴∠AMD=90°,∵点N是EF的中点,∴MN=1EF,2∵EH=DG=AP,AH=FG=PD,∴HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值=√42+82=4√5,当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,∴MN的取值范围是:4≤MN<2√5.小提示:本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.18、如图,△AOB中,OA=OB=6,将△AOB绕点O逆时针旋转得到△COD.OC与AB交于点G,CD分别交OB、AB 于点E、F.(1)∠A与∠D的数量关系是:∠A______∠D;(2)求证:△AOG≌△DOE;(3)当A,O,D三点共线时,恰好OB⊥CD,求此时CD的长.答案:(1)=(2)证明见解析(3)6√3,详见解析分析:(1)根据旋转性质及等腰三角形性质即可得答案;(2)由旋转性质知∠AOB=∠DOC,可证得∠AOG=∠DOE,结合OA=OB及(1)中结论,得证;(3)分两种情况讨论,设∠A=x°,先利用三角形内角和求出x的值,再借助勾股定理求出CD的长度即可.(1)解:由旋转知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,所以答案是:=.(2)证明:由旋转知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分两种情况讨论,①如图所示,设∠A=∠B=∠C=∠D=x°,则∠DOB=2x°,∵OB⊥CD,∴∠OED=90°,∴x+2x=90°,解得:x=30,即∠D=30°,在Rt△ODE中,OE=3,由勾股定理得:DE=√62−32=3√3,∵OC=OD,OE⊥CD,∴CD=2DE=6√3.②当D与A重合时,如图所示,同理,得:CD=6√3.综上所述,当A,O,D三点共线时,OB⊥CD,此时CD的长为6√3.小提示:本题考查了旋转的性质、等腰三角形性质、全等三角形的判定、勾股定理等知识点,解题关键是利用旋转性质得到边、角的关系.。
九年级上册旋转数学知识点
九年级上册旋转数学知识点九年级上册旋转数学知识点1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。
确定旋转中心的关键是看图形在旋转过程中某一点是“动〞还是“不动〞,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。
作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.初中数学重要考点数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(三要素)②任何一个有理数都可以用数轴上的一个点来表示。
九年级上册数学旋转知识点总结
九年级上册数学旋转知识点总结
九年级上册数学中的旋转知识点主要包括以下内容:
1. 平面图形的旋转:旋转是指围绕一个中心点将图形旋转一定角度的变换。
主要涉及正方形、矩形、正三角形、等边三角形等图形的旋转。
2. 旋转中心和旋转角度:在平面图形旋转中,旋转中心是一个确定的点,旋转角度是指图形相对于旋转中心旋转的角度。
3. 旋转的性质和特点:旋转是一种保持形状不变的变换,旋转前后的图形是全等的。
旋转也满足交换律和结合律。
4. 旋转图形的坐标变化:根据图形的旋转中心和旋转角度,可以得到旋转后图形的新坐标。
5. 旋转的几何应用:旋转广泛应用于解决几何问题,例如确定图形的对称轴、找出图形的对称点等。
6. 旋转变换的表示方法:旋转变换可以用矩阵表示,通过矩阵运算可以得到旋转后的新坐标。
以上是九年级上册数学中关于旋转的主要知识点总结。
在学习中,需要了解旋转的基本性质和特点,掌握旋转图形的坐标变化方法,并能应用旋转解决几何问题。
九年级几何旋转知识点归纳总结
九年级几何旋转知识点归纳总结几何学是数学中非常重要的一个分支,而几何旋转是其中一个关键的概念。
在九年级的几何学学习中,我们需要掌握几何旋转的相关知识以及应用。
本文将对九年级几何旋转的知识点进行归纳总结,帮助同学们更好地理解和记忆。
一、几何旋转的基本概念几何旋转是指图形在平面内绕着某一点或某一直线旋转一定角度后所得的新图形。
在几何旋转中,我们通常需要了解以下几个基本概念:1. 旋转中心:旋转中心是指图形旋转时所围绕的中心点。
旋转中心可以是一个点,也可以是一个线段的中点或一条直线。
2. 旋转角度:旋转角度是指图形旋转的角度大小,用度数或弧度表示。
通常我们使用正角度表示顺时针旋转,负角度表示逆时针旋转。
3. 旋转轴:旋转轴是指图形绕其旋转的直线,可以是水平、垂直或者倾斜的。
二、常见几何旋转的性质和规律几何旋转具有一些特定的性质和规律,掌握这些性质和规律可以帮助我们解决几何旋转相关的问题。
