(完整版)北师大版高中数学选修-高数学推理与证明测试题及答案
高中数学 第三章 推理与证明单元测试(含解析)北师大版选修1-2(2021年最新整理)
2016-2017学年高中数学第三章推理与证明单元测试(含解析)北师大版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第三章推理与证明单元测试(含解析)北师大版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第三章推理与证明单元测试(含解析)北师大版选修1-2的全部内容。
(三)推理与证明章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是( )A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】C2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线"的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为( )A.①②③B.③①②C.①③②D.②③①【解析】结合反证法的证明步骤可知,其正确步骤为③①②.【答案】B3.下列推理是归纳推理的是( )A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆错误!+错误!=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.【答案】B4.用反证法证明“a,b,c中至少有一个大于0”,下列假设正确的是()A.假设a,b,c都小于0B.假设a,b,c都大于0C.假设a,b,c中都不大于0D.假设a,b,c中至多有一个大于0【解析】用反证法证明“a,b,c中至少有一个大于0”,应先假设要证命题的否定成立.而要证命题的否定为“假设a,b,c中都不大于0”,故选C。
2019—2020年新课标北师大版高中数学选修1-2《推理与证明》同步练习1及答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-2第三章推理与证明同步练习(二)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题共27分)一、选择题(本大题共9小题,每小题3分,共27分)1、由数列1,10,100,1000,……猜测该数列的第n项可能是()A、10nB、10n-1C、10n+1D、11n2、类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A、①B、①②C、①②③D、③3、下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
A、①②③B、②③④C、②④⑤D、①③⑤4、演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法。
()A、一般的原理原则B、特定的命题C、一般的命题D、定理、公式5、实数a、b、c不全为0的条件是()。
A、a、b、c均不为0;B、a、b、c中至少有一个为0;C、a、b、c至多有一个为0;D、a、b、c至少有一个不为0。
6、设m≠n,x=m4-m3n,y=n3m-n4,则x与y的大小关系为()。
A、x>y;B、x=y;C、x<y;D、x≠y。
7、下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证法;⑤反证法是逆推法。
正确的语句有()个。
A、2;B、3;C、4;D、5。
8、已知数列{a n }满足a n+1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+……+a n ,则下列结论正确的是( ) A 、a 100=-a S 100=2b -aB 、a 100=-b S 100=2b -aC 、a 100=-b S 100=b -aD 、a 100=-a S 100=b -a9、在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”拓展到空间,类比平面几何的勾股定理,“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,”则可得( )A 、AB 2+AC 2+ AD 2=BC 2 +CD 2 +BD 2 B 、BCD ADB ACD ABC S S S S ∆∆∆∆=⨯⨯2222C 、2222BCD ADB ACD ABC S S S S ∆∆∆∆=++D 、AB 2×AC 2×AD 2=BC 2×CD 2×BD 2第Ⅱ卷(非选择题 共73分)二、填空题(本大题共5小题,每小题4分,共20分)10、由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是。
(常考题)北师大版高中数学选修1-2第三章《推理与证明》测试(包含答案解析)
一、选择题1.以BC 为斜边的Rt ABC 中,222BC AB AC =+,由类比推理,在三棱锥P ABC-中,若PA 、PB 、PC 两两垂直,PA a =,PB b =,PC c =,1BPC S s =△,2CPA S s =△,3APB S s =△,则ABCS=( )A .222222a b b c a c ++B .222222122331s s s s s s ++ C .222a b c ++D .222123s s s ++ 2.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式11+11+1+...中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=,求得152x +=,类似上述过程,则222+++=( )A .2B .1C .2-D .1-3.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102.根据规律,可以得到33312?50+++=( )A .1205B .1225C .1245D .12754.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .655.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .1211n n ;+-+B .211n n -+;C .21n n -;D .121n n +-;6.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()()()112233,,y f x y f x y f x ===,则在区间[]13,x x 上()f x 可以用二次函数()()()111212()f x y k x x k x x x x =+-+--来近似代替,其中3221112213231,,y y y y k k k k k x x x x x x ---===---.若令10x =,2π2x =,3πx =,请依据上述算法,估算2πsin 5的近似值是( ) A .2425B .1725C .1625D .357.将正偶数排成如图所示的三角形数阵,其中第i 行(从上向下)第j 个(从左向右)的数表示为ij a (),i j N*∈,例如3210a=.若2020ij a =,则i j -( )A .21B .22C .23D .258.“四边形是矩形,四边形的对角线相等”补充以上推理的大前提是( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形 D .矩形都是对边平行且相等的四边形9.下列说法中正确的个数是( )①命题:“x 、y R ∈,若110x y -+-=,则1x y ==”,用反证法证明时应假设1x ≠或1y ≠;②若2a b +>,则a 、b 中至少有一个大于1; ③若1-、x 、y 、z 、4-成等比数列,则2y =±; ④命题:“[]0,1m ∃∈,使得12+<m x x”的否定形式是:“[]0,1m ∀∈,总有12m x x +≥”.A .1B .2C .3D .410.在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过2+2+2+...“…”即代表无限次重复,但原式却是个定值x ,这可以通过2x x +=确定出来2x =,类似地,可得112122...+++的值为( )A 21B 21C 23D 3211.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9612.在二维空间中,圆的一维测度(周长),二维测度(面积);在三维空间中,球的二维测度(表面积),三维测度(体积).应用合情推理,若在四维空间中,“特级球”的三维测度,则其四维测度为( ) A .B .C .D .二、填空题13.若ABC 的三边之长分别为a 、b 、c ,内切圆半径为r ,则ABC 的面积为()2r a b c ++.根据类比思想可得:若四面体A BCD -的三个侧面与底面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为r ,则四面体的体积为__________.14.观察下列式子:2222221311511171,1,1222332344+<++<+++≤,…,根据上述规律,第n 个不等式应该为_________.15.已知a ,b 是正整数,ab ,当(),0,x y ∈∞时,则有()222a b a bx y x y++≥+成立,当且仅当“a b x y =”取等号,利用上述结论求2912y x x =+-,10,2x ⎛⎫∈ ⎪⎝⎭的最小值______. 16.观察下列数表:如此继续下去,则此表最后一行的数为_______(用数字作答).17.学校艺术节对同一类的A ,B ,C ,D 四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.18.某电影院共有(3000)n n ≤个座位,某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人,1010人,2019人(同一所学校的学生既可看上午场,又可看下午场,但每人只能看一场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、下午在这个座位上坐的是同一所学校的学生,那么n 的可能取值有__________个.19.集合{}{},,1,2,3a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说2a ≠,乙说2b =,丙说3c ≠.已知三人中有且只有一个人预测正确,那么10010a b c ++=______.20.过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4∶5,类比此性质:过正四面体的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为_______.三、解答题21.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①22sin 30cos 60sin30cos60︒+︒+︒︒; ②22sin 15cos 45sin15cos 45︒+︒+︒︒; ③22sin 20cos 50sin 20cos50︒+︒+︒︒; ④22sin (18)cos 12sin(18)cos12-︒+︒+-︒︒; ⑤22sin (25)cos 5sin(25)cos5-︒+︒+-︒︒.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 22.数列{}n a 中,()11n a n n =+,前n 项的和记为n S .(1)求123,,S S S 的值,并猜想n S 的表达式; (2)请用数学归纳法.....证明你的猜想. 23.用综合法或分析法证明: (1)如果 ,0a b >,则 lg lg lg22a b a b++≥;(22>. 24.观察以下3个等式:1113211=⨯⨯+, 1121335221+=⨯⨯⨯+,1113133557231++=⨯⨯⨯⨯+,(1)照以上式子规律,猜想第n 个等式(n ∈N *);(2)用数学归纳法证明上述所猜想的第n 个等式成立(n ∈N *). 25.(1)已知正数,a b 满足2a b ab +≤,求证:29a b +≥;(2)求证:1,3不可能是一个等差数列中的三项. 26.已知数列{}n a 满足11a =,121()n n a a n N ++=+∈ (1)求2a ,3a ,4a ,5a ;(2)归纳猜想出通项公式n a ,并且用数学归纳法证明; (3)求证100a 能被15整除.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形的边应与四面体的各个面进行类比,将三角形各边边长与四面体各面面积进行类比,可得出结论. 【详解】根据几何体和平面图形的类比关系,三角形的边应与四面体的各个面进行类比,将三角形各边边长与四面体各面面积进行类比,在以BC 为斜边的Rt ABC 中,222BC AB AC =+,对应地,在三棱锥P ABC -中,若PA 、PB 、PC 两两垂直,PA a =,PB b =,PC c =,1BPC S s =△,2CPA S s =△,3APB S s =△,所以,2222123ABC S s s s =++△,即ABC S =△ 故选:D. 【点睛】易错点点睛:在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等; ②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.2.A解析:A 【分析】根据类比,列方程求解结果. 【详解】2x x =∴=,选A. 【点睛】本题考查利用类比方法列方程求解数学问题,考查基本分析求解能力,属基础题.3.D解析:D 【分析】根据所给等式,归纳出规律,利用求和公式即可求解. 【详解】因为13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,1+2+ (50)(150)502+⨯=1275. 