【知识学习】《柯西不等式》知识点
思维拓展 柯西不等式与权方和不等式的应用(新高考通用)学生版--2025届新高考数学一轮复习
思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.2025届新高考数学一轮复习推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.2设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14B.12C.10D.85(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.7(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.8(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k 的最小值为.9(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.10已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a 2+b 2+c 2≥1641.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.16已知a>0,b>0,且2a+2+1a+2b=1,则a+b的最小值是.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a,b,x,y>0,则a2x+b2y≥(a+b)2x+y,当且仅当ax=by时等号成立.根据权方和不等式,函数f x =2x+91-2x0<x<12的最小值.18(2023高三·全国·专题练习)已知正数x,y,z满足x+y+z=1,则x2y+2z+y2z+2x+z2x+2y的最小值为19(2023高三·全国·专题练习)已知x+2y+3z+4u+5v=30,求x2+2y2+3z2+4u2+5v2的最小值为20(2023高三·全国·专题练习)已知θ为锐角,则1sinθ+8cosθ的最小值为.21(2023高三·全国·专题练习)已知正实数x、y且满足x+y=1,求1x2+8y2的最小值.22(2024高三·全国·专题练习)已知a>1,b>1,则a2b-1+b2a-1的最小值是.23(2023高三·全国·专题练习)已知实数x,y满足x>y>0,且x+y=2,M=3x+2y+12x-y的最小值为.24(2024高三·全国·专题练习)已知x,y>0,1x+22y=1,则x2+y2的最小值是.25(2023高三·全国·专题练习)已知正数x,y满足4x+9y=1,则42x2+x+9y2+y的最小值为。
(完整版)高中数学:柯西不等式
(完整版)高中数学:柯西不等式柯西不等式是十九世纪三十年代德国数学家柯西的一项重要贡献,它是组合数学中的重要理论,也是非线性规划中常用的工具。
柯西不等式是关于凸集的一种重要结构性性质,它可以被应用于最大值与最小值、优化以及多元函数定理的证明。
柯西不等式是通过一种特殊的方式来研究凸集内部结构的,这种方式叫做“凸组合”,它指的是将凸集分割成几部分,每一部分都是对凸集的一种模拟,两个凸组合直接组合在一起可以构成一个新的凸集。
柯西不等式的英文全称为“Carathéodory’s ConvexCousin Theorem”,它是开始于1909年提出的,是关于凸组合的数学定理,它的英文解释为“如果凸组合的所有子集的每一个子组合都存在相应的点中,那么它们包含的点总数也至少有相应的数量”。
柯西不等式可以用来证明给定凸多面体 $V_1,V_2,V_3,\ldots,V_n$ 中任意 $m$ 个多面体组合在一起构成的凸组合多面体 $K$ 的点数至少为 $m$。
柯西不等式的应用不仅仅是理论上的,它也广泛地被用于工程上,总结一下它在工程上可以用来做什么:1、共轭梯度下降法:共轭梯度下降法是一种求解最优化问题的数值方法,用柯西不等式可以得到一个凸集的边界,从而得到一个最优解;2、统计学:柯西不等式可以用来处理多元函数,进而可以用来应用到多重相关性分析方面,从而推出统计学中的相关概率论;3、V-S型模型:柯西不等式可以用来优化可变结构模型中的V型凸组合,从而得到更具有效性的可变结构模型;4、路径规划:柯西不等式可以通过函数将多余的点过滤掉,从而得到更优的路径规划结果。
以上就是柯西不等式的内容,由于它的重要性,它已经广泛地被应用到多个学科领域,有助于构建凸组合分割、优化以及路径规划等问题。
综上所述,柯西不等式是一个重要的数学定理,它在研究凸集内部结构,求解最优化问题和构建凸组合分割、优化以及路径规划等问题中皆有广泛的应用,也是高中数学中的一项重要知识点。
不等式专题4柯西不等式
不等式专题(四)------柯西不等式一.知识方法扫描:1.柯西不等式的内容是:定理:设,i i a b R ∈(i=1,2……n ),则222111n n n i i i i i i i a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑时成立时,等号当且仅当不全为当数组)1(0,,,;,,,2121n i a b b b b a a a i i n n ≤≤=λ 2.柯西不等式的变形:变形1:)(2222121n n a a a n a a a +++≤+++ )(2121n n a a a n a a a +++≤+++变形2:nn n n i i b b b a a a b a b a b a b a ++++++≥+++ 212212222121)(0,,则:同号且不为设 变形3:nn n n n b a b a b a a a a b a b a b a ++++++≥+++ 22112212211)( 变形4:nn b b b n b b b +++≥+++ 21221111 二.合作探究例1. 设4 12,,,n x x x R +∈ ,且4 121n x x x +++= 。
求证:4 22212121.1111n n x x x x x x n +++≥++++例2 21,5632,3,,,2222≤≤=+++=+++a d c b a d c b a d c b a 求证:满足条件:设实数变式1:的实数是满足:已知16,8,,,22222=++++=++++e d c b a e d c b a d c b a , 求e 的最大值。
变式2: 的最小值。
