小升初数学常考题型
小升初数学74道常考经典应用题
小升初必备:小升初数学74道必考经典应用题型1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?设丽丽有x元钱家家有y元钱得出: 3/5x=2/3y 2/5x=1/3y+5 (丽丽剩下2/5家家剩下1/3)解2元一次方程得x=50y=45 即丽丽50元家家45元书30元一本2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?8除4/5=10(km/)4/5除8=0.1(kg)3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?30÷1/2=60千米1÷60=1/60小时4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)×12/23求出x=285.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?62-24=38(只)3/5红=2/3黄9红=10黄红:黄=10:938/(10+9)=2 红:2×10=20黄:2×9=186.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?原有女生:36×4/9=16(人)原有男生:36-16=20(人)后有总人数:20÷(1-3/5)=50(人)后有女生:50×3/5=30(人)来女生人数:30-16=14(人)7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?2.16/(1+1/11)=1.98(立方米)8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?现在甲乙各有560÷2=280吨原来甲有 280÷(1-2/9)=360吨原来乙有 560-360=200吨9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?原价是200÷2/11=2200元现价是 2200-200=2000元10。
小升初选拔数学必考题型
小升初选拔数学必考题型
小升初选拔数学必考题型包括但不限于:
1. 分数和小数的转换:将分数转换为小数或将小数转换为分数。
2. 单位换算:例如,将米转换为厘米或将千克转换为克等。
3. 计算时间、速度和距离:例如,计算行驶某段距离所需的时间或速度,或计算在给定时间内行驶的距离。
4. 图形和几何问题:例如,计算图形的面积、周长或体积等。
5. 比例和百分比问题:例如,计算两个数的比例或一个数占另一个数的百分比。
6. 代数表达式和方程:例如,解一元一次方程或求解代数表达式的值。
7. 逻辑推理问题:例如,根据给定的条件或信息,推断出未知数或关系。
8. 组合和排列问题:例如,计算从n个不同元素中取出k个元素的组合数或排列数。
9. 最大值和最小值问题:例如,在给定的一组数中找到最大值或最小值,或确定满足某个条件的最大或最小值。
10. 应用题:例如,计算购物时找零的金额、计算银行利息等。
以上题型只是其中的一部分,具体题型和难度可能会因地区和选拔要求而有所不同。
建议查阅所在地区的小升初数学考试大纲,以获取更准确的信息。
小学奥数小升初常考题型植树问题例题讲解+练习,类型全
植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。
1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。
2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。
例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。
路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。
小升初数学考试常考题型和典型题锦集(答案及详解)
(1)20032003+2004 20042004200620052003 =2003 +2004 2006 2003 =2003 +2004 2006=20032003+20042006 —c 2003 2005 =2003 1 1 2006 20062004 2005+20042005 2004 (2005+12005 2005 2004 (2005+1 =2003+2003+20052006 (2)517 5.17 405=9.6 517+5.17 40 =9.6 517+517 0.4 =517 (9.6+0.4) =517 10 =5170=2003+40082006 =200410011003小升初考试常考题型和典型题锦集一、 计算题无论小升初还是各类数学竞赛, 都会有计算题出现。