故选:D 【点睛】本题主要考查了合情推理中的不完全归纳法,属于容易题.4.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.5.A解析:A 【分析】第1代“勾股树”中,小正方形的个数3=21+1﹣1=3,所有正方形的面积之和为2=(1+1)×1,第2代“勾股树”中,小正方形的个数7=22+1﹣1,所有的正方形的面积之和为3=(2+1)×1,以此类推,第n 代“勾股树”所有正方形的个数为2n +1﹣1,第n 代“勾股树”所有正方形的面积的和为:(n +1)×1=n +1.【详解】解:第1代“勾股树”中,小正方形的个数3=21+1﹣1=3, 如图(2),设直角三角形的三条边长分别为a ,b ,c , 根据勾股定理得a 2+b 2=c 2,即正方形A 的面积+正方形B 的面积=正方形C 的面积=1, 所有正方形的面积之和为2=(1+1)×1, 第2代“勾股树”中,小正方形的个数7=22+1﹣1,如图(3),正方形E 的面积+正方形F 的面积=正方形A 的面积, 正方形M 的面积+正方形N 的面积=正方形B 的面积,正方形E 的面积+正方形F 的面积+正方形M 的面积+正方形N 的面积=正方形A 的面积+正方形B 的面积=正方形C 的面积=1, 所有的正方形的面积之和为3=(2+1)×1, …以此类推,第n 代“勾股树”所有正方形的个数为2n +1﹣1, 第n 代“勾股树”所有正方形的面积的和为:(n +1)×1=n +1. 故选A .【点睛】本题考查正方形的性质及勾股定理的应用,考查归纳推理等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,是中档题.6.A解析:A 【分析】直接按照所给算法逐步验算即可得出最终结论. 【详解】解:函数()sin y f x x ==在0x =,π2x =,πx =处的函数值分别为 1(0)0y f ==,2π()12y f ==,3(π)0y f ==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--,故2222444()()2f x x x x x x πππππ=--=-+, 即2244sin x x x ππ≈-+,∴222424224sin()55525πππππ≈-⨯+⨯=, 故选:A . 【点睛】本题主要考查新定义问题,准确理解题目所给运算法则是解决本题的关键,属于中档题.7.D解析:D 【分析】分析题意,求出数表的前n 行的偶数的个数为()12n n +,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,即可判断出结果. 【详解】由题意知,这个数表的前n 行的偶数的个数为()12n n +, 所以,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,所以20201980220ij a ==+⨯,即2020是第45行的第20个偶数,亦即2020这个数位于第45行第20个, 所以452025i j -=-=, 故选:D. 【点睛】本题考查了等差数列与推理能力与计算能力,属于基础题.8.B解析:B 【分析】根据题意,用三段论的形式分析即可得答案. 【详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据, ∵由四边形是矩形,得到四边形的对角线相等的结论, ∴大前提一定是矩形都是对角线相等的四边形,故选B . 【点睛】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.9.C解析:C 【分析】根据命题的否定形式可判断出命题①的正误;利用反证法可得出命题②的真假;设等比数列的公比为q ,利用等比数列的定义和等比中项的性质可判断出命题③的正误;利用特称命题的否定可判断出命题④的正误. 【详解】对于命题①,由于1x y ==可表示为1x =且1y =,该结论的否定为“1x ≠或1y ≠”,所以,命题①正确;对于命题②,假设1a ≤且1b ≤,由不等式的性质得2a b +≤,这与题设条件矛盾,假设不成立,故命题②正确;对于命题③,设等比数列1-、x 、y 、z 、4-的公比为q ,则201yq =>-,0y ∴<. 由等比中项的性质得()()2144y =-⨯-=,则2y =-,命题③错误;对于命题④,由特称命题的否定可知,命题④为真命题,故选C. 【点睛】本题考查命题真假的判断,涉及反证法、等比中项以及特称命题的否定,理解这些知识点是解题的关键,考查分析问题和解决问题的能力,属于基础题.10.B解析:B 【解析】 【分析】设()1012122...t t =>+++,可得12t t=+,求解即可. 【详解】设()1012122...t t =>+++,则12t t=+,即2210t t +-=,解得1t =,取1t =. 故选B. 【点睛】本题考查了类比推理,考查了计算能力,属于基础题.11.B解析:B 【分析】利用题设中给出的公式进行化简,即可估算,得到答案.【详解】由题设中的余弦公式得()()24620.20.20.20.2cos0.2112!4!6!2!nnn =-+-++-+0.040.00160.00006410.98224720=-+-+≈,故答案为B 【点睛】 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【解析】 【分析】根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到,求出所求。
2020-2021学年北师大版高中数学选修1-2《推理与证明》同步练习题及解析
(新课标)最新北师大版高中数学选修1-2 第三章推理与证明(北京师大版选修1-2)一、选择题(本大题共8小题,每小题7分,共56分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列等式:1=1,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15;=1,+=9,++=36,+++=100,++++=225.可以推测:+++…+=( )(n∈,用含有n的代数式表示)A.(2n+1)B.nC. D.2.如图所示是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是3.对大于或等于2的自然数m的n次幂有如下分解方式:=1+3,=1+3+5,=1+3+5+7;=3+5,=7+9+11,=13+15+17+19.根据上述分解规律,则=1+3+5+7+9.若(m∈)的分解中最小的数是73,则m的值为( )A.6B.8C.9D.124.“因为指数函数是增函数(大前提),而y=是指数函推理的错误在于()A.大前提错误导致结论错B.小前提错误导致结论错C.推理形式错误导致结论错D.大前提和小前提错误导致结论错5.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.下列几何体中,一定属于相似体的是()①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱柱.A.①⑤B.②③④C.①③D.①③⑤6.已知函数f(x)=-,正实数a,b,c是公差为正数的等差数列,且满足f(a)f(b)f(c)<0.若实数d 是方程f(x)=0的解,那么下列四个判断:①d<a;②d<b;③d<c;④d>c中有可能成立的个数为A.1B.2C.3D.47.若a,b,c是不全相等的实数,求证:++>ab+bc+ca.证明过程如下:∵a,b,c∈R,∴+≥,+≥, +≥2ac.又∵a,b,c不全相等,∴以上三式至少有一个“=”不成立,∴将以上三式相加得2(++)>2(ab+bc+ac),∴++>ab+bc+ca.此证法是()A.分析法B.综合法C.分析法与综合法并用D.反证法8.命题“如果数列{}的前n项和=-3n,那么数列{}一定是第三章推理与证明(北京师大版选修1-2)答题纸9.10.11.12.三、解答题13.14.15.17.18.第三章推理与证明(北京师大版选修1-2)参考答案一、选择题1.C 解析:由题意知1=1×1,9=3×3,36=6×6,100=10×10,225=15×15,∵1,3,6,10,15,…的第n项与第n-1项(n≥2)的差为-=n,∴-=2,-=3,-=4,…,-=n,各式相加得=+2+3+…+n,其中=1,∴=1+2+3+…+n,即=,∴=.2.A 解析:该五角星灯对角上的两灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A.3.C 解析:的分解式中,最小的数依次为3,7,13,…,-m+1,…,由-m+1=73,得m=9.4.A 解析:y=是增函数的条件是a1.5.C 解析:球和正四面体的大小不同时,形状完全相同,所以是相似体,但是长方体、正三棱柱和正四棱柱的大小不同,形状也可以不同,它们不是相似体,所以选C.6.C 解析:f(x)在(0,+∞)上单调递减,值域为R.又a<b<c,f(a)f(b)f(c)<0,所以(1)若f(a)>0,f(b)>0,f(c)<0,由f(d)=0知,a<b<d<c,③成立;(2)若f(a)<0,f(b)<0,f(c)<0,此时d<a<b<c,①②③成立.综上,可能成立的个数为3.7.C 解析:这一过程综合应用了分析法和综合法.8.B 解析:=2-3=-1,当n≥2时,=-3n-2+3(n-1)=-3n-+4n-2+3n-3=4n-5,且n=1时=-1成立,∴=4n-5是等差数列.二、填空题9.5+6+7+8+9+10+11+12+13=81 解析:第n行等式的左边:以n为首项,公差为1的等差数列的前2n-1项的和,右边为,所以第五个等式为5+6+7+8+9+10+11+12+13=81.10.②解析:由式子特点,宜选用分析法,两边平方分析证明.11.点(,)是直线y=nx与双曲线y=的一个交点解析:观察三个命题易知,命题n中交点坐标为(,),直线方程为y=nx,双曲线方程为y=.12. 解析:由等差数列、等比数列的性质易知,等差数列、等比数列在运算上具有相似性,等差与等比类比是和与积、倍与乘方、商与开方的类比.由此猜想.三、解答题13.证明:假设2,3,5为同一等差数列的三项,则存在整数满足①n⨯②⨯得352两边平方得32522152()2.左边为无理数,右边为有理数,有理数≠无理数,所以假设不正确,即2,3,5不能为同一等差数列的三项.14.证明:222cos2a c bBac+-=≥222ac bac-=212bac-=211()b bb ac a c-=-++,,,a b c Q 为△三边,a c ∴+ b >,1ba c∴-+ 0>,cos B ∴ 0>,∴B 90<o . 15.解:(1)从第年初到第年初,鱼群的繁殖量为,被捕捞量为,死亡量为2,n cx 21+,(*)n n n n nx x ax bx cx n +-=--∈N 因此,1+(1),.n n n x x a b cx n +=-+-∈N 即 (2)若每年年初鱼群总量保持不变,则恒等于1,∈+N , 从而由(*)式得()0,,n n x a b cx n --∈N 恒等于+ 110.a ba b cx x c---==所以,即 因为1>0,所以. 猜测:当且仅当,且cba x -=1时,每年年初鱼群的总量保持不变. 16.证明:(1)(2)()2sin(2)sin f x k f x x k x k x x +π-=+π+π-()2sin sin x k x x x +π-()=2sin ().π∈k x k Z(2)()sin cos f x x x x '=+,则0000()sin cos 0f x x x x '=+=, ①又2200sin cos 1x x +=, ②由①②知20sin x 20201x x +,所以2422220000002200[()]sin .11x x f x x x x x x ==•=++ 17.解:3322131311-=⨯+⨯+;3323232321-=⨯+⨯+; 3324333331-=⨯+⨯+;L ;332(1)33 1.n n n n +-=⨯+⨯+将以上各式分别相加得332222(1)13(123)3(123)n n n n +-=⨯+++++⨯+++++L L , 所以2222313(1)123(1)132n n n n n +⎡⎤++++=+---⎢⎥⎣⎦L 1(1)(21).6n n n =++ 18.证明:设(),(0,).1xf x x x =∈+∞+设12,x x 是(0,)+∞上的任意两个实数,且210x x >>,1212121212()().11(1)(1)x x x x f x f x x x x x --=-=++++因为210x x >>,所以12()()f x f x <. 所以()1xf x x=+在(0,)+∞上是增函数.由0a b c +>>知()()f a b f c +>,即11a b ca b c+>+++.。
(常考题)北师大版高中数学选修1-2第三章《推理与证明》测试卷(含答案解析)