求已知22232,1232z y x z y x ++=++变式3:的最大值求满足设实数y x y x y x +≤+2,623,22例3.解方程1534212=++-x x例4.证明:对于任意实数4 ,,x y z ,不等式4 222222()()()()()()x y y z z x xyz x y y z z x +++≥+++成立。
思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版
思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.解:x 2+y 2 12+12 ≥x +y 2,则8≥x +y 2所以x +y ≤22,当且仅当x =y =2时等号成立.答案:222设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.【分析】(1)根据条件x +y +z =1,和柯西不等式得到(x -1)2+(y +1)2+(z +1)2≥43,再讨论x ,y ,z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的x ,y ,z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)[(x -1)2+(y +1)2+(z +1)2](12+12+12)≥[(x -1)+(y +1)+(z +1)]2=(x +y +z +1)2=4故(x -1)2+(y +1)2+(z +1)2≥43等号成立当且仅当x -1=y +1=z +1而又因x +y +z =1,解得x =53y =-13z =-13时等号成立,所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)因为(x -2)2+(y -1)2+(z -a )2≥13,所以[(x -2)2+(y -1)2+(z -a )2](12+12+12)≥1.根据柯西不等式等号成立条件,当x -2=y -1=z -a ,即x =2-a +23y =1-a +23z =a -a +23 时有[(x -2)2+(y -1)2+(z -a )2](12+12+12)=(x -2+y -1+z -a )2=(a +2)2成立.所以(a +2)2≥1成立,所以有a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【详解】因为2a +b =3,所以4a +2b =6由权方和不等式a 2x +b 2y ≥(a +b )2x +y可得1a -1+12b -1=44a -4+12b -1=224a -4+122b -1≥2+1 24a -4+2b -1=9当且仅当24a -4=12b -1,即a =76,b =23时,等号成立.【答案】C【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14 B.12C.10D.8【答案】A 【分析】利用柯西不等式求出即可.【详解】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A5(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4【答案】B【分析】由空间向量的坐标表示计算OP =xOA +yOB +zOC ,然后由柯西不等式求解即可.【详解】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12 =x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为 3.故选:B二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【分析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,代入公式即可得解.【详解】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:67(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.【答案】9【分析】根据柯西不等式求解最小值即可.【详解】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:98(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k的最小值为.【答案】305/1530【分析】运用柯西不等式进行求解即可.【详解】由柯西不等式的变形可知5x +y =x 215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y 1,即y =25x 时等号成立,则k 的最小值为305.故答案为:3059(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.【答案】15,85【分析】先根据MN 的最小值求出CD =7,即a -6 2+b -8 2=49,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离CD =4+1+2=7,即a -6 2+b -8 2=49,由柯西不等式得:a -6 2+b -8 2 ⋅32+42 ≥3a -6 +4b -8 2,当且仅当a -63=b -84,即a =515,b =685时,等号成立,即3a +4b -50 2≤25×49,解得:15≤3a +4b ≤85.故答案为:15,8510已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.【答案】163/513【分析】利用配凑法及柯西不等式即可求解.【详解】由题意可知,1a +b +c +1b +c +d +1c +d +a +1d +a +b=133a +b +c +d ×1a +b +c +1b +c +d +1c +d +a +1d +a +b=13a +b +c +b +c +d +c +d +a +d +a +b ×(1a +b +c +1b +c +d +1c +d +a +1d +a +b)≥131+1+1+1 2=163,当且仅当a =b =c =d =14时取“=”号.所以原式的最小值为163.故答案为:163.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.【答案】(1)26(2)证明见解析【分析】(1)利用柯西不等式直接求解;(2)由分析法转化为求证4≤4+2ab -2a 2b 2≤92,换元后由函数单调性得证.