计算题并不难,却很容易丢分,原 因:1、数学基础薄弱。
计算题也是对考生计算能力的一种考察,并非平常所说的马虎、粗 心造成的。
而且这种能力对任何一个学生来说,都是很重要的,甚至终身受益,这就是为什 么中小学学习阶段, 逢考必有计算题”的重要原因了!2、心态上的轻视。
很多学生称做计算题为 算数”题,在心理上认为很简单,一来不认真做,二来,把更多的精力放在了应用 题等看起来很难的题目上了。
二、 行程问题我们任意翻开一套试卷,只要是一套综合的测试,大概就会发现少则一道多则三五道的 行程问题。
所以行程问题不论在奥数竞赛中还是在 小升初”的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。
所以很多学生甚至说,学好了行程,就肯定能得高分”三、 数论问题在整个数学领域,数论被当之无愧的誉为数学皇后”翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中, 我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的 30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
人教版小升初数学百分数常考题型汇总
百分数解决问题一、用百分数解决问题1、常见的百分率的计算方法:①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量粉的重量 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
(一般出粉率在70、80%,出油率在30、40%。
)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1±分率)=分率对应量3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答) 找出等量关系式(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量 × 100% 或:① 求多百分之几:(大数÷小数 – 1) × 100%② 求少百分之几:( 1 - 小数÷大数)× 100%二、百分数应用题考点1.求分率求分率分为两种:(1)求甲是(占、相当于)乙的百分之几?公式:把是(占、相当于)变成“÷”,用甲÷乙。
例如:男生25人,女生20人,男生占女生的百分之几?男生÷女生 25÷20=125%(2)求甲比乙多(少)百分之几?公式:用相差数÷比字后面的数 ,用(甲—乙)÷乙或(乙—甲)÷乙。
北师大版数学小升初冲刺复习——经典常考题型
北师大版数学小升初冲刺复习——经典常考题型1.有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?2.求阴影部分的面积。
(单位:厘米)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时,丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?4.学校举办歌舞晚会,共有80人参加了表演。
其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?5.城中小学六(1)班有40人,六(2)班有44人,六(3)班有36人。
六一儿童节期间要从中选派30人作为代表和外校同学联欢。
按比例选派的话,六(2)班能选派多少人?6.发电厂要运一批煤,如果用大车运,每辆车装5吨,9辆车可以一次运完。
如果改用小车运,每辆车装3吨,需要几辆车可以一次运完?(用比例解)7.一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?8.一个等腰三角形,一个底角和顶角的度数比是5:2,一个底角和顶角分别是多少度?9.一个圆柱的侧面展开时一个正方形,这个圆柱的高和底面直径的比是多少?10.将一根体积为62.8 立方分米的圆形木料,沿底面直径切成形状相同的两部分,表面积增加了80 平方分米,这根圆柱形木料长多少米?11.工人叔叔用铁皮做40个长为50 厘米、底面半径为3厘米的圆柱形通风管。