下面是几个重要的几何旋转性质和规律:1. 旋转中心与图形顶点的距离保持不变:无论图形如何旋转,旋转中心与图形的各个顶点之间的距离保持不变。
2. 旋转角度和旋转方向的关系:当图形按顺时针方向旋转时,旋转角度为正;当图形按逆时针方向旋转时,旋转角度为负。
3. 不同图形的旋转:不同图形在旋转过程中会有不同的性质。
例如,正方形旋转180度后仍然是正方形,而圆旋转360度后又回到原位。
4. 旋转与识别:通过观察图形的旋转特点,可以识别出某些对称图形。
例如,正五边形沿内切圆旋转一定角度后,可以再次得到正五边形。
三、常见几何旋转的应用除了理解几何旋转的基本概念和性质外,我们还需要掌握几何旋转的应用。
下面是一些常见的几何旋转应用:1. 图形的旋转对称性:通过对图形进行旋转可以识别和绘制图形的旋转对称性。
例如,正n边形(n为偶数)具有旋转对称性。
2. 平面图形的构造:通过几何旋转可以构造各种各样的平面图形。
例如,我们可以通过旋转一个相等边长的正方形来构造正六边形。
人教版九年级数学第23章旋转中心对称讲义
人教版九年级数学第23章旋转中心对称讲义探求点1(高频考点) 中心对称的概念情形激疑观察课本图23.2-1,你有什么发现?知识解说(1)像这样,把一个图形绕着某一点旋转180°,假设它可以和另一个图形重合,那么我们就说这两个图形关于这个点对称或中心对称,这个点就叫做对称中心,这两个图形中的对应点叫做关于对称中心的对称点。
(2)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分;中心对称的两个图形是全等图形。
留意(1)中心对称是旋转的一种特殊状况,是旋转角为180°的旋转,所以它具有旋转的一切性质。
(2)读法和内容与轴对称相似,读作关于某点对称,或图形某某与图形某某中心对称,了解和运用时结合轴对称知识了解。
(3)中心对称的性质与旋转的性质相相似,是旋转性质的变化,主要变化在于对应点在一条直线上,旋转角是固定的180°。
(4)中心对称的性质是中心对称运用的中心,是作图的基础。
典例剖析例1 :如图,Rt∆ABC与Rt∆AB′C′关于A点中心对称,∠C=30°。
(1)指出图中的对称点、对称中心;(2)指出图中相等的线段;(3)求∠C′的度数。
解析依据中心对称的概念,确定对称点,然后确定对应线段,再依据性质知道对应线段相等,对应角相等。
答案(1)B与B′,C与C′,A与A是对称点,A是对称中心;(2)相等的线段有:AB=AB′,BC=B′C′,AC=AC′;(3)∠C′=∠C=30°.方法指点依据中心对称的定义剖析图形,找出对称点,确定对应关系,再依据性质判别各对应量之间的关系。
类题打破1 如以下图:四边形ABCD和四边形AB′C′D′关于A点中心对称。
(1)指出图中的对应关系;(2)假定AB=3cm,能求出哪条线段的长?答案(1)B与B′,C与C′,D与D′,A 与A是对称点,A 是对称中心,其中线段BC与B′C′,CD与C′D′,AD与AD′,AB与AB′是对应线段,∠DAB与D′AB′,∠D与∠D′,∠B与∠B′,∠DCB与∠D′C′B′是对应角。
初中数学九年级旋转知识点总结
旋转是数学中的一个重要概念,初中数学九年级的旋转知识点主要涉及到平面上的图形的旋转。
下面是对旋转知识点的详细总结。
一、旋转的基本概念旋转是指将一个平面上的图形绕着一个圆心旋转一定角度后得到的新图形。
旋转可以分为顺时针旋转和逆时针旋转两种。
二、旋转的基本要素1.旋转中心:旋转时固定不动的点,通常用O表示。
2.旋转角度:图形绕旋转中心旋转的角度,通常用θ表示。
3.旋转方向:图形绕旋转中心旋转的方向,可为顺时针或逆时针。
三、旋转的基本性质1.旋转前后的对应关系:旋转前后,图形上的各个点在对应的位置。
2.旋转角度的正负性:顺时针旋转时,旋转角度为负值;逆时针旋转时,旋转角度为正值。
3.旋转的复合性:对一个图形连续旋转两次,相当于对这个图形进行一次旋转,旋转角度为两次旋转角度的和。
四、旋转的具体操作1.给定旋转中心和旋转角度,旋转一个点:将给定点与旋转中心连接,然后以旋转角度为自由度,将连接线旋转相应角度,确定旋转点的新位置。
2.给定旋转中心和旋转角度,旋转一条线段:将给定线段上的两个端点分别旋转,得到旋转线段的两个端点,然后连接这两个点得到旋转线段。
3.给定旋转中心和旋转角度,旋转一个多边形:将多边形上的各个顶点依次旋转,得到旋转多边形的各个顶点,然后连接这些点得到旋转多边形。
五、旋转的性质与判定1.旋转过程中的不变性:旋转前后,图形的形状、大小和角度不变。
2.图形的旋转对称性:图形相对于旋转中心旋转一定角度后,与原图形完全重合。
3.旋转角度的关系:相交的两个线段,经过旋转后的线段之间的夹角等于它们旋转前的夹角。
4.旋转中心判定:判断一个点关于一个给定点旋转一定角度后的位置。
六、旋转的运用1.添加旋转对称部分:先将一个图形旋转一定角度,然后与旋转前的图形拼接,可以得到一个具有旋转对称性的图形。
2.图形的旋转判定:给定一个图形,根据旋转的要素和性质,判断该图形能否通过旋转得到另一个图形。