【详解】(1)由柯西不等式得:a 2+b 2 22+32 ≥2a +3b 2,即2a +3b 2≤26,故2a +3b ≤26,当且仅当3a =2ba 2+b 2=2 ,即a =22613b =32613时取得等号,所以2a +3b 的最大值为26.(2)要证:4≤a 3+b 3 a +b ≤92,只需证:4≤a 4+b 4+ab a 2+b 2 ≤92,只需证:4≤a 2+b 2 2+ab a 2+b 2 -2a 2b 2≤92,即证:4≤4+2ab -2a 2b 2≤92,由a ,b 均为正实数,且满足a 2+b 2=2可得2=a 2+b 2≥2ab ,当且仅当a =b 时等号成立,即0<ab ≤1,设ab =t ∈(0,1],则设f t =-2t 2+2t +4,t ∈0,1 ,∵f (x )在0,12 上单调递增,在12,1 上单调递减,又f (0)=f (1)=4,f 12=94,∴4≤f t ≤92,即4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a2+b2+c2≥1641.【答案】(1)12 5(2)证明见解析【分析】(1)结合已知等式,将1a+1100b-4c化为1a+9a+1100b+4b-4,利用基本不等式,即可求得答案;(2)利用柯西不等式,即可证明原不等式.【详解】(1)因为a,b,c均为正实数,9a+4b+4c=4,所以1a+1100b-4c=1a+1100b+9a+4b-4=1a+9a+1100b+4b-4≥21a×9a+21100b ×4b-4=125,当且仅当1a=9a1100b=4b,即a=13,b=120,c=15时等号成立.(2)证明:根据柯西不等式有9a2+b2+c232+42+42≥(9a+4b+4c)2=16,所以9a2+b2+c2≥16 41.当且仅当3a3=b4=c4,即a=441,b=c=1641时等号成立,即原命题得证.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得b+c=1-a,又12-2a2=b2+c2,结合基本不等式可得12-2a2≥1-a22,化简求得0≤a≤25,得证;(2)法一,由已知条件得a21-a +1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c 4≥c,三式相加得证;法二,根据已知条件可得121-a+1-b+1-c=1,所以a21-a+b2 1-b +c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c,利用柯西不等式求解证明.【详解】(1)因为a+b+c=1,所以b+c=1-a.因为2a2+b2+c2=1 2,所以12-2a2=b2+c2≥b+c22=1-a22,当且仅当b=c时等号成立,整理得5a2-2a≤0,所以0≤a≤2 5.(2)解法一:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,所以a21-a+1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c4≥c,以上三式相加得a21-a+b21-b+c21-c≥54a+b+c-34=12,当且仅当a=b=c=13时等号成立.解法二:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,且121-a+1-b+1-c=1,所以a21-a+b21-b+c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c≥121-a⋅a1-a+1-b⋅b1-b+1-c⋅c1-c2=12a+b+c2=12,当且仅当a=b=c=13时等号成立.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.【答案】9 2【分析】由x>-1知:x+1>0,为保证分母和为定值,对所求作适当的变形1x+1+2y=1x+1+42y,然后就可以使用权方和不等式了.【解析】1a-2b +4b=1a-2b+123b≥1+122a-2b+3b=14+46(等号成立条件,略).15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.【答案】1 4【解析】x2x+2+y2y+1≥x+y2x+y+3=14当xx+2=yy+1,即x=23,y=13时,等号成立.16已知a >0,b >0,且2a +2+1a +2b=1,则a +b 的最小值是.【答案】12+2【解析】1=2a +2+1a +2b ≥2+1 22a +2b +2当2a +2=1a +2b,即a =2,b =12时,等号成立,a +b min =12+2.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f x =2x +91-2x 0<x <12的最小值.【答案】25【分析】由f x =2x +91-2x =42x +91-2x ,再利用权方和不等式即可得解.【详解】由0<x <12,得1-2x >0,由权方和不等式可得f x =2x +91-2x =42x +91-2x ≥2+3 22x +1-2x=25,当且仅当22x =31-2x ,即x =15时取等号,所以函数f x =2x +91-2x 0<x <12的最小值为25.故答案为:25.18(2023高三·全国·专题练习)已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y 的最小值为【答案】13【分析】根据权方和不等式可得解.【详解】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.19(2023高三·全国·专题练习)已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【分析】应用权方和不等式即可求解.【详解】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6020(2023高三·全国·专题练习)已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【分析】利用权方和不等式:b n +1a n +d n +1c n ≥b +d n +1a +cn求解.