一、选择题1.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式11+11+1+...中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=,求得x ==( )A .2B .1C .2-D .1-2.下列推理过程不是演绎推理的是( )①一切奇数都不能被2整除,2019是奇数,2019不能被2整除; ②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方; ③在数列{}n a 中,()111,312n n a a a n -==-≥,由此归纳出{}n a 的通项公式; ④由“三角形内角和为180︒”得到结论:直角三角形内角和为180︒. A .①②B .③④C .②③D .②④3.某扶贫调研团根据要求从甲、乙、丙、丁、戊五个镇选择调研地点:①若去甲镇,则必须去乙镇;②丁、戊两镇至少去一镇;③乙、丙两镇只去一镇;④丙、丁两镇都去或都不去;⑤若去戊镇,则甲、丁两镇也必须去.该调研团至多去了( ) A .丙、丁两镇B .甲、乙两镇C .乙、丁两镇D .甲、丙两镇4.三角形的面积为1()2S a b c r =++⋅,其中,,a b c 为三角形的边长,r 为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )A .13V abc = B .13V Sh = C .1()3V ab bc ca h =++,(h 为四面体的高) D .()123413V S S S S r =+++,(1234,,,S S S S 分别为四面体的四个面的面积,r 为四面体内切球的半径)5.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .656.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数,则下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13787.若数列{}n a 是等差数列,则数列12nn a a a b n++⋯+=也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且n d 也是等比数列,则n d 的表达式应为( ) A .12nn c c c d n++⋯+=B .12nn c c c d n⋅⋅⋯⋅=C .12n n n nn n c c c d n++⋯+=D .12n n n d c c c =⋅⋅⋯⋅8.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证23b ac a -<”索的因应是( )A .0a b ->B .0a c ->C .()>0)(a b a c --D .()<0)(a b a c --9.观察下列各式:553125=,6515625=,7578125=,…,则20195的末四位数字为( ) A .3125B .5625C .0625D .812510.已知正三角形ABC 的边长是a ,若D 是ABC 内任意一点,那么D 到三角形三边的距离之和是定值32a .若把该结论推广到空间,则有:在棱长都等于a 的正四面体ABCD 中,若O 是正四面体内任意一点,那么O 到正四面体各面的距离之和等于( )A 3B 6C 6aD 3 11.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的 A .甲辰年B .乙巳年C .丙午年D .丁未年12.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲B .乙C .丙D .无法预测二、填空题13.已知函数2()42(0)f x x x x =++≥,若1()()f x f x =,1()(())n n f x f f x +=,*n N ∈,则2020()f x 在[0,1]上的最大值为____________.14.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”则乙的卡片上的数字是______.15.将正偶数按下表排列成5列,每行有4个偶数的蛇形数列(规律如表中所示),则数字2018所在的行数与列数分别是_______________.16.已知直线l 与圆222x y r +=交于A 、B 两点,P 线段AB 的中点,则1AB OP k k ⋅=-.试用类比思想,对椭圆写出结论:______. 17.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示). 18.给出下列等式:222233311=1;122231411+=1;122232323141511++=1;12223234242⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯ 由以上等式可推出一个一般结论:对于*n N ∈,()2314121++=12223212n n n n +⨯⨯+⨯⨯⨯+__________________.19.某种型号的机器人组装由,,,A B C D 四道工序,完成它们需要的时间依次为5,3,3x ,小时,已知完成这四道工序先后顺序及相互关系是:①,A B 可以同时开工;②只有在B 完成后C 才能开工;③只有在,A C 都完成后D 才能开工.若完成该型号的机器人组装总时间为9小时,则完成工序B 需要的时间的最大值为__________. 20.在“数学发展史”知识测验后,甲、乙、丙三人对成绩进行预测: 甲说:我的成绩比乙高; 乙说:丙的成绩比我和甲的都高; 丙说:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.三、解答题21.(1)设a ,b ,()0,1c ∈,用反证法求证:下列三个关于x 的方程210ax x b ++-=,210bx x c ++-=,210cx x a ++-=中至少有一个有实数根. (2)已知0b a >>,且01ab <≤,用分析法求证:3311113⎛⎫-≥- ⎪⎝⎭a b a b . 22.(1)求证:cot tan 2cot 2ααα=+(2)请利用(1)的结论证明:cot tan 2tan24cot 4αααα=++(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明: (4)化简:tan52tan104tan208tan50︒+︒+︒+︒. 23.已知i 为虚数单位,观察下列各等式:()()cos1sin1cos2sin 2cos3sin3i i i ++=+; ()()cos3sin3cos4sin 4cos7sin7i i i ++=+;()()cos5sin5cos6sin6cos11sin11i i i ++=+;()()cos7sin7cos8sin8cos15sin15i i i ++=+. 记()cos sin ,f i R αααα=+∈.(1)根据以上规律,试猜想()()(),,f f f αβαβ+成立的等式,并加以证明;(2)计算6122i ⎛⎫+⎪ ⎪⎝⎭. 24.已知函数()2x x a a f x -+=,()2x xa a g x --=(其中0a >,且1a ≠),(1)若()()()()()1221f g f g g k ⋅+⋅=,求实数k 的值;(2)能否从(1)的结论中获得启示,猜想出一个一般性的结论并证明你的猜想. 25.(1)已知正数,a b 满足2a b ab +≤,求证:29a b +≥;(2)求证:1,3不可能是一个等差数列中的三项. 26.求证:一个三角形中,最大的角不小于60o..【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据类比,列方程求解结果. 【详解】2x x =∴=,选A. 【点睛】本题考查利用类比方法列方程求解数学问题,考查基本分析求解能力,属基础题.2.C解析:C 【解析】分析:①,④具有明显的大前提、小前提、结论,属于典型的演绎推理,②选项属于类比推理;③选项属于归纳推理;只有①④符合题意.详解:①,④,具有明显的大前提、小前提、结论,属于典型的演绎推理;②由“正方形面积为边长的平方”得到结论:正方形的体积为棱长的立方,属于类比推理;③在数列{}n a 中,()111,312n n aa a n -==-≥,由此归纳出{}n a 的通项公式,属于归纳推理,即不是演绎推理的是②③,故选C.点睛:本题主要考查归纳推理、类比推理、演绎推理的定义与性质,属于简单题. 归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理,根据三种推理的定义可知,归纳推理与类比推理都是合情推理,不等当作结论与定理应用,如果应用必须加以证明.3.A解析:A【分析】根据条件假设去甲镇,则可找到矛盾,排除两个答案,再假设不去甲镇,去乙镇同样可得到矛盾,进而可得到答案【详解】解:假设去甲镇,则必去乙镇,但去乙镇则不能去丙镇,不去丙镇则也不能去丁镇,不去丁镇则也不能去戊镇,而丁、戊都不去则不符合条件.矛盾,则可淘汰选项B、D,若不去甲镇去乙镇,同样无法完成参观;故甲、乙两镇都不能去,则一定不能去戊镇,∴能去的地方只有丙、丁两镇.故选:A.【点睛】本题考查学生合情推理的能力,也运用假设法是关键,属于中档题,4.D解析:D【分析】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,根据体积公式得到答案.【详解】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,∴V13=(S1+S2+S3+S4)r.故选:D.【点睛】本题考查了类比推理,意在考查学生的空间想象能力和推断能力.5.B解析:B【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n组最后一个数是2+3+4+…..+n+1=()32n n+,然后再验证求解.【详解】观察规律,第一组最后一个数是2=2,第二组最后一个数是5=2+3,第三组最后一个数是9=2+3+4,……,依此,第n组最后一个数是2+3+4+…..+n+1=()32n n+.当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.6.C解析:C 【分析】记三角形数构成的数列为{}n a ,计算可得()12n n n a +=;易知2n b n =.据此确定复合题意的选项即可. 【详解】记三角形数构成的数列为{}n a ,则11a =,2312a ==+,36123a ==++,4101234a ==+++,…, 易得通项公式为()11232n n n a n +=++++=;同理可得正方形数构成的数列{}n b 的通项公式为2n b n =.将四个选项中的数字分别代入上述两个通项公式,使得n 都为正整数的只有249501225352⨯==. 故选C . 【点睛】本题主要考查归纳推理的方法,数列求和的方法等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【分析】利用等差数列的求和公式,等比数列的通项公式,即可得到结论. 【详解】 解:数列{}n a 是等差数列,则()12112n n na a a a d n -++⋯++=,∴数列12112n n a a a n b a d n ++⋯+-==+也为等差数列正项数列{}n c 是等比数列,设首项为1c ,公比为q , 则()112121111n n nn n c c c c c q c q c q--⋅⋅⋯⋅⋅⋅⋯==⋅∴121n n d c q-=∴n d =故选:D . 【点睛】本题考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.8.C解析:C 【分析】根据分析法的步骤以及不等式的性质求解即可. 【详解】由a >b >c ,且a +b +c =0得b =-a -c ,a >0,c <0.< 只要证22()3a c ac a ---< 即证2220a ac a c -+-> 即证()()()0a a c a c a c -++-> 即证()()0a a c b a c ---> 即证()()0a c a b -->故求证”索的因应是()()0a c a b -->. 故选:C . 【点睛】本题主要考查了分析法,属于中档题.9.D解析:D 【解析】 【分析】先求895,5,寻找周期性规律,结合周期可求. 【详解】895390625,51953125,==可以看出后四位呈周期出现,且周期为4,201950443=⨯+,所以20195的末四位数字为8125,故选D. 【点睛】本题主要考查归纳推理,一般是利用所给项的特点推测目标项的特点,注意规律的总结.10.B解析:B 【分析】将正四面体的体积分为O 为顶点,各个面为底面的三棱锥体积之和,计算得到答案. 【详解】棱长都等于a 的正四面体ABCD :每个面面积为:221sin 23S a π==正四面体的高为:3a体积为:23134312V a a a =⨯⨯= 正四面体的体积分为O 为顶点,各个面为底面的三棱锥体积之和32123412341()12343V a a h h h h h h h h ==⨯+++⇒+++= 故答案选B 【点睛】本题考查了体积的计算,将正四面体的体积分为O 为顶点,各个面为底面的三棱锥体积之和是解题的关键.11.C解析:C 【分析】按照题中规则依次从2019年列举到2026年,可得出答案. 【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选C . 【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题.12.A解析:A 【分析】若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次. 【详解】若甲的预测正确,乙、丙的预测错误,则丙是第一名,甲不是第三名,则甲是第二名,乙是第三名,矛盾!若乙的预测正确,甲、丙的预测错误,则乙是第三名,甲的预测错误,那么甲是第三名,矛盾!若丙的预测正确,则甲、乙的预测错误,则甲是第三名,乙不是第三名,丙是第一名,则乙是第二名.因此,第三名是甲,故选A . 【点睛】本题考查合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考查推理分析能力,属于中等题.二、填空题13.【分析】先求出且再求出且且依次类推即得解【详解】由题得函数在单调递增且所以在单调递增且所以且同理且同理且依次类推且故答案为:【点睛】本题主要考查二次函数的图象和性质复合函数的单调性和函数最值的求法考 解析:2020232-【分析】先求出21max [()]32f x =-,且1()0f x >,再求出222max [()]32f x =-,且2()0f x >,323max [()]32f x =-,且3()0f x >,依次类推即得解.【详解】由题得函数2()42f x x x =++在[0,)+∞单调递增,且()0f x >,所以1()f x 在[0,1]单调递增,且1()0f x >,所以21max [()]142732f x =++==-,且1()0f x >,同理222max 1max [()][(())](7)7932f x f f x f ====-,且2()0f x >, 同理323max 2max [()][(())](79)32f x f f x f ===-,且3()0f x >, 依次类推,202022020max 2019max [()][(())]32f x f f x ==-,且2020()0f x >.