3.旋转变换的应用:在解决实际问题时,可以运用旋转变换来简化问题的处理过程,比如地球绕太阳的自转等。
九年级数学旋转知识点汇总
九年级数学旋转知识点汇总在九年级数学学习中,旋转是一个重要的几何变换,它涉及到了平面图形的旋转和立体图形的旋转。
本文将对九年级数学中相关的旋转知识点进行汇总和总结,以帮助同学们更好地掌握这一内容。
1. 平面图形的旋转平面图形的旋转是指将一个平面图形绕着某一点旋转一定角度,得到一个新的平面图形。
在旋转过程中,我们需要关注以下几个核心概念和知识点。
1.1 旋转中心和旋转角度在平面图形的旋转中,旋转中心是指图形绕其旋转的中心点,旋转角度是指图形绕旋转中心逆时针旋转的角度。
在计算旋转后的坐标时,我们需要根据旋转中心和旋转角度来进行计算。
1.2 旋转的性质平面图形旋转的过程中,有一些重要的性质需要了解。
例如,旋转保持图形的大小和形状不变,旋转前后的对应点之间的距离保持不变等。
这些性质是理解旋转过程中图形变化的基础。
1.3 旋转的计算方法在进行平面图形旋转的计算时,我们需要了解一些具体的计算方法,包括旋转后的坐标计算和旋转的规律。
例如,对于一个点P(x, y)绕旋转中心O旋转θ角度后得到的新点P'(x', y'),我们可以利用旋转矩阵或者向量方法进行计算。
2. 立体图形的旋转与平面图形旋转类似,立体图形的旋转也是指将一个立体图形绕着某一轴旋转一定角度,得到一个新的立体图形。
在立体图形旋转中,我们需要了解以下几个关键的知识点。
2.1 旋转轴和旋转角度在立体图形的旋转中,旋转轴是指图形绕其旋转的轴线,旋转角度是指图形绕旋转轴旋转的角度。
旋转轴可以是坐标轴、直线或者曲线。
在计算旋转后的坐标时,我们需要根据旋转轴和旋转角度来进行计算。
2.2 旋转的性质立体图形旋转的过程中,也有一些重要的性质需要了解。
例如,旋转保持图形的体积不变,旋转前后的对应点之间的距离保持不变等。
这些性质是理解旋转过程中立体图形变化的基础。
2.3 旋转的计算方法在进行立体图形旋转的计算时,我们需要了解一些具体的计算方法,包括旋转后的坐标计算和旋转的规律。
旋转与中心对称知识点总结
旋转与中心对称知识点总结一、旋转的基本概念1. 旋转的定义旋转是指一个图形绕着一个固定的点(称为旋转中心)旋转一定角度,使得图形的每一点都按照相同的角度和方向进行旋转。
旋转是一种基本的变换方式,可以将一个图形变换成另一个图形。
2. 旋转的性质(1)旋转保持图形的大小不变,只改变其位置和方向。
(2)旋转是一种等距变换,即旋转前后图形上的任意两点的距离不变。
(3)旋转有方向性,即按照逆时针或者顺时针方向旋转。
(4)旋转的角度可以是正数、负数或者零。
3. 旋转的记法在表示旋转时,通常用“R(α, O)”来表示。
其中,R表示旋转的动作,α表示旋转的角度,O 表示旋转的中心。
4. 旋转的应用旋转在几何中有着广泛的应用,如在图形的相似性、对称性、平移和旋转组合变换等方面都有重要作用。
此外,旋转还在几何构造和设计中有着重要的应用价值。
二、中心对称的基本概念1. 中心对称的定义中心对称是指以某一点为中心进行对称变换,使得图形的每一点都关于这个中心对称,即以中心为轴,使得对称的两个部分分别对称于中心点的两侧。
2. 中心对称的性质(1)中心对称的图形和它的中心对称图形是全等的,即它们的形状和大小都完全相同。
(2)中心对称是一种等长变换,原图形中的任意一点到中心的距离和对称图形中的相对点到中心的距离相等。
(3)中心对称是一种对易变换,即进行两次中心对称等于原图形。
3. 中心对称的应用中心对称在几何中也有着重要的应用,如在图形的分类和性质判断、对称性的分析、几何构造等方面都有重要的应用。
此外,中心对称还在艺术设计和图案构图中有着重要的应用价值。
三、旋转与中心对称的关系1. 旋转与中心对称的联系旋转和中心对称在一定条件下是等价的,即通过旋转可以实现中心对称,通过中心对称也可以实现旋转。
这是因为旋转和中心对称都是一种对称性变换,它们都具有保持图形不变的性质。
2. 旋转与中心对称的应用旋转与中心对称在一些几何问题中常常结合使用,如在构造等边三角形、六边形等图形时,旋转和中心对称可以互相借助,以实现图形的变换和构造。
九年级上册数学旋转知识点总结
九年级上册数学旋转知识点总结九年级上册数学旋转知识点1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征 (3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)初中数学有理数的运算知识点加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
2024年初中数学旋转平移对称知识点总结
一、旋转旋转是指将平面图形绕着一个确定的点旋转一定的角度,使原来的图形变为位置相对于原来的图形。
1.旋转的概念旋转是平面上一个点以另一个点为中心旋转一定角度所形成的点的运动。