【详解】1sin θ+8cos θ=132sin 2θ12+432cos 2θ12≥1+432sin 2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5521(2023高三·全国·专题练习)已知正实数x 、y 且满足x +y =1,求1x 2+8y 2的最小值.【答案】27【分析】设x =cos 2α,y =sin 2α,α∈0,π2 ,由权方和不等式计算可得.【详解】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y 2的最小值为27.故答案为:2722(2024高三·全国·专题练习)已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【分析】利用权方和不等式求解最值即可.【详解】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=ba -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:823(2023高三·全国·专题练习)已知实数x ,y 满足x >y >0,且x +y =2,M =3x +2y +12x -y的最小值为.【答案】85/1.6【分析】巧妙运用权方和不等式求解和式的最小值问题,关键是找到所求式的两个分母与题设和式的内在联系.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.不妨令m (x +2y )+(2x -y )=n (x +y ),整理得(m +2)x +(2m -1)y =nx +ny ,则m +2=n 2m -1=n,解得m =3n =5 ,则M =3x +2y +12x -y =93x +6y +12x -y =93x +6y +12x -y=323x +6y +122x -y ≥(3+1)25(x +y )=85,当且仅当33x +6y =12x -y 时等式成立,由33x +6y =12x -y x +y =2解得:x =32y =12,即当x =32,y =12时,M =3x +2y +12x -y 的最小值为85.故答案为:85.24(2024高三·全国·专题练习)已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【分析】利用权方和不等式求解最值即可.【详解】由题意得,1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b nm,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y=1,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3325(2023高三·全国·专题练习)已知正数x ,y 满足4x +9y =1,则42x 2+x +9y 2+y的最小值为【答案】118【分析】运用权方和不等式求和式的最小值,关键在于找到所求和式的两个分母与题设和式之间的联系,满足条件则迅速求解.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当ax =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.故由42x 2+x +9y 2+y =4242x 2+x +929y 2+y =42x 28+4x +92y 29+9y ≥4x +9y24x +9y+17=118当且仅当4x8+4x =9y9+9y 时取等号.由4x +9y =14x 8+4x =9y 9+9y,解得:x =172y =17 ,即当x =172,y =17时,42x 2+x +9y 2+y的最小值为118.故答案为:118.。
2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。
比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。
4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。
人教课标版高中数学选修4-5知识要点梳理:柯西不等式与排序不等式
1 /2 柯西不等式与排序不等式知识要点梳理1.经典不等式,就是指那些表示某些基本不等关系,而且经常被当作推理依据,用来推导其他不等关系的不等式,它们都是属于不等式范畴的重要数学结论.2.柯西不等式:(1)(二维形式的柯西不等式)若a b c d ,,,都是实数,则22222()()()a b c d ac bd +≥++,当且仅当ad bc =时,等号成立.(2)(柯西不等式的向量形式)设,αβ是两个向量,则||||||≤αβαβ,当且仅当β是零向量,或存在实数k ,使κα=β时,等号成立.(3)(二维形式的三角不等式)设1122x y x y R ∈,,,,那么≥(4)(一般形式的柯西不等式)设123123n n a a a a b b b b ,,,,,,,,是实数,则22222212121122()()()n n n n a a a b b b a b a b a b ++++++≥++2,当且仅当0i b =(1)i n =,2,,或存在一个数k ,使得i i a kb =(1)i n =,2,,时,等号成立.3.均值不等式:对于n 个正数12n a a a ,,…,,它们的算术平均不小于它们的几何平均,即12n n a a a n +++≥当且仅当12n a a a ===时,等号成立.4.排序不等式:设12n a a a ≤≤≤,12n b b b ≤≤≤为两组实数,12n c c c ,,,是12n b b b ,,,的任一排列,那么121111221122.n n n n n n n a b a b a b a c a c a c a b a b a b -+++≤+++≤++2 / 2即“反序和≤乱序和≤顺序和”. 当且仅当12n a a a ===或12n b b b ===时,反序和等于顺序和.。
柯西不等式的几何意义-高中数学知识点讲解