故答案为:2020232-.【点睛】本题主要考查二次函数的图象和性质、复合函数的单调性和函数最值的求法,考查归纳推理能力,意在考查学生对这些知识的理解掌握水平.14.2和3【分析】由题意分析可知甲的卡片上的数字为1和3乙的卡片上的数字为2和3丙的卡片上的数字为1和2【详解】由题意可知丙不拿2和3若丙拿1和2则乙拿2和3甲拿1和3满足题意;若丙拿1和3则乙拿2和3解析:2和3 【分析】由题意分析可知甲的卡片上的数字为1和3,乙的卡片上的数字为2和3,丙的卡片上的数字为1和2. 【详解】由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故乙的卡片上的数字是2和3.故答案为:2和3 【点睛】本题主要考查推理,考查学生逻辑思维能力,属于基础题.15.行列【分析】设位于第行第列观察表格中数据的规律可得出由此可求出的值再观察奇数行和偶数行最小数的排列可得出的值由此可得出结果【详解】设位于第行第列由表格中的数据可知第行最大的数为则解得由于第行最大的数解析:253行2列 【分析】设2018位于第m 行第n 列,观察表格中数据的规律,可得出()8120188m m -<≤,由此可求出m 的值,再观察奇数行和偶数行最小数的排列,可得出n 的值,由此可得出结果. 【详解】设2018位于第m 行第n 列(),,15m n N n *∈≤≤,由表格中的数据可知,第()k k N *∈行最大的数为8k ,则()8120188m m -<≤,解得253m =,由于第252行最大的数为25282016⨯=,所以,2018是表格中第253行最小的数, 由表格中的规律可知,奇数行最小的数放在第2列,那么2n =. 因此,2018位于表格中第253行第2列. 故答案为:253行2列. 【点睛】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.16.若椭圆与直线交于两点是线段中点则【分析】由题意可知椭圆与直线交于两点是线段中点再根据点差法求解写出结论即可【详解】由类比思想可知椭圆与直线交于两点是线段中点设点中点则即将两点代入椭圆中上下两式相减得解析:若椭圆22221x y a b +=与直线l 交于A 、B 两点,P 是线段AB 中点,则22AB OPb k k a=-【分析】由题意可知,椭圆22221x y a b+=与直线l 交于A 、B 两点,P 是线段AB 中点,再根据点差法,求解22AB OP b k k a=-.写出结论即可.【详解】由类比思想,可知椭圆22221x y a b+=与直线l 交于A 、B 两点,P 是线段AB 中点.设点11(,)A x y ,22(,)B x y ,12()x x ≠,中点00(,)P x y 则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩即000000OP y y k x x -==- 将11(,)A x y ,22(,)B x y 两点代入椭圆22221x y a b +=中,22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,上下两式相减得 22221212220x x y y a b--+=,即1212121222()()()()y y y y x x x x b a -+-+=- 所以22201212222121201···ABOPx y y x x b b b k x x a y y a y a k -+==-=-=--+ 即22AB OPb k k a=-故答案为:若椭圆22221x y a b +=与直线l 交于A 、B 两点,P 是线段AB 中点,则22AB OP b k k a=-.【点睛】本题考查类比推理,以及中点弦问题,属于中档题.17.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.18.【分析】由已知中的三个式子我们分析等式左边每一个累加项的变化趋势可以归纳出其通项为分析等式右边的式子发现每一个式了均为两项差的形式且被减数均为1减数为由此即可得到结论【详解】由已知中的等式:…由以上 解析:11(1)2nn -+【分析】由已知中的三个式子,我们分析等式左边每一个累加项的变化趋势,可以归纳出其通项为()2112n n n n +⨯+,分析等式右边的式子,发现每一个式了均为两项差的形式,且被减数均为1,减数为()112n n +,由此即可得到结论.【详解】由已知中的等式:222233311=1;122231411+=1;122232323141511++=1;12223234242⨯-⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯…由以上等式我们可以推出一个一般结论:对于()()*2314121111222321212n n n n N n n n +∈⨯+⨯+⋯+⨯=-⨯⨯++, .故答案为()1112n n -+.【点睛】本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).19.3【解析】分析:这是一个简单的合情推理问题我们可以根据四道工序的先后顺序及相互关系计算出完成整个工序需要的最少工作时间再结合该工程总时数为9小时构造方程易得到完成工序需要的天数的最大值详解:因为完成解析:3 【解析】分析:这是一个简单的合情推理问题,我们可以根据四道工序的先后顺序及相互关系,计算出完成整个工序需要的最少工作时间,再结合该工程总时数为9小时构造方程,易得到完成工序B 需要的天数x 的最大值. 详解:因为B 完成后,C 才可以开工,C 完成后,D 才可以开工,完成B C D 、、需用时间依次为,3,3x 小时, 且A ,B 可以同时开工, 该工程总时数为9小时, 则339max x ++= , 所以3max x := ,点睛:本题考查的知识要点:这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果,属于基础题型.20.甲【分析】本题可从三人预测中互相关联的乙丙两人的预测入手因为只有一个人预测正确而乙对则丙必对丙对乙很有可能对假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙丙错误即可求得答案【详解】由题意可把解析:甲. 【分析】本题可从三人预测中互相关联的乙、丙两人的预测入手,因为只有一个人预测正确,而乙对则丙必对,丙对乙很有可能对,假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙、丙错误,即可求得答案. 【详解】由题意,可把三人的预测简写如下: 甲:甲>乙. 乙:丙>乙且丙>甲. 丙:丙>乙.只有一个人预测正确,∴分析三人的预测,可知:乙、丙的预测不正确.如果乙预测正确,则丙预测正确,不符合题意. 如果丙预测正确,假设甲、乙预测不正确, 则有丙>乙,乙>甲,乙预测不正确,而丙>乙正确, 只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾,不符合题意. ∴只有甲预测正确,乙、丙预测不正确,甲>乙,乙>丙. ∴三人中预测正确的是:甲.故答案为:甲. 【点睛】本题主要考查了合情推理,解题关键是掌握合情推理解题方法和结合实际情况具体分析问题,考查了分析能力和推理能力,属于难题.三、解答题21.(1)证明见解析;(2)证明见解析. 【分析】(1)假设这三个方程都没有实根,由三个判别式均小于0推导出矛盾的结论. (2)利用不等式的性质,根据所要证的不等式寻找使它成立的充分条件. 【详解】证明:(1)假设这三个方程都没有实根,则()()()123141014101410a b b c c a ⎧∆=--<⎪∆=--<⎨⎪∆=--<⎩,即()()()114114114a b b c c a ⎧->⎪⎪⎪->⎨⎪⎪->⎪⎩,三式相乘并整理,得()()()111164a ab bc c --->⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,① 因为01a <<,所以()211110,244a a a ⎛⎫⎛⎤-=--+∈ ⎪ ⎥⎝⎭⎝⎦. 同理()110,4b b ⎛⎤-∈ ⎥⎝⎦,()110,4c c ⎛⎤-∈ ⎥⎝⎦,所以()()()111164a ab bc c ---≤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,② 显然②与①矛盾,所以假设不成立,从而原结论成立. (2)因为0b a >>,所以110->a b, 要证3311113⎛⎫-≥- ⎪⎝⎭a b a b ,只需证2211111113⎛⎫⎛⎫⎛⎫-++≥- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a b a ab b a b , 只需证221113++≥a ab b, 因为01ab <≤,所以221112133++≥+=≥a ab b ab ab ab,即上式成立, 则可得证3311113⎛⎫-≥- ⎪⎝⎭a b a b . 【点睛】关键点点睛:本题考查反证法和分析法.它们都是一种间接证明方法,在一个命题不容易证明,可以从它的反面入手,假设它的反面成立,并把假设作为条件进行推理,可能推导出与已知条件、已知定义、定理、公理矛盾的结论,也可能推导出相互矛盾的结论,从而说明假设是错误的,,肯定原命题成立,这就是反证法.分析法是从结论出发寻找结论成立的充分条件,称为执果索因.最后找到一个明显正确的条件,从而说明命题是正确的. 22.(1)证明见解析,(2)证明见解析,(3)2211*cot tan 2tan 22tan 22tan 22cot 2,n n n n n N αααααα--=+++++∈,证明见解析(4)cot 5【分析】(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为tan cot 2cot 2ααα=-,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果; (4)由(3)的结果可得. 【详解】(1)证明:因为2tan 2cot 2tan tan 2αααα+=+21tan tan 22tan ααα-=+⨯1tan tan tan ααα=+- cot α=,所以cot tan 2cot 2ααα=+ (2)因为cot tan 2cot 2ααα=+,所以tan 2tan 24cot 4ααα++cot 2cot 2αα=-+2(cot 22cot 4)4cot 4)ααα-+cot α=,所以cot tan 2tan24cot 4αααα=++ (3)一般地:2211*cot tan 2tan 22tan 22tan 22cot 2,n n n n n N αααααα--=+++++∈,证明:因为cot tan 2cot 2,ααα=+cot 2tan 22cot 4,ααα=+所以22cot tan 2tan 24cot 4tan 2tan 22cot 2ααααααα=++=++, 以此类推得2211*cot tan 2tan 22tan 22tan 22cot 2,n n n n n N αααααα--=+++++∈(4)tan52tan104tan208tan50︒+︒+︒+︒2233tan 52tan(25)2tan(25)2cot(25)=+⨯+⨯+⨯ cot 5=.【点睛】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题. 23.(1) 猜想()()()f f f αβαβ=+,证明见解析;(2)-1【分析】 (1)将()(),f f αβ和()f αβ+之间的关系进行验证,总结出规律,即为猜想,作出证明即可;(2)利用(1)推出的结论,代入求解,即可得到答案. 【详解】(1)猜想()()()ff f αβαβ=+,证明:()()()()cos sin cos sin f f i i αβααββ=++ ()()cos cos sin sin sin cos cos sin i αβαβαβαβ=-++()()()cos sin i f αβαβαβ=+++=+;(2)因为()()()f f f αβαβ=+,所以()()()()()cosn isinn nff f f f n ααααααα===+,∴661cos sin 2266i i ππ⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭cos sin 1i ππ=+=-. 【点睛】本题主要考查了归纳推理的应用,其中根据题设中各式子的结构,合理归纳是解答的关键,着重考查了推理与计算能力,属于基础题.24.(1)3k =(2)猜想:()=()()()()g x y f x g y f y g x +⋅+⋅;证明见解析 【分析】(1)分别代入并化简,可得()()()()()12213f g f g g ⋅+⋅=,即可求出答案;(2)猜想:()=()()()()g x y f x g y f y g x +⋅+⋅;分别代入表达式,化简并整理即可证明. 【详解】解:(1)122221(1)(2)(2)(1)2222a a a a a a a a f g f g ----+-+-⋅+⋅=⨯+⨯31331333(3)442a a a a a a a a a a g ------+--+--=+==.因为函数12x y a =与12x y a -=-具有相同的单调性,且都是单调函数,所以()g x 是单调函数.3k ∴=.(2)由(3)(12)=(1)(2)(2)(1)g g f g f g +⋅+⋅=, 猜想:()=()()()()g x y f x g y f y g x +⋅+⋅.证明: ()()()()2222x x y y y y x xa a a a a a a a f x g y f y g x ----+-+-⋅+⋅=⨯+⨯()()44x y y x x y x y x y y x x y x y a a a a a a a a +---++---++---+-=+()()2x y x y a a g x y +-+-==+.所以()=()()()()g x y f x g y f y g x +⋅+⋅.【点睛】本题考查了归纳推理,考查了学生的推理能力,属于中档题.25.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)用a 表示出b ,利用基本不等式得出最小值.(2)使用反证法,假设1,,3是一个公差为d 的等差数列的三项,导出矛盾即可证明. 试题(1)∵2a b ab +≤,∴()12a b a -≥,∵,0a b >,∴1a >, ∴21a b a ≥-,∴44215911a ab a a a a +≥+=-++≥--; (2)1,31rd sd =+=+(,r s 为非零整数),r s=, 而上式左边为无理数,右边为有理数,矛盾. 所以假设错误,原命题成立. 26.见解析. 【解析】试题分析:利用反证法证明命题. 试题证明:假设ABC ∆的三个内角中最大的角小于60°,即60,60,60A B C <︒<︒<︒, 则606060180A B C ++<︒+︒+︒=︒,这与三角形内角和为180°矛盾, 所以假设错误,原命题成立.。