2.旋转的主要要素旋转有三个主要要素:旋转中心、旋转方向和旋转角度。
3.旋转的性质(1)旋转是一个点分别以一个中心为圆心旋转,那么旋转时产生的点都在同一个圆上。
(2)旋转角度为360°时,即为一周。
4.旋转的表示方法以旋转中心为原点,建立直角坐标系,用点的坐标表示旋转的位置。
二、平移平移是指在平面上将一个图形全部向一个方向移动一定的距离,而不改变图形的形状和方向。
1.平移的概念平移是指一个图形的每一点都按照同一方向和距离进行移动。
2.平移的性质(1)平移前后的图形大小、形状和方向都是不变的。
(2)平移前后对应的两条线段是平行的。
(3)平移前后的两个点的距离保持不变。
3.平移的表示方法以平移向量作为平移的中心,以向量的始点为原点建立直角坐标系。
三、对称对称是指由一个物体通过中心对称轴或面对称面对折后,两侧对应点重合。
1.对称的概念对称是指图形按照其中一种规律以其中一线为中心分割成两个相同的部分。
2.对称图形的基本要素对称图形有三个基本要素:对称中心、对称轴和对称面。
3.对称的性质(1)对称图形的对称中心、对称轴或对称面所分割的部分是完全相同的。
(2)两个对称点的连线与对称轴或对称面垂直。
4.对称图形的表示方法对称图形可以通过对称中心、对称轴或对称面分析得出对称点的位置。
以上是对2024年初中数学中旋转、平移、对称知识点的总结。
这些知识点在初中数学中是非常重要和常见的,对于理解几何图形的变化和性质有很大帮助。
通过掌握这些知识点,可以更好地解决与旋转、平移和对称相关的数学问题。
九年级数学旋转性质知识点
九年级数学旋转性质知识点旋转性质是九年级数学中的重要知识点之一。
通过学习旋转性质,我们可以更好地理解和解决与几何图形旋转相关的问题。
本文将介绍旋转的基本概念、旋转的基本性质以及一些常见的旋转性质应用。
一、旋转的基本概念在几何学中,旋转是指将一个物体围绕某个固定点旋转一定角度,在平面内得到一个新的位置。
旋转的基本概念包括旋转角度、旋转中心和旋转方向。
1. 旋转角度:表示物体旋转的角度,用度数或弧度来表示。
常用的度量单位有度(°)、弧度(rad)等。
2. 旋转中心:表示物体围绕其旋转的点,通常以字母O来表示。
3. 旋转方向:表示物体旋转的方向,可以是顺时针或逆时针方向。
二、旋转的基本性质了解旋转的基本性质对于解决旋转相关问题非常重要。
下面我们介绍几个常见的旋转性质。
1. 旋转对称性:围绕旋转中心旋转180°的图形与原图形重合。
这意味着旋转对称图形的每一点都有一对关于旋转中心对称的点。
2. 旋转角度的加法性质:如果将一个图形绕旋转中心旋转α°后再绕同一旋转中心旋转β°,那么结果等同于将图形绕旋转中心旋转(α+β)°。
3. 旋转角度的相反性质:如果将一个图形绕旋转中心旋转α°后再将其逆时针旋转α°,那么结果与原图形重合。
4. 旋转角度的相等性质:如果两个图形围绕各自的旋转中心旋转,当旋转角度相等时,两个图形重合。
三、旋转性质的应用1. 旋转中心的确定:通过观察图形的对称性来确定旋转中心。
如果一个图形可以与其自身相重合,那么重合点就是旋转中心。
2. 图形的旋转:给定一个图形和旋转中心,可以通过旋转该图形来构建新的图形。
例如,通过旋转一个等边三角形90°,可以得到一个正方形。
3. 图形的旋转和移动:旋转和移动是结合使用的常见操作。
通过旋转和移动相结合,可以构造一些复杂的图形和几何问题。
4. 旋转对称图形的性质应用:旋转对称图形具有一些特殊的性质,例如正方形、圆形等的旋转对称性,可以帮助我们解决一些对称性相关的问题。
初三数学下旋转--知识讲解 +巩固练习
旋转--知识讲解【学习目标】1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计;3、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;4、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;5、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、旋转定义、性质、作图1.旋转的定义:在平面内,一个图形绕着某一点O转动一个角度的图形变换叫做旋转.如下图,点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;(3)旋转中心是唯一不动的点;''').(4)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转对称图形:在平面内,一个图形绕着一个定点旋转一定角度θ(0°<θ<360°)后,能够与原图形重合,这样的图形叫做旋转对称图形.例如等边三角形,平行四边形都是旋转对称图形.4.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.4.关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、旋转的概念与性质1.