柯西不等式的几何意义1.柯西不等式的几何意义【知识点的认识】柯西不等式的几何意义柯西不等式的代数形式十分简单,但却非常重要.数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦掌握了它,就使这个结果变得不言而喻了.而一个代数结果最简单的解释,通常驻要借助于几何背景.现在就对柯西不等式的二维、三维情况做出几何解释.(1)二维形式(a2+b2)(c2+d2)≥(ac+bd)2如图,可知线段OP,OQ 及PQ 的长度分别由下面的式子给出:|푂푃|=푎2+푏2,|푂푄|=푐2+푑2,|푃푄|=(푎―푐)2+(푏―푑)2,θ表示OP 与OQ 的夹角.由余弦定理,我们有|PQ|2=|OP|2+|OQ|2﹣2|OP|⋅|OQ|cosθ,将|OP|,|Oq|,|PQ|的值代入,化简得到푐표푠휃=푎푐+푏푑푎2+푏2⋅푐2+푑2,而 0≤cos2θ≤1,故有푐표푠2휃=(푎푐+푏푑)2(푎2+푏2)(푐2+푑2)≤1,于是(a2+b2)(c2+d2)≥(ac+bd)2这就是柯西不等式的二维形式.我们可以看到当且仅当 cos2θ=1,即当且仅当θ是零或平角,亦即当且仅当O,P,Q 在同一条直线上是时等号成푎立.在这种情形,斜率之间必定存在一个等式;换句话说,除非c=d=0,我们们总有푐=푏푑.(2)三维形式(푎21+푎2+푎32)(푏21+푏2+푏32)≥(푎1푏1+푎2푏2+푎3푏3)2对于三维情形,设P(a1,a2,a3),Q(b1,b2,b3)是不同于原点O(0,0,0)的两个点,则OP 与OQ 之间的夹角θ的余弦有푐표푠휃=푎1푏1+푎2푏2+푎3푏3푎12+푎2+푎32⋅푏12+푏2+푏23又由 cos2θ≤1,得到柯西不等式的三维形式:(푎21+푎2+푎23)(푏21+푏2+푏23)≥(푎1푏1+푎2푏2+푎3푏3)2푎1当且仅当三点共线时,等号成立;此时只要这里的都不是零,就有푏1=푎2푏2=푎3푏3.。
高中数学柯西不等式知识点
高中数学柯西不等式知识点高中数学中的柯西不等式(Cauchy-Schwarz Inequality)是一项重要的不等式定理,它在代数和几何中有着广泛的应用。
柯西不等式是由法国数学家Augustin-Louis Cauchy和德国数学家Hermann Amandus Schwarz在19世纪提出的,其形式为:对于任意实数或复数序列a₁, a₂, ..., aₙ和b₁, b₂, ..., bₙ,有:|a₁b₁+ a₂b₂+ ... + aₙbₙ| ≤√(a₁²+ a₂²+ ... + aₙ²) √(b ₁²+ b₂²+ ... + bₙ²)这个不等式可以用来比较向量的内积和向量的长度,它在线性代数、几何学、概率论、信号处理等领域具有广泛的应用。
柯西不等式的证明可以使用多种方法,其中最常见的是使用向量的内积和长度的性质进行推导。
以下是柯西不等式的一种证明方法:设向量u = (a₁, a₂, ..., aₙ)和v = (b₁, b₂, ..., bₙ),考虑它们的内积(u·v)²:(u·v)²= (a₁b₁+ a₂b₂+ ... + aₙbₙ)²根据内积的性质,(u·v)²≤||u||²||v||²,其中||u||和||v||分别表示向量u和v的长度。
所以,有(u·v)²≤(a₁²+ a₂²+ ... + aₙ²)(b₁²+ b₂²+ ... + b ₙ²)再对上式两边取平方根,即可得到柯西不等式的形式:|a₁b₁+ a₂b₂+ ... + aₙbₙ| ≤√(a₁²+ a₂²+ ... + aₙ²) √(b ₁²+ b₂²+ ... + bₙ²)柯西不等式在数学中有着广泛的应用,一些常见的应用领域包括:1. 向量几何:柯西不等式可用于证明向量之间的夹角关系,以及证明向量的正交性。
柯西不等式讲义
柯西不等式讲义基本不等式222a b ab +≥ 展示:222222222222()()=a b c d a c b d a d b c +++++由于()()2222222222bc ad bd ac c b d a d b c a -++=+++ 所以22222()()()a b c d ac bd ++≥+当且仅当0ad bc -=时,等号成立。
1、 讲解二维柯西不等式定理,并给出两个相关推论:二维形式的柯西不等式:若,,,a b c d 都是实数,则22222()()()a b c d ac bd ++≥+ 当且仅当0ad bc -=时,等号成立。
ac bd ≥+ac bd ≥+2、 练习巩固新知识:例一:已知,a b 为实数,证明:4422332()()()a b a b a b ++≥+ 【讲解】:利用柯西不等式,4422222222222332()()[()()]()()()a b a b a b a b a a b b a b ++=++≥⋅+⋅=+例二:求函数y =的最大值。
【讲解】:函数的定义域为[5,6],观察式子形式,可以用推论二。
即5y =≤=。
当且仅当=13425x =时,函数有最大值5。
3、 讲解柯西不等式的向量形式:在平面直角坐标系中,(,),(,),a b c d αβ==u r u r,[0,]θαβπ=<>∈u r u r ,则||||cos ac bd αβαβθ==+u r u r u r u r g 又2222||,||,a b c d αβ=+=+u r u r而|||||||cos |||||αβαβθαβ=≤u r u r u r u r u r u r g即2222||ac bd a b c d +≤+⋅+当且仅当,αβu r u r 共线时,等号成立,即ad bc =柯西不等式的向量形式:设 ,αβr r 是两个向量,则αβαβ≤r r r r g ,当且仅当βr 是零向量,或存在实数k ,使得k αβ=r r 时,等号成立。
高中数学柯西不等式
高中数学柯西不等式在整个高中数学课程中,柯西不等式是一个重要的话题,它涉及到大量的数学知识,同时又能够深入探讨数学思想。
本文将详细介绍柯西不等式及其相关知识点,以便对此有更深入的理解和认识。
首先,值得注意的是柯西不等式的定义,即柯西不等式是一种数学不等式,用于描述一组数的取值的范围。
根据定义,柯西不等式的主要目的是限定一组数在一定范围内取值,以保证函数的正确性。
此外,它还可以用于描述变量之间的关系,从而帮助数学家们推导出更复杂的公式。
接下来将着重介绍几种常见的柯西不等式,包括小于等于不等式、大于等于不等式、负号不等式和两边不等式等。
其中,小于等于不等式表示在范围内的数据均小于等于某一数;大于等于不等式表示在范围内的数据均大于等于某一数;负号不等式表示在范围内的数据均小于等于某一数或大于等于某一数;两边不等式表示在范围内的数据均大于某一数,或小于某一数。
柯西不等式可以用来解决各种数学问题,最常见的就是找出一组数据的取值范围。
例如,假设在一个三角形中,角A的边长为a,角B的边长为b,角C的边长为c,则可以用柯西不等式求出三角形中每一边的取值范围,从而确定三角形是否合理。
此外,柯西不等式还可以用于解决其他各种数学问题,例如求函数的极值,求多元函数的极值等。
为了更好地解决这些问题,除了柯西不等式之外,数学家们还引入了一系列其他的不等式,例如傅立叶不等式、黎曼不等式等。