如果每平方米铁皮30元,做这些通风管需花多少钱?12.北京天坛祈年殿距今已有600 多年,殿内的4根“龙井柱”象征春、夏、秋、冬四季,每根高约19 米,直径1.2米.如果要给这4根“龙井柱”刷上油漆,求刷油漆的面积是多少?13.等腰三角形两条边的比是5:2,周长是36厘米,求底和腰各是多少厘米?14.在一次射箭运动中,每箭得的环数是不超过10 的自然数,甲、乙两名运动员各射5箭,每人得的环数的积都是1764,但甲总环数比乙少4环。
求甲、乙各得多少环?15.用5ml的蜂蜜兑100mL水调制成蜂蜜水,如果再加入10mL的蜂蜜,为了使蜂蜜水的甜度不变,需要加入的水可以是多少?16.一片草地中央有一个边长为8 m的正方形羊圈(如图),将-只羊用10 m长的绳子系在羊圈墙外一个角的顶点上,这只羊能吃到的草地面积是多少平方米?17.小红看一本故事书,第一天看了45页,第二天看了全书的1,第二天看的页数恰4好比第一天多20%。
小升初数学常考题型及方法
小升初数学常考题型及方法小升初数学常考题型及方法小升初数学是小学阶段学习的基础上的一个重要考试科目,对于很多家长和孩子来说都是一个相对困难的科目。
下面将介绍一些小升初数学常考题型及解题方法,希望能给孩子及家长带来一些帮助。
1. 算术题:算术题是小升初数学考试中占比较大的一种题型,常见的题型有加减乘除、找规律、填空等。
解题方法是首先明确题目要求,然后按照正确的步骤进行计算,注意运算符的使用和运算顺序,最后进行答案的检验。
2. 数字运算:数字运算题主要考察孩子的加减乘除能力,包括整数运算、分数运算、百分数运算等。
解题方法是先将题目中的数字提取出来,然后按照题目要求进行运算,最后得出正确答案。
3. 几何题:几何题是小升初数学考试中的重点题型,包括图形的边长、面积、体积等。
解题方法是先仔细观察题目中的图形,然后根据已知条件和几何定理进行计算,最后得出正确答案。
4. 应用题:应用题是小升初数学考试中的综合题型,常见的题目有购物问题、排列组合、速度问题等。
解题方法是先将问题转化为数学表达式,然后根据已知条件进行计算,最后得出正确答案。
5. 逻辑推理题:逻辑推理题是小升初数学考试中的思维题,常见的题型有找规律、推理判断等。
解题方法是先仔细观察题目中的信息,然后进行逻辑推理,找出其中的规律或者判断出正确答案。
在备考小升初数学时,除了掌握解题方法,还需要进行大量的练习和复习。
建议家长和孩子制定合理的学习计划,每天坚持一定的时间进行数学的学习和练习。
在解题过程中,要注意理清思路,灵活运用不同的解题方法,多思考多讨论,提高解题能力和思维能力。
总之,小升初数学考试是一个需要长期积累和练习的过程,只有通过不断的学习和解题,才能够取得好的成绩。
希望以上介绍的小升初数学常考题型及解题方法对家长和孩子有所帮助。
小升初数学考试常考题型和典型题锦集答案详解
小升初数学考试常考题型和典型题锦集答案详解work Information Technology Company.2020YEAR小升初考试常考题型和典型题锦集一、计算题无论小升初还是各类数学竞赛,都会有计算题出现。
计算题并不难,却很容易丢分,原因:1、数学基础薄弱。
计算题也是对考生计算能力的一种考察,并非平常所说的马虎、粗心造成的。
而且这种能力对任何一个学生来说,都是很重要的,甚至终身受益,这就是为什么中小学学习阶段,“逢考必有计算题”的重要原因了! 2、心态上的轻视。
很多学生称做计算题为“算数”题,在心理上认为很简单,一来不认真做,二来,把更多的精力放在了应用题等看起来很难的题目上了。
二、行程问题我们任意翻开一套试卷,只要是一套综合的测试,大概就会发现少则一道多则三五道的行程问题。
所以行程问题不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常显赫的地位,都是命题者偏爱的题型之一。
所以很多学生甚至说,“学好了行程,就肯定能得高分”。
三、数论问题在整个数学领域,数论被当之无愧的誉为“数学皇后”。
翻开任何一本数学辅导书,数论的题型都占据了显著的位置。
在小学各类数学竞赛和小升初考试中,我们系统研究发现,直接运用数论知识解题的题目分值大概占据整张试卷总分的30%左右,而在竞赛的决赛试题和小升初一类中学的分班测试题中,这一分值比例还将更高。
出题老师喜欢将数论题作为区分尖子生和普通学生的依据,这一部分学习的好坏将直接决定你是否可以在选拔考试中拿到满意的分数。
四、几何问题几何问题主要考察是考生的观察能力甚至空间想象能力,有时需要添加辅助线才能完成,对培养孩子动手甚至创新能力很有帮助。