高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2
1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ABC 分为四个小的三棱锥,即O ABC ,O PAB ,O PAC ,O PBC ,而四个小三棱锥的底面积分别是四面体P ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P A ′B ′C ′中,我们猜想,三棱锥P A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。
2019—2020年新课标北师大版高中数学选修1-2《推理与证明》同步练习及答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-2第三章 推理与证明 同步练习(一)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共27分)一、选择题(本大题共9小题,每小题3分,共27分) 1、如果数列{}n a 是等差数列,则( ) A 、1845a a a a +<+ B 、1845a a a a +=+C 、1845a a a a +>+D 、1845a a a a =2、下面使用类比推理正确的是( ) A 、“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B 、“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅” C 、“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D 、“n n a a b =n (b )” 类推出“n n a a b +=+n(b )”3、有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A 、大前提错误 B 、小前提错误 C 、推理形式错误 D 、非以上错误4、设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2007()f x = ( ) A 、sin x B 、-sin x C 、cos x D 、-cos x5、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A 、29 B 、 254 C 、602 D 、20046、下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+∙+.其中不成立的有 ( )A 、1个B 、2个C 、3个D 、4个7、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A 、大前提错误B 、小前提错误C 、推理形式错误D 、非以上错误8、已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为( ) A 、4()22x f x =+ B 、2()1f x x =+ C 、1()1f x x =+ D 、2()21f x x =+9、已知33q p +=2,关于p +q 的取值范围的说法正确的是( ) A 、一定不大于2 B 、一定不大于22C 、一定不小于22D 、一定不小于2第Ⅱ卷(非选择题 共73分)二、填空题(本大题共5小题,每小题4分,共20分) 10、用演绎法证明y=x 2是增函数时的大前提是。
最新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)
一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .93.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+ D .(cos sin )x e x x --5.下列类比推理正确的是( )A .把()a b c +与x y a +类比,则有x y x y a a a +=+B .把()a a b +与()a a b ⋅+类比,则有()2a ab a a b ⋅+=+⋅C .把()nabc 与)n x y z (++类比,则有)n n n n x y z x y z ++=++( D .把()ab c 与()a b c ⋅⋅类比,则有()()a b c c a b ⋅⋅=⋅⋅6.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为A .4B .6C .8D .327.下列四个类比中,正确的个数为(1)若一个偶函数在R 上可导,则该函数的导函数为奇函数。
(常考题)北师大版高中数学选修1-2第三章《推理与证明》测试题(包含答案解析)(5)
一、选择题1.以BC 为斜边的Rt ABC 中,222BC AB AC =+,由类比推理,在三棱锥P ABC-中,若PA 、PB 、PC 两两垂直,PA a =,PB b =,PC c =,1BPC S s =△,2CPA S s =△,3APB S s =△,则ABCS=( )A BC D 2.观察下列各式:177=,2749=,37343=,,则20207的末位数字为( )A .7B .9C .3D .13.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数t ,如果t 是偶数,就将它减半(即2t);如果t 是奇数,则将它乘3加1(即31t +),不断重复这样的运算,经过有限步后,一定可以得到1.猜想的数列形式为:0a 为正整数,当*n N ∈时,当1n a -为偶数时12n n a a -=,当1n a -为奇数时131n n a a -=+,则数列{}n a 中必存在值为1的项.若51a =,则0a 的所有不同值的个数为( ) A .2B .3C .5D .84.观察下列各式:211=,22343++=,2345675++++=,2456789+107+++++=,,可以得出的一般结论是( )A .()()()21232n n n n n ++++++-=B .()()()21231n n n n n ++++++-=C .()()()()2123221n n n n n ++++++-=- D .()()()()2123121n n n n n ++++++-=-5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 6.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面三角形的性质推测空间四面体的性质7.观察下列各式:2749=,37343=,472401=,…,则10097的末两位数字为( ) A .49B .43C .07D .018.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.下面使用类比推理正确的是( )A .直线a ∥b ,b ∥c ,则a ∥c ,类推出:向量a b b c ,,则a cB .同一平面内,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥b .类推出:空间中,直线a ,b ,c ,若a ⊥c ,b ⊥c ,则a ∥bC .实数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4b .类推出:复数a ,b ,若方程x 2+ax +b =0有实数根,则a 2≥4bD .以点(0,0)为圆心,r 为半径的圆的方程为x 2+y 2=r 2.类推出:以点(0,0,0)为球心,r 为半径的球的方程为x 2+y 2+z 2=r 2 10.设x 、y 、0z >,1a x y =+,1b y z =+,1c z x=+,则a 、b 、c 三数( ) A .都小于2 B .至少有一个不大于2 C .都大于2D .至少有一个不小于211.有6名选手参加演讲比赛,观众甲猜测:1、2、6号选手中的一位获得第一名;观众乙猜测:4、5、6号选手都不可能获得第一名;观众丙猜测:4号或5号选手得第一名;观众丁猜测:3号选手不可能得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) A .甲B .乙C .丙D .丁12.2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体, 称之为“扭曲棱柱”. 对于空间中的凸多面体, 数学家欧拉发现了它的顶点数, 棱数与面数存在一定的数量关系. 凸多面体 顶点数 棱数 面数 三棱柱 6 9 5 四棱柱 8 12 6 五棱锥6106六棱锥 712 712个顶点,8个面的扭曲棱柱的棱数是( ) A .14B .16C .18D .20二、填空题13.已知2336122⎛⎫+= ⎪⎝⎭,2333121232⎛⎫++= ⎪⎝⎭,233332012342⎛⎫+++= ⎪⎝⎭,…,3333312344356n +++++=,则n =____________.14.等差数列{}n a 的公差为d ,前n 项和为S n ,对于常数m ∈N *,则数列 {}(1)-+m n mn S S 为等差数列,公差为m 2d.类似地,等比数列{}n b 的公比为q ,前n 项积为T n ,则数列(1)m n mn T T +⎧⎫⎨⎬⎩⎭为等比数列,公比为____. 15.已知函数2()42(0)f x x x x =++≥,若1()()f x f x =,1()(())n n f x f f x +=,*n N ∈,则2020()f x 在[0,1]上的最大值为____________.16.观察下列数表:如此继续下去,则此表最后一行的数为_______(用数字作答).17.有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔,今有甲,乙,丙,丁四位老师在猜谁将获得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜是1号,2号,4号中的一个;丁猜2号,3号,4号都不可能,若以上四位老师只有一位猜对,则猜对者是___________(填甲、乙、丙、丁) 18.观察下列式子:2222221311511171,1,1,,222332344+<++<+++<根据以上式子可以猜想:2221111232019++++<__________. 19.语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。
北师大版高中数学选修1-2第三章《推理与证明》测试(含答案解析)
一、选择题1.观察下列各式:211=,22343++=,2345675++++=,2456789+107+++++=,,可以得出的一般结论是( )A .()()()21232n n n n n ++++++-=B .()()()21231n n n n n ++++++-=C .()()()()2123221n n n n n ++++++-=- D .()()()()2123121n n n n n ++++++-=-2.将正奇数数列1,3,5,7,9,⋅⋅⋅依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),⋅⋅⋅,称(1,3)为第1组,(5,7,9)为第2组,依次类推,则原数列中的2021位于分组序列中( ) A .第404组B .第405组C .第808组D .第809组3.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学4.甲、乙、丙、丁四位同学一起去向老师询问考试成绩,老师说:你们4人中有2位优秀,2位良好,我给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看完后甲对大家说:我不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道4人的成绩 C .丁可以知道自己的成绩D .丁可以知道4人的成绩5.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,则此数列前135项的和为( )A .18253-B .18252-C .17253-D .17252-6.甲、乙、丙、丁四位同学一起去老师处问他们的成绩.老师说:“你们四人中有2位优秀,2位良好,我现在给丙看甲、乙的成绩,给甲看乙的成绩,给丁看丙的成绩.”看后丙对大家说:“我还是不知道我的成绩.”根据以上信息,则下列结论正确的是( ) A .甲可以知道四人的成绩 B .丁可以知道自己的成绩 C .甲、丙可以知道对方的成绩 D .乙、丁可以知道自己的成绩7.将正偶数排成如图所示的三角形数阵,其中第i 行(从上向下)第j 个(从左向右)的数表示为ij a (),i j N*∈,例如3210a=.若2020ij a =,则i j -( )A .21B .22C .23D .258.已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2. 