最后,要特别提醒的是,在解决数学问题时,柯西不等式的应用仍然是一个重要的话题,需要学生加以重视。
通过科学的思考和扎实的计算,能够帮助学生更好地理解柯西不等式的概念,并有效地运用它们解决数学问题。
总而言之,柯西不等式是高中数学中重要的一个概念,它能够帮助学生更好地理解数学思想,并有效地应用到实际问题中去,而且还可以推导出更加具体的公式。
高中数学知识点:柯西不等式
高中数学知识点:柯西不等式一、一样形式((ai))((bi)) aibi)等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
一样形式的证明((ai^2))((bi^2)) aibi) ^2证明:等式左边=(aibj+ajbi)+.................... 共n2 /2项等式右边=(aibi)(ajbj)+(ajbj)(aibi)+...................共n2 /2项用均值不等式容易证明等式左边等式右边得证二、向量形式|||||,=(a1,a2,…,an),=(b1,b2,...,bn)(nN,n2)要练说,先练胆。
说话胆小是幼儿语言进展的障碍。
许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆那个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。
二是注重培养幼儿敢于当众说话的适应。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清晰,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出夸奖,并要其他幼儿仿照。
长期坚持,不断训练,幼儿说话胆识也在不断提高。
等号成立条件:为零向量,或=(R)。
向量形式的证明要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。
柯西不等式
1柯西不等式复习一、知识梳理1、二维形式的柯西不等式.,)())((,,,, )( 122222等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad bd ac d c b a d c b a =+≥++二维形式的柯西不等式的变式:.,,,,, )( 2等号成立时使或存在实数向量是零是两个向量设柯西不等式的向量形式定理k k =≤bd ac d c b a +≥+⋅+2222)1(bdac d c b a +≥+⋅+2222)2(2332244)())((,, 1b a b a b a b a +≥++证明为实数已知例4111,b a ,, 2≥+=+∈+ba Rb a 求证设例的最大值求函数例x x y 21015 3-+-=221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理.1,yb ,,,, 1的最小值求且已知例y x x a R b a y x +=+∈+.,94,13222并求最小值点的最小值求若y x y x +=+2 2、一般形式的柯西不等式222112222122221)())((b n n n b a b a b a b b b a a a ++≥+++++。
,),,2,1(,),,2,1(0,,,,,,,,,,)(321321等号成立时使得或存在一个数当且仅当则是实数设一般形式的柯西不等式定理n i kb a k n i b b b b b a a a a i i i n n ====2222122121)(1,,,, 1n n n a a a a a a n a a a +++≤+++ 求证都是实数已知例22122221222)111( ))(111(:n n a a a a a a ⨯++⨯+⨯≥++++++ 证明22221221)(1n n a a a a a a n +++≤+++∴ 22122221)( )(n n a a a a a a n +++≥+++∴ da cd bc ab d c b a d c b a +++>+++2222,,,, 2证明是不全相等的正数已知例dacd bc ab d c b da cd bc ab d c b a a d d c c b b a d c b a da cd bc ab a d c b d c a +++>++++++>+++∴===∴+++≥++++++2222222222222222222a )()(,,,,)( ))((:即不成立是不全相等的正数证明 的最小值求已知例222,132 3z y x z y x ++=++141143,71,141321141)32()321)((:2222222222222取最小值时即当且仅当证明z y x z y x z y x z y x z y x z y x ++=====≥++=∴++≥++++1111x 1x :1,x x ,R x ,x , 6. 412222121n 21n 21+≥++++++=+++∈+n x x x x x x P n n 求证且设1)()1x 1 1111()x 1x 11()11x (1 )111()1(:2212n 222111n 2n 222121212222121=+++=+⋅++++⋅+++⋅+≥++++++⋅++++++=++++++⋅+n nn n n n x x x x x x x x x x x x x x x x x x x x x x x n 证明3练习:证明:))(1)(1)(1)](()()([333b a c c a b c b a b a c c a b c b a ++++++++++22)()111(ab ac bc c b a ++=++≥23)(23)(21)(1)(1)(132333=≥++≥+++++abc ca bc ab b a c c a b c b a (当且仅当) 36941,1,,, 2≥++=++∈+z y x z y x R z y x 求证且已知例.,21,31,61,914136)321()941)((941:2222等号成立时即当且仅当用柯西不等式证法一======⋅+⋅+⋅≥++++=++z y x z y x z z y y x x z y x z y x z y x .,21,31,61,3,236126414)94()9()4(14)(9)(4)(1941:等号成立时即当且仅当代入法证法二======+++≥++++++=++++++++=++z y x x z x y zy y z z x x z y x x y z y x zz y x y z y x x z y x 222222236)sin 1sin 1sin 1)((:,,,,,1RC B A c b a R c b a ABC ≥++++∆求证外接圆半径为设其各边长为中在3100)1()1()1(:,1,,,.2222≥+++++=++c c b b a a c b a c b a 求证且为正数设23)(1)(1)(1:,1,,,.3333≥+++++=∈+b a c c a b c b a abc R c b a 试证明且满足设。