典型题:一、简便计算:(1)200320042003+2004200420062005÷ (2)48517 5.17405⨯+⨯ 200320042005+2004=2003+200420062005⨯÷ =9.6517+5.1740⨯⨯ 200320042005+1=2003+200420062005⨯÷() =9.6517+5170.4⨯⨯ 20032005=2003+2004200620042005+1⨯⨯()=5179.6+0.4⨯() 20032005=2003+20062006=51710⨯ 2003+2005=2003+2006=5170 4008=2003+2006 1001=20041003(3)11111111+++++++248163264128256 11111111=+++++++248163264128256S 令 ① 111111112=+++++++2248163264128256S ⎛⎫⨯ ⎪⎝⎭则 11111112=1+++++++248163264128S 即 ② ②-①得:11111111111111121++++++++++++++248163264128248163264128256S S ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭1255=1-=256256S 即 (4)1111++++1335571921⨯⨯⨯⨯ 1111111=1-+-+-++-3355719211=1-2120=21二、行程问题1.羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。
小升初数学热点题型 【数的运算】
小升初数学热点题型二数的运算一、要点归纳:重点:四则运算的计算方法1.加减法的计算方法:都是把相同位数上的数相加减。
2.乘法的计算方法:计算小数乘法时,先按着整数乘法的计算方法算出积,再看两个因数中共有几位小数,就从积的右边起向左数出几位,点上小数点。
如果小数的数位不够,就在前面用“0”补足。
计算分数乘法时,用分子相乘的积作分子,分母相乘的积作分母,能约分的要约分。
3.除法的计算方法:除数是整数时,按着整数除法进行计算,商的小数点要和被除数的小数点对齐;除数是小数时,先移动小数点变成整数,被除数的小数点同时移动相同位数(位数不够时,用“0补足”),然后按着整数除法计算。
难点:四则混合运算的计算顺序的掌握。
(一)复杂的分数、百分数应用题重点:难点:如何找出标准量与比较量(二)复合应用题的类型及解题步骤重点:1.行程问题--类型及数量关系如表类型数量关系式同时异地相向而行两地路程=速度和×相遇时间同时同地背向而行路程=速度和×时间同时异地同向而行(速度慢前、快后)追及路程=速度差×追及时间同时同地同向而行相差路程=速度差×时间基本类型已知甲、乙两数,求甲数比乙数多百分之几?已知甲、乙两数,求乙数比甲数少百分之几?已知一个数,求比这个数多(少)几(百)分之几的数是多少?已知比一个数多(少)几(百)分之几的数是多少,求这个数。
基本公式(甲数-乙数)÷乙数(甲数-乙数)÷甲数标准量×[1±几(百)分之几]比较量÷[1±几(百)分之几]2.工程问题的基本数量关系式如下:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率1”。
难点:如果把工作总量看作单位“1”,那么工作效率可以表示为“工作时间3.倍数应用题:已知各数量间的倍数关系及其他条件,求各个数量大小的问题,叫倍数问题。
小升初数学应用题必考题型
小升初数学应用题是指在小学毕业升入初中的数学考试中常见的涉及实际问题的应用题。
以下是一些小升初数学考试中必考的应用题型:
1. 集合与分类问题:
-对一组事物进行分类,要求学生根据给定条件将事物进行分组或分类。
-例如:有红、黄、蓝三种颜色的球,其中红球和蓝球的总数是12个,黄球的数量是红球的2倍,请计算红球的数量。
2. 比例与比率问题:
-要求学生根据两个或多个量之间的比例关系,解决实际问题。
-例如:小明每分钟能跑200米,小李每分钟能跑150米,两人同时从同一起点出发,问他们什么时候会相距1000米?
3. 时间与速度问题:
-考察学生对时间、速度和距离之间的关系的理解。
-例如:A列车从A地开往B地,以每小时60公里的速度行驶,B列车从B地开往A地,以每小时80公里的速度行驶,两列车同时出发,请问多少小时后两列车相遇?
4. 钱币与交换问题:
-要求学生根据给定的货币面值和数量,计算货币之间的兑换关
系。
-例如:小明有30枚1元硬币和20张5元纸币,请问他一共有多少元钱?
5. 增减变化问题:
-考察学生对数量增减、变化规律的理解。
-例如:小华身高为120厘米,每年增长5厘米,那么10年后他身高是多少厘米?