表1 田径综合赛项目及积分规则 项目积分规则100米跑 以13秒得60分为标准,每少0.1秒加5分,每多0.1秒扣5分跳高以1.2米得60分为标准,每多0.02米加2分,每少0.02米扣2分掷实心球 以11.5米得60分为标准,每多0.1米加5分,每少0.1米扣5分 姓名 100米跑(秒)跳高(米)掷实心球(米)甲 13.3 1.24 11.8 乙 12.61.3 11.4 丙 12.91.26 11.7丁13.11.2211.6A .甲B .乙C .丙D .丁9.“四边形是矩形,四边形的对角线相等”补充以上推理的大前提是( ) A .正方形都是对角线相等的四边形 B .矩形都是对角线相等的四边形 C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形10.对于各数互不相等的正数数组(i 1,i 2,…,i n )(n 是不小于2的正整数),如果在p <q 时有i p <i q ,则称“i p 与i q ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组(a 1,a 2,a 3,a 4,a 5)的“顺序数”是4,则(a 5,a 4,a 3,a 2,a 1)的“顺序数”是( ) A .7B .6C .5D .411.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9612.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的 A .甲辰年B .乙巳年C .丙午年D .丁未年二、填空题13.为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球; 乙:我不选太极拳和游泳;丙:我的要求和乙一样; 丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是___________. 14.已知集合22{|,}A m m x y x y ==-∈Z 、,将A 中的正整数从小到大排列为:1a ,2a ,3a ,….若2015n a =,则正整数n =________.15.已知等差数列{}()*n a n N∈中,若10100a=,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N∈中,若1001b=,则与此相应的等式_________________恒成立.16.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).17.集合{,,}{1,2,3}a b c =,现有甲、乙、丙三人分别对a ,b ,c 的值给出了预测,甲说3a ≠,乙说3b =,丙说1c ≠.已知三人中有且只有一个人预测正确,那么10100a b c __________.18.在三角形内,我们将三条边的中线的交点称为三角形的重心,且重心到任一顶点的距离是到对边中点距离的两倍类比上述结论:在三棱锥中,我们将顶点与对面重心的连线段称为三棱锥的“中线”,将三棱锥四条中线的交点称为它的“重心”,则棱锥重心到顶点的距离是到对面重心距离的______倍.19.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的逻辑排名比乙同学的逻辑排名更靠前②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 则所有正确结论的序号是_________.20.某电影院共有(3000)n n ≤个座位,某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人,1010人,2019人(同一所学校的学生既可看上午场,又可看下午场,但每人只能看一场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、下午在这个座位上坐的是同一所学校的学生,那么n 的可能取值有__________个.三、解答题21.证明:(1610214>(2)如果,0a b >,则lg lg lg22a b a b++≥. 22.(1)设(),0,a b ∈+∞,ab ,(),0,x y ∈+∞,求证:()222a b a bx y x y++≥+; (2)利用(1)的结论,求函数()2910,122f x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪-⎝⎭⎝⎭的最小值. 23.已知函数()3211333f x x x x =-+-. (1)计算()()02f f +、()()13f f -+、1322f f ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭的值; (2)结合(1)的结果,试从中归纳出函数()f x 的一般结论,并证明这个结论; (3)若实数0x 满足()()0ff x x =,求证:()00f x x=.24.将正整数排成如图的三角形数阵,记第n 行的n 个数之和为n a .(1)设*13521()n n S a a a a n N -=+++⋅⋅⋅+∈,计算2S ,3S ,4S 的值,并猜想n S 的表达式;(2)用数学归纳法证明(1)的猜想. 25.已知数列{}n a 满足112n na a +=-(n *∈N ),且10a =. (1)计算234,,a a a 的值,并猜想n a 的表达式; (2)请用数学归纳法证明你在(1)中的猜想. 26.(Ⅰ)5236>(Ⅱ)已知,a b 为正实数,请用反证法证明:1a b +与1b a+中至少有一个不小于2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【解析】 1=12, 2+3+4=32, 3+4+5+6+7=52, 4+5+6+7+8+9+10=72, …,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n ,则最后一项为3n-2 右边均为2n-1的平方 故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).2.B解析:B 【分析】求出2021为第1011个正奇数,再根据题中的规则分析组数的规律可得答案. 【详解】正奇数数列1,3,5,7,9...的通项公式为21,n a n =- 则2021为第1011个奇数,因为按两项、三项分组,故按5个一组分组是有202组,共20251010⨯=个数,共2022404⨯=组. 故原数列中的2021位于分组序列中第405组 故选:B. 【点睛】本题考查了与数列有关的推理问题,需要分析数字的总数,再分析组数.属中档题.3.D解析:D 【分析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案. 【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学 (另外武汉大学、清华大学、北京大学、复旦大学也满足). 故选:D . 【点睛】本题考查了逻辑推理,意在考查学生的推理能力.4.A解析:A 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案.【详解】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩,乙、丙必有一优一良,(若为两优,甲会知道自己的成绩,若为两良,甲也会知道自己的成绩);乙看到了丙的成绩,知道自己的成绩;丁看到甲、丁也为一优一良,丁知自己的成绩,故选A.【点睛】该题是一道逻辑推理的题目,掌握此类题目的推理方法是解题的关键.5.A解析:A【解析】【分析】利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【详解】n次二项式系数对应杨辉三角形的第n+1行,例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应杨辉三角形的第3行,令x=1,就可以求出该行的系数之和,第1行为20,第2行为21,第3行为22,以此类推即每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为S nn1212-==-2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成一个首项为1,公差为1的等差数列,则T n() n n12+ =,可得当n=15,在加上第16行的前15项时,所有项的个数和为135,由于最右侧为2,3,4,5,……,为首项是2公差为1的等差数列,则第16行的第16项为17,则杨辉三角形的前18项的和为S18=218﹣1,则此数列前135项的和为S18﹣35﹣17=218﹣53,故选:A.【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.6.B解析:B根据题意可逐句进行分析,已知四人中有2位优秀,2位良好,而丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好,接下来,由上一步的结论,当甲知道乙的成绩后,就可以知道自己的成绩,同理,当丁知道丙的成绩后,就可以知道自己的成绩,从而选出答案. 【详解】由丙知道甲和乙但不知道自己的成绩可知:甲和乙、丙和丁都只能一个是优秀,一个是良好;当甲知道乙的成绩后,就可以知道自己的成绩,但是甲不知道丙和丁的成绩; 当丁知道丙的成绩后,就可以知道自己的成绩,但是丁不知道甲和乙的成绩; 综上,只有B 选项符合. 故选:B . 【点睛】本题是一道逻辑推理题,此类题目的推理方法是综合法和分析法,逐条分析题目条件语句即可,属于中等题.7.D解析:D 【分析】分析题意,求出数表的前n 行的偶数的个数为()12n n +,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,即可判断出结果. 【详解】由题意知,这个数表的前n 行的偶数的个数为()12n n +, 所以,前n 行的最后一个偶数为()1n n +,当44n =时,44451980⨯=,当45n =时,45462070⨯=,所以20201980220ij a ==+⨯,即2020是第45行的第20个偶数,亦即2020这个数位于第45行第20个, 所以452025i j -=-=, 故选:D. 【点睛】本题考查了等差数列与推理能力与计算能力,属于基础题.8.B解析:B 【分析】由得分规则计算甲乙丙丁四人各项得分进行判断即可由题,甲各项得分为:100米跑60-15=45分;跳高60+4=64;掷实心球60+15=75;则总分为45+64+75=184乙各项得分为:100米跑60+20=80分;跳高60+10=70;掷实心球60-5=55,则总分为80+70+55=205丙各项得分为:100米跑60+5=65分;跳高60+6=66;掷实心球60+10=70,则总分为65+66+70=201丁各项得分为:100米跑60-5=55分;跳高60+2=62;掷实心球60+5=65,则总分为55+62+65=182,综上,乙得分最多故选:B【点睛】本题考查数据分析及决策问题,理解题意是关键,是基础题9.B解析:B【分析】根据题意,用三段论的形式分析即可得答案.【详解】根据题意,用演绎推理即三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形是矩形,得到四边形的对角线相等的结论,∴大前提一定是矩形都是对角线相等的四边形,故选B.【点睛】本题考查演绎推理的定义,关键是掌握演绎推理的形式,属于基础题.10.B解析:B【分析】根据题意,找出一个各数互不相等的正数数组(a1,a2,a3,a4,a5)的“顺序数”是4的数组,再根据此条件判断出(a5,a4,a3,a2,a1)的“顺序数”.【详解】根据题意,各数互不相等的正数数组(a1,a2,a3,a4,a5)的“顺序数”是4,假设a1<a2,a1<a3,a1<a4,a1<a5,且后一项都比前一项小,因此可以判断出a2>a3,a3>a4,a4>a5,则(a5,a4,a3,a2,a1)的“顺序数”是6,故选:B.【点睛】本题主要考查归纳推理、不等式的性质,考查了学生的理解能力及分析问题解决问题的能力,属于中档题.11.B解析:B【分析】利用题设中给出的公式进行化简,即可估算,得到答案. 【详解】由题设中的余弦公式得()()24620.20.20.20.2cos0.2112!4!6!2!nnn =-+-++-+0.040.00160.00006410.98224720=-+-+≈,故答案为B 【点睛】 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】按照题中规则依次从2019年列举到2026年,可得出答案. 【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选C .【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题.二、填空题13.丙【分析】列出表格用√表示已选的用×表示未选的课程逐个将每门课程所选的人确定下来即可得知选击剑的人是谁【详解】在如下图中用√表示该门课程被选择用×表示该门课程未选且每行每列只有一个勾 太极拳 足球解析:丙 【分析】列出表格,用√表示已选的,用×表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁. 【详解】在如下图中,用√表示该门课程被选择,用×表示该门课程未选,且每行每列只有一个勾,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙, 由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑.故答案为丙. 【点睛】本题考查合情推理,充分利用假设法去进行论证,考查推理论证能力,属于中等题.14.1511【分析】利用平方差公式分解后对分别研究即可得到集合中的所有正整数然后从小到大排列观察规律进而计数即可【详解】当时(表示奇数)当时(表示4个倍数)∴将中的正整数从小到大排列可得134578…(解析:1511 【分析】利用平方差公式分解后,对1x y -=,2x y -=分别研究,即可得到集合中的所有正整数,然后从小到大排列,观察规律,进而计数即可. 【详解】22()()m x y x y x y =-=-+,当1x y -=时,21m y =+(表示奇数),当2x y -=时,44m y =+(表示4个倍数),∴将A 中的正整数从小到大排列,可得1,3,4,5,7,8,…,(每4个正整数,保留3个),又201545033÷=,∴503321511n =⨯+=. 