《柯西不等式》知识点
《柯西不等式》知识点所谓柯西不等式是指:设ai,bi∈R,则2≤,等号当且仅当==…=时成立。
柯西不等式证法:柯西不等式的一般证法有以下几种:柯西不等式的形式化写法就是:记两列数分别是ai,bi,则有*≥^2我们令f=∑^2=*x^2+2**x+则我们知道恒有f≥0用二次函数无实根或只有一个实根的条,就有Δ=4*^2-4**≤0于是移项得到结论。
用向量来证=n=n=a1b1+a2b2++anbn=^乘以^乘以sX因为sX小于等于1,所以:a1b1+a2b2++anbn小于等于a1^2+a2^2++an^2)^乘以^这就证明了不等式柯西不等式还有很多种,这里只取两种较常用的证法柯西不等式应用:可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。
巧拆常数:例:设a、b、为正数且各不相等。
求证:2/+2/+2/>9/分析:∵a、b、均为正数∴为证结论正确只需证:2*[1/+1/+1/]>9而2=++又9=证明:Θ2[1/+1/+1/]=[++][1/+1/+1/]≥=9又a、b、各不相等,故等号不能成立∴原不等式成立。
像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献柯西简介:789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。
由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。
他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。
柯西不等式
柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:222()(a cb +++⇐22[2(a c +- 而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b = ,(,)n c d = , 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅,c o s ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20.若,,,a b c d R ∈, ;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . ..653625B C D3.______y =函数 224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。
高考数学柯西不等式知识点总结
高考数学柯西不等式知识点总结柯西不等式和排序不等式是两个非常重要的不等式,它们在高等数学中的应用很普遍。
下面店铺给大家带来高考数学柯西不等式知识点,希望对你有帮助。
高考数学柯西不等式知识点(一)所谓柯西不等式是指:设ai,bi∈R(i=1,2…,n,),则(a1b1+a2b2+…anbn)2≤(a12+a22+…+an2)(b12+b22+…+bn2),等号当且仅当==…=时成立。
柯西不等式证法:柯西不等式的一般证法有以下几种:(1)柯西不等式的形式化写法就是:记两列数分别是ai,bi,则有(∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.我们令f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论。
(2)用向量来证.m=(a1,a2......an) n=(b1,b2......bn)mn=a1b1+a2b2+......+anbn=(a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+......+bn^2)^(1/2)乘以cosX.因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^2+a2^2+......+an^2)^(1/2)乘以(b1^2+b2^2+.....+bn^2)^(1/2)这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.柯西不等式应用:可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。
巧拆常数:例:设a、b、c 为正数且各不相等。
求证: 2/(a+b)+2/(b+c)+2/(c+a)>9/(a+b+c)分析:∵a 、b 、c 均为正数∴为证结论正确只需证:2*(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又 9=(1+1+1)(1+1+1)证明:Θ2(a+b+c)[1/(a+b)+1/(b+c)+1/(c+a)]=[(a+b)+(a+c)+(b+c)][1/(a+b)+1/(b+c)+1/(c+a)]≥(1+1+1)(1+1+1)=9又 a、b 、c 各不相等,故等号不能成立∴原不等式成立。
二维形式的柯西不等式知识点梳理(经典系统全面知识点梳理)