这些应用题涉及到数学知识在实际问题中的应用,要求学生能够分析和理解问题,并运用所学的数学知识进行解答。
在备考过程中,建议学生多做练习题,熟悉不同类型的应用题,掌握解题方法和技巧,提高解决实际问题的能力。
小升初数学必考题型讲解
小升初数学必考题型讲解
一、题型一:计算题
1. 知识点:小数乘法、小数除法、分数乘法、分数除法。
2. 常见考法:小数、分数混合运算,应用题。
3. 解题技巧:将小数或分数转化为整数,再进行运算,注意小数点的处理。
4. 易错点:运算顺序错误、小数点处理不当、运算符号看错等。
5. 详细解析:在计算小数、分数混合运算时,要按照从左到右的顺序进行计算,先乘除后加减,有括号的先算括号里面的。
在处理小数或分数时,可以将小数或分数转化为整数进行计算。
在应用题中,需要注意小数点的处理和运算顺序。
二、题型二:方程题
1. 知识点:一元一次方程、二元一次方程、三元一次方程。
2. 常见考法:解方程、方程应用题。
3. 解题技巧:设未知数、列方程、解方程、检验。
4. 易错点:未知数处理不当、方程变形错误、解方程不彻底等。
5. 详细解析:设出未知数,找到等量关系列出方程,进行变形求解,最后检验。
在解方程时,需要注意未知数的处理和方程变形的方法。
在应用题中,需要找到等量关系列出方程,进行变形求解,最
后检验。
三、题型三:几何题
1. 知识点:平面几何、立体几何。
2. 常见考法:计算面积、计算体积、应用题。
3. 解题技巧:找到几何元素之间的对应关系,利用公式进行计算。
4. 易错点:几何元素对应关系不明确、公式使用错误等。
5. 详细解析:在几何题中,需要找到几何元素之间的对应关系,如面积、周长、体积等。
对于平面几何,需要利用直角三角形的勾股定理进行计算;对于立体几何,需要利用公式进行计算。
小升初数学常考题型
小升初数学常考题型包括但不限于以下几种:1.四则运算:加减乘除,包括整数、分数、小数的计算。
2.简单方程:求解一元一次方程,如2x + 3 = 7。
3.分数运算:包括分数的加减乘除、分数化简等。
4.小数运算:包括小数的加减乘除、小数的化简等。
5.带有括号的运算:根据括号的优先级进行运算。
6.数列与等差数列:求数列的通项公式、求等差数列的第n项等。
7.几何图形的性质:如直线、线段、角度、三角形、四边形等的性质。
8.长度、面积和体积的计算:求线段、图形的周长和面积,求立体图形的体积等。
9.比例与百分数:求比例、比例的增减、百分数的计算等。
10.时、钟、日历问题:求时钟的指针位置、日期的计算等。
11.逻辑推理与问题解决:解决一些逻辑问题、推理问题和实际问题等。
以上是一些常见的小升初数学题型,根据学校和地区的不同,题型可能会有所变化。
建议根据教材和真题进行有针对性的复习。
例题如下:1.四则运算:例题1:计算:15 + 7 - 3 × 2 解答:首先计算乘法,得到6,然后进行加法和减法运算,得到16。
例题2:计算:(4 + 2) × 3 ÷ 2 解答:首先计算括号内的加法,得到6,然后计算乘法和除法,得到9。
2.简单方程:例题1:求解方程:3x + 5 = 17 解答:首先将方程两边减去5,得到3x = 12,然后再将方程两边除以3,得到x = 4。
例题2:求解方程:2y - 3 = 7 解答:首先将方程两边加上3,得到2y = 10,然后再将方程两边除以2,得到y = 5。
3.分数运算:例题1:计算:2/3 + 1/4 解答:首先找到两个分数的最小公倍数,这里是12,然后将两个分数的分母都改为12,得到8/12 + 3/12 = 11/12。
例题2:计算:3/5 - 1/8 解答:首先找到两个分数的最小公倍数,这里是40,然后将两个分数的分母都改为40,得到24/40 - 5/40 = 19/40。
小升初数学必考计算题型
小升初数学必考计算题型
小升初数学考试中,常见的计算题型包括以下几种:
1.四则运算:包括加法、减法、乘法和除法。
考察学生对基础运算规则的掌握和灵活运用能力。
2.组合运算:将多个运算符号或数字进行组合,要求学生按照正确的顺序进行计算。
例如:(7+3)×2-4÷2,要求学生按照括号内的运算优先级进行计算。
3.算式填空:给出一个不完整的算式,要求学生填写缺失的数字或符号。
例如:8+□=15,要求学生找出符合等式的缺失数字。
4.近似计算:给出一些较大或较复杂的算式,要求学生根据近似计算的原理,估算出结果的大小。
例如:685+327+49,要求学生快速估算出结果的范围。
5.时钟问题:涉及到时间的加减运算,要求学生计算时间间隔或计算经过了多少时间。
例如:9点15分再过40分钟是几点?。
2023小升初数学必考题型
2023小升初数学必考题型
2023小升初数学必考题型包括但不限于:
1. 计算题:包括口算、简算、笔算等,考察学生的基本运算能力。
2. 应用题:涉及实际生活中的问题,如路程、时间、速度、价格等,考察学生的问题解决能力。
3. 图形题:包括图形的认识、测量、变换等,考察学生的空间观念和思维能力。