【点睛】本题考查分类讨论思想,观察归纳思想,属探索性试题,难度较大.15.【分析】根据等差数列的性质有等比数列的性质有类比即可得到结论【详解】已知等差数列中由等差数列的性质得等比数列且有等比数列的性质得所以类比等式可得故答案为:【点睛】本题考查等差数列和等比数列的性质结合 解析:()*12112199199,N n n n b b b b b b b n n --=<∈【分析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论. 【详解】已知等差数列{}()*n a n N∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得,1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N∈,且1001b=,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈.故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.16.或或【解析】【分析】观察找到规律由等差数列求和可得【详解】由观察找到规律可得:故可得解【点睛】本题考查观察能力和等差数列求和属于中档题解析:()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】 【分析】观察找到规律由等差数列求和可得. 【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦故可得解. 【点睛】本题考查观察能力和等差数列求和,属于中档题.17.【解析】【分析】由题意利用推理的方法确定abc 的值进一步可得的值【详解】若甲自己的预测正确则:据此可知丙的说法也正确矛盾;若乙自己的预测正确则:矛盾;据此可知只能是丙自己的预测正确即:;故:则故答案解析:【解析】 【分析】由题意利用推理的方法确定a ,b ,c 的值,进一步可得10100a b c 的值.【详解】若甲自己的预测正确,则:3,3a b ≠≠,据此可知3c =,丙的说法也正确,矛盾; 若乙自己的预测正确,则:3,3a b ==,矛盾;据此可知只能是丙自己的预测正确,即:3,3,1a b c =≠≠;故:3,1,2a b c ===,则10100213a b c ++=. 故答案为213. 【点睛】本题主要考查推理案例及其应用,属于中等题.18.3【分析】由类比推理及线线平行的判定及运用可得:在中MN 分别为AEBE 的三等分点则即即从而可得解【详解】在四面体ABCD 中E 为CD 的中点连接AEBE 且MN 分别为的重心ANBM 交于点G 在中MN 分别为A解析:3 【分析】由类比推理及线线平行的判定及运用可得:在ABE 中,M ,N 分别为AE ,BE 的三等分点,则EM EN 1AE BE 3==,即MN //AB ,AB 3MN =,即AG 3GN =从而可得解. 【详解】在四面体ABCD 中,E 为CD 的中点,连接AE ,BE ,且M ,N 分别为ACD ,BCD 的重心,AN ,BM 交于点G , 在ABE 中,M ,N 分别为AE ,BE 的三等分点,则EM EN 1AE BE 3==, 所以MN //AB ,AB 3MN =, 所以AG 3GN =,故棱锥重心到顶点的距离是到对面重心距离的3倍, 故答案为3 【点睛】本题考查了类比推理及线线平行的判定及运用,属中档题.19.①③【解析】【分析】通过对两图形的阅读和理解分别比较甲乙丙的纵横坐标可以分析出来甲乙丙的类比情况从而可得结论【详解】对于①由左图可知甲同学的逻辑排名比乙同学的逻辑排名更靠前故①正确;对于②乙同学的总解析:①③ 【解析】 【分析】通过对两图形的阅读和理解,分别比较甲、乙、丙的纵横坐标,可以分析出来甲、乙、丙的类比情况,从而可得结论. 【详解】对于①,由左图可知甲同学的逻辑排名比乙同学的逻辑排名更靠前,故①正确; 对于②,乙同学的总排名比较靠前,但是他的逻辑思维排名比较靠后,说明他的阅读表达排名比逻辑排名成绩更靠前,故②错误;对于③,比较两个图形中甲乙丙的横坐标,可知甲乙丙三位同学的逻辑思维排名顺序是甲、丙、乙,甲同学是靠前,故③正确;对于④,甲同学的逻辑思维能力比较靠前,但是总成绩比较靠后,说明阅读表达能力排名比逻辑思维能力更靠后,故④错误,故答案为①③. 【点睛】本题主要考查阅读理解能力、逻辑思维能力以及数形结合思想的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.20.12【解析】分析:由题可知总的观影人数为人则而人数最多的学校有人所以综合上述即可求出可能的取值个数详解:由题可知总的观影人数为人上下午各一场所以又可知若存在上下午坐的是同一所学校的学生的座位则必有所解析:12 【解析】分析:由题可知总的观影人数为985+1010+2019=4014人,则401420072n ≥=,而人数最多的学校有2019人,所以2019n <,综合上述即可求出可能的取值个数. 详解:由题可知,总的观影人数为985+1010+2019=4014人,上、下午各一场 所以,401420072n ≥=, 又可知985+1010=19952019<若存在上、下午坐的是同一所学校的学生的座位,则必有2019n <, 所以n 的范围是[2007,2019),*n Z ∈,则n 的可能取值有2019-2007=12个. 故答案为12.点睛:解答时应仔细审题,找到解决问题的突破口和关键点,然后进行推理并小心验证,最终得出结论.三、解答题21.(1)证明见解析;(2)证明见解析. 【分析】(1)利用分析法证明,两边平方化简可得;(2)利用基本不等式,结合lg y x =在(0,+∞)上增函数即可证明; 【详解】证明:(1>22>,即>(2)当,0a b >时,有02a b +≥>,∴lg 2a b+≥ ∴1lg lg lglg 222a b a b ab ++≥=,∴lg lg lg 22a b a b++≥(当且仅当=a b 时等号成立). 【点睛】本题考查综合法或分析法,考查对数函数的单调性和定义域,基本不等式的应用,掌握这两种方法证明不等式是关键,属于中档题目. 22.(1)证明见解析;(2)25. 【分析】(1)用分析法结合作差法证明; (2)利用(1)的结论直接得出最小值. 【详解】(1)证明:要证:()222a b a b x y x y ++≥+. 即证:()()222a b x y a b xy ⎛⎫++≥+⎪⎝⎭, 也就是要证:()()2220a b x y a b xy ⎛⎫++-+≥⎪⎝⎭, 即证:222ya xb ab x y+≥, 即证:()20ay bx -≥ 显然成立,因此,()222a b a bx y x y++≥+. (2)根据(1)结论,()()()22329492512212212f x x x x x x x +=+=+≥=--+-,当且仅当23122x x=-,即110,52x ⎛⎫=∈ ⎪⎝⎭时,()f x 取最小值为25.【点睛】本题考查用分析法证明不等式,并利用结论求最值.考查学生的灵活应用能力.23.(1)()()024f f +=,()()134f f -+=,13422f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.(2)一般结论为:对任意实数x 都有()()24f x f x +-=,证明见解析(3)证明见解析 【分析】()1代入计算可得所求和为定值;()2可得()()24f x f x +-=,代入计算,化简可得所求结论;()3求得()f x 的导数,判断单调性,根据单调性利用反证法可得证明.【详解】(1)()()18102464333f f +=-+-+-=, ()()111131********f f -+=----+-+-=,1311319991422244238423f f ⎛⎫⎛⎫+=--+-+-+-= ⎪ ⎪⎝⎭⎝⎭.(2)对任意实数x 都有()()24f x f x +-=. 证明:()()32112333f x f x x x x +-=-+-()()()3211223233x x x +---+-- ()()()22212222244633x x x x x x x x ⎡⎤=+-+----+-+-⎣⎦ ()222236424233x x x x =-+-++- 4=.(3)由()()22'23120f x x x x =-+=-+>知,()f x 为R 上的单调增函数.假设()00f x x ≠,则()00f x x >或()00f x x <,若()00f x x >,由()f x 为R 上的单调增函数知,()()()000ff x f x x >>;若()0f x x <,由()f x 为R 上的单调增函数知,()()()000f f x f x x <<, 则()()00f f x x ≠,与条件()()00f f x x =矛盾,故假设不成立.原命题()00f x x =成立. 【点睛】本题主要考查三次函数的图象和性质,主要是单调性的应用,反证法,考查化简运算能力,属于中档题.24.(1)423416,81,256,n S S S S n ====;(2)见解析.【解析】分析:直接计算23416,81,256S S S ===,猜想:4n S n =;(2)证明:①当1n =时,猜想成立. ②设()*n k k N =∈时,命题成立,即4kSk =③证明当1n k =+时,成立。
北师大版高中数学选修2-2高二数学推理与证明测试题及答案
2/7
过同一点.若用 f ( n) 表示这n条直线交点的个数,则 f (4) =
;
当n>4时, f ( n) = 三、解答题: 本大题共 6 题,共 74 分。
(用含 n 的数学表达式表示)
17、( 12 分)在各项为正的数列
an 中,数列的前 n 项和 Sn 满足 Sn
1
1
an
2
an
( 1) 求 a1 , a2 , a3 ;( 2) 由( 1)猜想数列 an 的通项公式; ( 3) 求 Sn
(C
(A)1
(B)1 + a
) (C)1+ a+ a2
(D)1 + a+a2+ a3
7、某个命题与正整数 n 有关,如果当 n k( k N ) 时命题成立,那么可推得当 n k 1
时命题也成立 . 现已知当 n 7 时该命题不成立,那么可推得
()
A .当 n=6 时该命题不成立 C.当 n=8 时该命题不成立
k1
9、已知 n 为正偶数,用数学归纳法证明
111 1
234
1
1
1
2(
n1 n 2 n 4
1 ) 时,若已假设 n k (k 2为偶
2n
数)时命题为真,则还需要用归纳假设再证
()
A . n k 1时等式成立
B. n k 2 时等式成立
C. n 2k 2 时等式成立
D. n 2(k 2) 时等式成立
10、数列 a n 中, a1 =1,Sn 表示前 n 项和,且 Sn, Sn+1, 2S1 成等差数列,通过计算 S1,S2,
(A) 假设三内角都不大于 60 度;
(B)
(C) 假设三内角至多有一个大于 60 度; (D)
(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(有答案解析)(4)
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.如图,第(1)个图案由1个点组成,第(2)个图案由3个点组成,第(3)个图案由7个点组成,第(4)个图案由13个点组成,第(5)个图案由21个点组成,……,依此类推,根据图案中点的排列规律,第50个图形由多少个点组成( )A .2450B .2451C .2452D .2453 3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1994.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于25.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 6.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁7.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,01()()2f x f x '=,12()(),2f x f x '=,*1()()()2n n f x f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+D .(cos sin )x e x x --8.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .010.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12511.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.14.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.15.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.16.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.17.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 23.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.25.已知,a b ∈R ,且1a b +=求证:()()2225222a b +++≥. 26.已知数列{}11,2n a a =,133n n n a a a +=+. (1)求2345,,,a a a a 的值;(2)猜想数列{n a }的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.B解析:B 【解析】 【分析】设第n 个图案的点的个数为n a ,由图归纳可得()121,1n n a a n n --=--个式子相加,由等差数列的求和公式可得结果. 