如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6) AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5) 四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示2. 如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型二、旋转的作图3. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心.⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.举一反三【变式1】如图,在正方形网格中,每个小正方形的边长均为1个单位.将向下平移4个单位,得到,再把绕点顺时针旋转,得到,请你画出和(不要求写画法).【答案与解析】【总结升华】注意平移和旋转中关键点移动规律的不同.∆绕点O逆时针旋转100︒所得到的图形.【变式2】如图,画出ABC【答案】(∠AOA′=∠BOB′=∠COC′=100°)类型三、中心对称和中心对称图形4. 下列图形不是中心对称图形的是 ( )A.①③ B.②④ C.②③ D.①④【答案】D【解析】中心对称图形要求绕中心旋转180°与原图形重合,①④两个图形绕中心旋转180°不能与原图形重合,所以选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A5. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.旋转--巩固练习【巩固练习】一. 选择题1. 下图中,不是旋转对称图形的是( ).2. 在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个 B.2个 C.3个 D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____度.8. 在下列四种图形变换中,本题图案包含的变换是___________.(填序号即可)①中心对称②旋转③轴对称④平移9.正三角形绕其中心至少旋转__________ 度,可与其自身重合.10.如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形0ABC绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为_____________.11.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,•PC=10,若将△PAC绕点A逆时针旋转后,•得到△P′AB,•则点P•与点P′之间的距离为_____,∠APB=_______°.三.综合题13. 已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.14. 如图,E 是正方形ABCD 的边BC 上一点,F 是DC 的延长线上一点,且∠BAE=∠FAE. 求证:BE+DF=AF.15.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M N 、, 求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a321BM CDNOA16. 已知:直线l 的解析式为y =2x +3,若先作直线l 关于原点的对称直线l 1,再作直线l 1关于y 轴的对称直线l 2,最后将直线l 2沿y 轴向上平移4个单位长度得到直线l 3,试求l 3的解析式.【答案与解析】一、选择题 1.【答案】B ; 2.【答案】B ;【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形、正方形. 3.【答案】D 4.【答案】B【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心。
九年级数学对称旋转知识点
九年级数学对称旋转知识点对称旋转是九年级数学中的一个重要概念,它涉及到对称性和几何图形的变化。
本文将介绍九年级数学对称旋转的基本原理、规律和应用。
一、对称旋转的基本原理对称旋转是指将一个几何形状围绕一个点旋转一定角度后所得到的新形状与原形状完全一致。
这个旋转中心点称为旋转中心,旋转的角度称为旋转角度。
在对称旋转中,旋转中心可以是图形内部的一个点,也可以是图形外部的一个点。
若旋转中心是图形内部的一个点,我们称之为内部对称;若旋转中心是图形外部的一个点,我们称之为外部对称。
二、对称旋转的规律1. 内部对称:当旋转中心在图形内部时,对称旋转后的图形与原图形在大小、形状上完全一致。