4. 逻辑思维题:涉及逻辑推理、数理逻辑等,考察学生的逻辑思维能力。
5. 组合与概率题:涉及排列组合、概率计算等,考察学生的组合数学和概率统计知识。
6. 代数题:包括代数式、方程、不等式等,考察学生的代数知识。
7. 数学广角题:涉及数学在实际生活中的应用,如优化问题、逻辑推理等,考察学生的综合素质和创新能力。
这些题型旨在全面考察学生的数学知识和能力,建议学生在备考期间多做习题,熟悉各种题型,提高解题能力和应试技巧。
30个常考题型汇总及知识点大全
【小升初数学】30个常考题型汇总及知识点大全新学期备战小升初,做好预习及知识总结,抓住重点最必要,今天整理了数学题型汇总及知识点,好好收藏~工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x =10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
2024人教版小升初数学常考题型测试卷(附答案及解析)
2024人教版小升初数学常考题型测试卷(附答案及解析)一、选择题(共18分)1.如果,(a、b、c均不为零)那么最大的数是()。
A.a B.b C.c D.无法确定2.如果A∶B=1/8,那么(A×8/5)∶(B×8/5)=()。
A.5 B.8/5 C.1/8 D.1/53.如图,圆从点A开始,沿着直尺向右滚动一周到达点B,点B的位置大概在()。
A.8~9之间B.9~10之间C.10~11之间D.11~12之间4.被减数与减数的比是8∶5,那么差与减数的比是()。
A.3∶9 B.5∶8 C.3∶5 D.5∶35.一部手机所剩电量如下图阴影所示。
这部手机所剩电量约是()。
A.20% B.40% C.60% D.80%6.把一个圆柱削成一个最大的圆锥,削去部分的体积是40立方厘米,削成的圆锥体积是()立方厘米。
A.20 B.60 C.80 D.120二、填空题(每空1分,共12分)7.12∶()=0.8=()/()=()%=16÷()。
8.( )m是40m的1/4,55比40多( )%, 60t比( )t多20%。
9.在一个长10厘米,宽6厘米的长方形里画最大的圆,圆的面积是( )平方厘米。
10.甲、乙两车分别从A、B两地同时出发,相向开往对方出发地。
已知甲车和乙车速度的比是5∶3,经过1.5小时两车相遇,相遇时甲车还剩全程的()/()。
两车在相遇后继续前行,当乙车行到全程的时,甲车距离B地还有34千米,AB两地相距()千米。
11.一组分数的排列规律如下:1/2、1/4、1/8、1/2、1/4、1/8…这列数中,前15个数的和是( )。
12.甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,要将容器乙中的水全部倒入甲容器,这时水深( )厘米。
三、判断题(共10分)13.含糖率30%的糖水中,糖与水的比是3∶10。
( )14.某月,鸡蛋价格第二周比第一周上涨3%,第三周比第二周又上涨3%,则两周以来共上涨6%。
小升初数学几何必考题型
小升初数学几何必考题型
小升初数学几何必考题型包括但不限于以下几种:
1. 计算图形面积:这是最常见的几何题型之一,主要考察学生对于不同图形面积计算公式的掌握情况。
2. 计算周长:这也是常见的几何题型,主要考察学生对于不同图形周长计算公式的掌握情况。
3. 图形判断:这类题型要求学生根据题目给出的条件判断某个图形是否正确,例如判断一个三角形是否为等腰三角形或等边三角形。
4. 立体几何:这类题型考察学生的空间想象能力,例如判断一个立体图形的展开图是什么形状,或者计算一个立体图形的表面积或体积。
5. 图形运动:这类题型考察学生对于图形运动规律的理解,例如判断一个图形在平移或旋转后与原图的关系。
6. 角度计算:这类题型要求学生计算出某个图形的内角或外角,或者利用给定的条件判断某个角度是否相等或互补。
7. 几何定理应用:这类题型要求学生根据已知的几何定理,判断某个命题是否成立,或者应用几何定理解决问题。
这些题型要求学生掌握基本的几何知识和定理,并且能够灵活运用。
同时,还需要学生具备良好的空间想象能力和问题解决能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学常考题型升初数学常考题型一、一般相遇追及问题。
包括一人或者二人时同时、异时、地同地、异地、向同向、相向的时间和距离等条件混合出现的行程问题。
在杯赛中大量出现,约占80%左右。
建议熟练应用标准解法,即s=v×t结合标准线段画图基本功解答。
由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类。
升初数学常考题型二、复杂相遇追及问题。
特别推荐1多人相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