课题:二维形式的柯西不等式1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用.2、教学难点:二维形式柯西不等式的应用.3、学生必须掌握的内容:1.二维形式的柯西不等式若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.3.二维形式的三角不等式设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2.注意:1.二维柯西不等式的三种形式及其关系定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式.根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示.2.理解并记忆三种形式取“=”的条件(1)代数形式中当且仅当ad=bc时取等号.(2)向量形式中当存在实数k,α=kβ或β=0时取等号.(3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号.3.掌握二维柯西不等式的常用变式(1) a2+b2·c2+d2≥|ac+bd|.(2) a2+b2·c2+d2≥|ac|+|bd|.(3) a2+b2·c2+d2≥ac+bd.(4)(a+b)(c+d)≥(ac+bd)2.4.基本不等式与二维柯西不等式的对比(1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式.(2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效.4、容易出现的问题:在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置的对应易出错。
(完整版)柯西不等式
柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。
基础知识:柯西不等式
柯西不等式【基础知识】1、什么是柯西不等式:定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立。
几何意义:设α,β为平面上以原点O 为起点的两个非零向量,它们的终点分别为A (b a ,),B (d c ,),那么它们的数量积为bd ac +=∙βα, 而22||b a +=α,22||d c +=β,所以柯西不等式的几何意义就||||||βαβα∙≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
2、定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα∙≥⋅,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
3、定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 思考:三角形不等式中等号成立的条件是什么?4、定理4:(柯西不等式的推广形式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则:211212)(∑∑∑===≥ni i i n i i n i ib a b a ,其中等号当且仅当nn a b a b a b === 2211时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n )。
柯西不等式有两个很好的变式:变式1 设),,,2,1(0,n i bi R a i =>∈∑∑∑≥=i i ni i i b a b a 212)( ,等号成立当且仅当 )1(n i a b i i ≤≤=λ变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则:∑∑∑≥=i i i ni i i b a a b a 21)(,等号成立当且仅当n b b b === 21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《柯西不等式》知识点
所谓柯西不等式是指:设ai,bi∈R,则2≤,等号当且仅当==…=时成立。
柯西不等式证法:
柯西不等式的一般证法有以下几种:
柯西不等式的形式化写法就是:记两列数分别是ai,bi,则有*≥^2.
我们令f=∑^2=*x^2+2**x+
则我们知道恒有f≥0.
用二次函数无实根或只有一个实根的条件,就有Δ=4*^2-4**≤0.
于是移项得到结论。
用向量来证.
m=n=
mn=a1b1+a2b2+......+anbn=^乘以^乘以cosX.
因为cosX小于等于1,所以:a1b1+a2b2+......+anbn 小于等于a1^2+a2^2+......+an^2)^乘以^
这就证明了不等式.
柯西不等式还有很多种,这里只取两种较常用的证法.
柯西不等式应用:
可在证明不等式,解三角形相关问题,求函数最值,解方程等问题的方面得到应用。
巧拆常数:
例:设a、b、c为正数且各不相等。
求证:2/+2/+2/>9/
分析:∵a、b、c均为正数
∴为证结论正确只需证:2*[1/+1/+1/]>9
而2=++
又9=
证明:Θ2[1/+1/+1/]=[++][1/+1/+1/]≥=9
又a、b、c各不相等,故等号不能成立
∴原不等式成立。
像这样的例子还有很多,词条里不再一一列举,大家可以在参考资料里找到柯西不等式的证明及应用的具体文献.
柯西简介:
789年8月21日生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。
由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。
他在纯数学和应用数学的功力是相当深厚的,很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式...在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此
他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页,所以,柯西较长的论文只得投稿到其他地方。
柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学诸方面都有出色的工作。
特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础。
一、一般形式
))≥
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
一般形式的证明
))≥^2
证明:
等式左边=+....................共n2/2项
等式右边=·+·+...................共n2/2项
用均值不等式容易证明等式左边≥等式右边得证
二、向量形式
|α||β|≥|α·β|,α=,β=
等号成立条件:β为零向量,或α=λβ。
向量形式的证明
令m=,n=m·n=a1b1+a2b2+…+anbn=|m||n|cos<<b>m,n>=√×√×cos<<b>m,n>∵cos<<b>m,n>≤1 ∴a1b1+a2b2+…+anbn≤√×√注:“√”表示平方根。
正弦定理知识点总结,高中数学正弦定理知识点总结。