旋转角度可以是180度、120度、90度、60度、45度等。
2. 外部对称:当旋转中心在图形外部时,对称旋转后的图形与原图形在大小、形状上完全一致,并且旋转后的图形与原图形之间可以通过直线进行连接,形成一条旋转轴。
旋转角度也可以是180度、120度、90度、60度、45度等。
三、对称旋转的应用对称旋转在实际生活中有许多应用,它们可以帮助我们解决一些几何问题。
以下是几个常见的应用场景:1. 制作压花纸:利用对称旋转的原理,我们可以制作出具有对称图案的压花纸。
将图案放在旋转中心位置,然后按照一定角度进行旋转,每次旋转都得到一个新的图案,最终形成一个完美的对称图案。
2. 绘制艺术作品:在艺术创作中,对称旋转常常被用于设计复杂的图案和装饰。
通过对称旋转,艺术家可以创造出各种有规律又美观的图案,丰富作品的表现力。
3. 建筑设计:对称旋转在建筑设计中也有广泛应用。
通过合理运用对称旋转的原理和规律,建筑师可以设计出独特而美观的建筑形式,提升建筑的整体美感和品味。
四、对称旋转的综合应用在解决数学问题时,对称旋转常常需要与其他知识点结合运用。
以下是一些常见的对称旋转与其他知识点结合应用的例子:1. 对称旋转与平移:如果我们需要将一个图形旋转并平移到指定位置,就需要运用对称旋转和平移的知识,通过调整旋转角度和平移距离使得图形得到理想的位置和方向。
九年级上册第二十三章旋转单元总结(共38张PPT)
作法: 连——延——截——连
D A
B'
C
A'
O B
D' C'
【画一画】
1.下图是中心对称图形的一部分及对称中心,请你
补全它的另一部分. A
B
如何寻找中心对称
图形的对称中心?
H
两组对应点连线的
G
C D
交点就是对称中心 F
E
探究新知
2.如图,有一个平行四边形请你用无刻度的直尺 画一条直线把他们分成面积相等的两部分,你怎 么画?
巩固练习
变式题1
如何确定它们的旋转中心位置?
A
E
F B
D C
答:找到两条对应点连线段的垂直平分线的交点.
探究新知
平移和旋转的异同
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
课堂小结
旋转的作 图
图案的设计方法.
探究新知
旋转的概念
把一个平面图形绕着平面内某一个定点O转动一
个角度,叫做图形的旋转。
这个定点O叫做旋转中心,转动的角叫做旋转
角。
如果图形上的点P经过 A
B
旋转变为点P’,那么这 两个点叫做这个旋转的
P 旋转角 P’
对应点。线段OP与OP’
叫做对应线段.
O 旋转中心
探究新知
O
0
45
2.中心对称的两个图形是全等形.
中心对称与轴对称的异同
A
C1
B1
O
B
C
A1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转、中心对称知识点总结
一、旋转
知识点一、旋转的定义
在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。
知识点二、旋转的性质
旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:
(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
知识点三、利用旋转性质作图
旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。
步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)
③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。
二、中心对称
知识点一、中心对称的定义
中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
注意以下几点:
中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。
知识点二、作一个图形关于某点对称的图形
要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。
最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。
知识点三、中心对称的性质
有以下几点:
(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;
(2)关于中心对称的两个图形能够互相重合,是全等形;
(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。
知识点四、中心对称图形的定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
知识点五关于原点对称的点的坐标
在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。