见考前辅导最后一题,就是典型例题,此题为2000年华罗庚杯竞赛试题。
2多次相遇追及问题。
即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。
分为标准型如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数和纯周期问题少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数。
标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。
如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。
一般用到的时间公式是只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述:单程相遇时间:t单程相遇=s/v甲+v乙单程追及时间:t单程追及=s/v甲-v乙第n次相遇时间:Tn= t单程相遇×2n-1第m次追及时间:Tm= t单程追及×2m-1限定时间内的相遇次数:N相遇次数=[ Tn+ t单程相遇/2 t单程相遇]限定时间内的追及次数:M追及次数=[ Tm+ t单程追及/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。
简单例题:甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶,已知甲车的速度是每小时30千米,乙车的速度是每小时20千米,问1第二次迎面相遇后又经过多长时间甲、乙追及相遇?2相遇时距离中点多少千米?350小时内,甲乙两车共迎面相遇多少次?升初数学常考题型三、火车问题。
特点无非是涉及到车长,相对容易。
小题型分为:1火车vs点静止的,如电线杆和运动的,如人s火车=v火车±v人×t经过2火车vs线段静止的,如桥和运动的,如火车s火车+s桥=v火车×t经过和s火车1+s火车2=v火车1±v火车2×t经过合并1和2来理解即s和=v相对×t经过把电线杆、人的水平长度想象为0即可。
火车问题足见基本公式的应用广度,只要略记公式,火车问题一般不是问题。
3坐在火车里。
本身所在火车的车长就形同虚设了,注意的是相对速度的计算。
电线杆、桥、隧道的速度为0弱智结论。
升初数学常考题型四、流水行船问题。
理解了相对速度,流水行船问题也就不难了。
理解记住1个公式顺水船速=静水船速+水流速度就可以顺势理解和推导出其他公式逆水船速=静水船速-水流速度,静水船速=顺水船速+逆水船速÷2,水流速度=顺水船速-逆水船速÷2,对于流水问题也就够了。
技巧性结论如下:1相遇追及。
水流速度对于相遇追及的时间没有影响,即对无论是同向还是相向的两船的速度差不构成“威胁”,大胆使用为善。
2流水落物。
漂流物速度=水流速度,t1= t2t1:从落物到发现的时间段,t2:从发现到拾到的时间段与船速、水速、顺行逆行无关。
此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。
例题:一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处。
一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同。
客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米。
客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇。
求水流速度。
升初数学常考题型五、间隔发车问题。
空间理解稍显困难,证明过程对快速解题没有帮助。
一旦掌握了3个基本公式,一般问题都可以迎刃而解。
1在班车里。
即柳卡问题。
不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题:A、B是公共汽车的两个车站,从A站到B站是上坡路。
每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车。
已知从A站到B站单程需要105分钟,从B站到A站单程需要80分钟。
问8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?2在班车外。
联立3个基本公式好使。
汽车间距=汽车速度+行人速度×相遇事件时间间隔------1汽车间距=汽车速度-行人速度×追及事件时间间隔------2汽车间距=汽车速度×汽车发车时间间隔------31、2合并理解,即汽车间距=相对速度×时间间隔分为2个小题型:1、一般间隔发车问题。
用3个公式迅速作答;2、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图-尽可能多的列3个好使公式-结合s全程=v×t-结合植树问题数数。
例题:小峰在骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰。
小峰骑车到半路车坏了,于是只好坐出租车去小宝家。
这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,如果这3种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?升初数学常考题型六、平均速度问题。
相对容易的题型。
大公式要牢牢记住:总路程=平均速度×总时间。
用s=v×t写出相应的比要比直接写比例式好理解并且规范,形成行程问题的统一解决方案。
升初数学常考题型七、环形问题。
是一类有挑战性和难度的题型,分为“同一路径”、“不同路径”、“真实相遇”、“能否看到”等小题型。
其中涉及到周期问题、几何位置问题审题不仔细容易漏掉多种位置可能、不等式问题针对“能否看到”问题,即问甲能否在线段的拐角处看到乙。
仍旧属于就题论题范畴,不展开了。
升初数学常考题型八、钟表问题。
是环形问题的特定引申。
基本关系式:v分针= 12v时针1总结记忆:时针每分钟走1/12格,0.5°;分针每分钟走1格,6°。
时针和分针“半”天共重合11次,成直线共11次,成直角共22次都在什么位置需要自己拿表画图总结。
2基本解题思路:路程差思路。
即格或角分针=格或角时针+格或角差格:x=x/12+开始时落后时针的格+终止时超过时针的格角:6x=x/2+开始时落后时针的角度+终止时超过时针的角度可以解决大部分时针问题的题型,包括重合、成直角、成直线、成任意角度、在哪两个格中间,和哪一个时刻形成多少角度。
例题:在9点23分时,时针和分针的夹角是多少度?从这一时刻开始,经过多少分钟,时针和分针第一次垂直?3坏钟问题。
所用到的解决方法已经不是行程问题了,变成比例问题了,有相应的比例公式。
这里不做讨论了,我也讨论不好,都是考公务员的题型,有难度。
升初数学常考题型九、自动扶梯问题。
仍然用基本关系式s扶梯级数=v人速度±v扶梯速度×t上或下解决最漂亮。
这里的路程单位全部是“级”,唯一要注意的是t上或下要表示成实际走的级数/人的速度。
可以PK掉绝大部分自动扶梯问题。
例题:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下向上走,男孩由上向下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?升初数学常考题型十、十字路口问题。
即在不同方向上的行程问题。
没有特殊的解题技巧,只要老老实实把图画对,再通过几何分析就可以解决。
在正方形或长方形道路上的行程问题。
升初数学常考题型十一、校车问题。
就是这样一类题:队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地即到达目的地的最短时间,不要求证明分4种小题型:根据校车速度来回不同、班级速度不同班不同速、班数是否变化分类。
1车速不变-班速不变-班数2个最常见2车速不变-班速不变-班数多个3车速不变-班速变-班数2个4车速变-班速不变-班数2个标准解法:画图-列3个式子:1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
最后会得到几个路程段的比值,再根据所求代数即可。
此类问题可以得到几个公式,但实话说公式无法记忆,因为相对复杂,只能临考时抱佛脚还管点儿用。
孩子有兴趣推导一下倒可以,不要死记硬背。
简单例题:甲班与乙班学生同时从学校出发去15千米外的公园游玩,甲、乙两班的步行速度都是每小时4千米。
学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。
为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?升初数学常考题型十二、保证往返类简单例题:A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可以携带一个人24天的食物和水。
如果不准将部分食物存放于途中,其中一个人最远可深入沙漠多少千米要求两人返回出发点?这类问题其实属于智能应用题类。
建议推导后记忆结论,以便考试快速作答。
每人可以带够t天的食物,最远可以走的时间T1返回类。
保证一个人走的最远,所有人都要活着回来1、两人:如果中途不放食物:T=2/3t;如果中途放食物:T=3/4t。
2、多人:正在探讨,没搞明白,建议高手补充。
2穿沙漠类保证一个人穿过沙漠不回来了,其他人都要活着回来共有n人包括穿沙漠者即多人助1人穿沙漠类。
1、中途不放食物:T≤[2n/n+1]×t。
T是穿沙漠需要的天数。
2、中途放食物:T=1+1/3+1/5+1/7+…+1/2n-1×t升初数学常考题型十三、走走停停或跑跑停停问题。
升初数学常考题型十四、猎狗追兔问题感谢您的阅读,祝您生活愉快。