【详解】设第n 个图案的点的个数为n a ,由题意可得123451,3,7,13,21a a a a a =====, 故213243542,4,6,8,...a a a a a a a a -=-=-=-=, 由此可推得()121n n a a n --=-,以上1n -个式子相加可得:()()()()()2132431...246...21n n a a a a a a a a n --+-+-++-=++++-,化简可得()()()1222112n n n a n n -+--==-,故()11n a n n =-+, 故50504912451a =⨯+=,即第50个图形由2451个点组成,故选B . 【点睛】本题主要考查归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3.C解析:C 【详解】由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.5.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.6.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.7.B解析:B 【解析】分析:易得到f n (x )表达式以8为周期,呈周期性变化,由于2018÷8余2,故f 2008(x )= f 2(x ),进而得到答案详解:∵f 0(x )=e x (cosx+sinx ),∴f 0′(x )=e x (cosx+sinx )+e x (﹣sinx+cosx )=2e x cosx , ∴f1(x )'f x x cosx ,∴f1′(x )x (cosx ﹣sinx ), ∴f 2(x )'f x =e x (cosx ﹣sinx ),∴f 2′(x )=e x (cosx ﹣sinx )+e x (﹣sinx ﹣cosx )=﹣2e x sinx , ∴f3(x )=x sinx , ∴f3′(x )=x (sinx+cosx ), ∴f 4(x )=﹣e x (cosx+sinx ), ∴f 4′(x )=﹣2e x cosx , ∴f5(x )=x cosx , ∴f 6(x )=﹣e x (cosx ﹣sinx ), ∴f7(x )x sinx , ∴f 8(x )=e x (cosx+sinx ), …,∴()2018f x == f 2(x )=()cos sin xe x x -,故选:B .点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.10.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C11.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1, 从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2,第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离2d ==,故答案是2.点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.14.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194 【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式求解,体现了用方程的思想解决问题.15.392【解析】由题意可得将三个括号作为一组则由第50个括号应为第17组的第二个括号即50个括号中应有两个数因为每组中有6个数所以第48个括号的最后一个数为数列的第项第50个括号的第一个数为数列的第项解析:392 【解析】由题意可得,将三个括号作为一组,则由501632=⨯+,第50个括号应为第17组的第二个括号,即50个括号中应有两个数,因为每组中有6个数,所以第48个括号的最后一个数为数列{}21n -的第16696⨯=项,第50个括号的第一个数为数列{}21n -的第166298⨯+=项,即2981195⨯-=,第二个数是2991197⨯-=,所以第50个括号内各数之和为195197392+=16.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11 【解析】A 到E 的时间,为2+4=6小时,或5小时, A 经C 到D 的时间为3+4=7小时, 故A 到F 的最短时间就为9小时, 则A 经F 到G 的时间为9+2=11小时, 即组装该产品所需要的最短时间是11小时17.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2.故答案为:4n+2.18.【解析】解析:111,,1232⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭【解析】关于x的不等式111kx bxax cx-+<--可化为111bk xa cx x-+<--,则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232xx-∈--⋃⇒∈--⋃,则关于x的不等式111kx bx ax cx -+< --的解集为111(,)(,1)232--,应填答案111(,)(,1)232--.19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.丙【详解】若甲获奖则甲乙丙丁说的都是错的同理可推知乙丙丁获奖的情况可知获奖的歌手是丙考点:反证法在推理中的应用解析:丙【详解】若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,可知获奖的歌手是丙.考点:反证法在推理中的应用.21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力. 23.见解析. 【解析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证1n =时不等式成立;(2)假设当()*,1n k k N k =∈≥时成立,利用放缩法证明1n k =+时,不等式也成立.详解:证明:①当1n =时,左边111224=>,不等式成立. ②假设当()*,1n k k N k =∈≥时,不等式成立,即11111112324k k k k k +++⋅⋅⋅+>++++, 则当1n k =+时,111112322122k k k k k ++⋅⋅⋅+++++++ 11111232k k k k =+++⋅⋅⋅++++ 11121221k k k ++-+++ 111112421221k k k >++-+++, ∵11121221k k k +-+++ ()()()()()21212212121k k k k k +++-+=++()()102121k k =>++,∴11111232k k k k +++⋅⋅⋅++++ 11121221k k k ++-+++ 1111111242122124k k k >++->+++, ∴当1n k =+时,不等式成立.由①②知对于任意正整数n ,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.24.(I )()541f =;(II )()2221f n n n =-+.【解析】试题分析:(I )先用前几项找出规律()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯,可知()5254441f =+⨯=;(II )由(I )知()()14f n f n n +-=,然后利用累加法求出()2221f n n n =-+.试题 解:(I )()11f =,()25f =,()313f =,()425f =,∴()()21441f f -==⨯,()()32842f f -==⨯,()()431243f f -==⨯,()()541644f f -==⨯∴()5254441f =+⨯=.(II )由上式规律得出()()14f n f n n +-=.∴()()2141f f -=⨯,()()3242f f -=⨯,()()4343f f -=⨯,⋅⋅⋅,()()()1242f n f n n ---=⋅-,()()()141f n f n n --=⋅-∴()()()()()14122121f n f n n n n ⎡⎤-=++⋅⋅⋅+-+-=-⋅⎣⎦, ∴()2221f n n n =-+.考点:1.合情推理与演绎推理;2.数列累加法求通项公式. 25.见解析. 【分析】将代数式()()2222a b +++展开,利用基本不等式()2222a b a b ++≥可证出所证的不等式. 【详解】222a b ab +≥,()()2222222a babab a b ∴+≥++=+,则()222122a b a b ++≥=,()()()222212522484822a b a b a b ∴+++=++++≥++=, 当且仅当12a b ==时,等号成立,因此,()()2225222a b +++≥. 【点睛】本题考查利用基本不等式证明不等式,解题的关键就是对基本不等式进行变形,再对所证不等式进行配凑得到,考查计算能力,属于中等题. 26.(1)237a =,338a =,439a =,5310a =.(2)证明见解析. 【分析】利用递推式直接求2a 、3a 、4a 、5a ,猜想数列{}n a 的通项公式为35n a n =+()*n N ∈用数学归纳法证明即可. 【详解】(1)由112a =,133n n n a a a +=+,得121333213732a a a ===++,232933733837a a a ===++,444933833938a a a ===++, 5559339331039a a a ===++. (2)由(1)猜想35n a n =+,下面用数学归纳法证明:①当n =1时,131152a ==+猜想成立. ②假设当n =k (k ≥1,k ∈N *)时猜想成立,即35k a k =+. 则当n =k +1时,133335331535k k k a k a a k k +⨯+===+++++,所以当n =k +1时猜想也成立,由①②知,对n ∈N *,35n a n =+都成立. 【点睛】本题考查了数列中的归纳法思想,及证明基本步骤,属于基础题;用数学归纳法证明恒等式的步骤及注意事项:①明确初始值0n 并验证真假;②“假设n k =时命题正确”并写出命题形式;③分析“1n k =+时”命题是什么,并找出与“n k =”时命题形式的差别,弄清左端应增加的项;④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.。
(北师大版)长沙市高中数学选修2-2第一章《推理与证明》检测卷(答案解析)
一、选择题1.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 2.用反证法证明“若x y <,则33x y <”时,假设内容应是( ) A .33x y =B .33x y >C .33x y =或33x y >D .33x y =或33x y <3.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 4.我们把顶角为的等腰三角形称为黄金三角形......其作法如下:①作一个正方形;②以的中点为圆心,以长为半径作圆,交延长线于;③以为圆心,以长为半径作D ;④以为圆心,以长为半径作A 交D 于,则为黄金三角形.根据上述作法,可以求出( )A .B .C .D .5.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5056.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( ) A .大前提错误B .小前提错误C .推理形式错误D .以上都不是7.根据给出的数塔猜测12345697⨯+=( )19211⨯+= 1293111⨯+= 123941111⨯+= 12349511111⨯+=1234596111111⨯+=…A .1111110B .1111111C .1111112D .11111138.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .23 9.“因为e 2.71828=是无限不循环小数,所以e 是无理数”,以上推理的大前提是( )A .实数分为有理数和无理数B .e 不是有理数C .无限不循环小数都是无理数D .无理数都是无限不循环小数10.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁11.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c ++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=12.下面推理过程中使用了类比推理方法,其中推理正确的是( ) A .平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则B .平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C .在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为D .若,则复数.类比推理:“若,则”二、填空题13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________. 14.已知函数()11112f x x x x =++++,由()111111f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237126x x x g x x x x +++=++++++的图象关于点___________对称. 15.观察下面数表: 1, 3,5, 7,9,11,13,15,17,19,21,23,25,27,29,………..设1027是该表第m 行的第n 个数,则m n +等于________.16.将自然数1,2,3,4,…排成数阵(如右图所示),在2处转第一个弯,在3处转第二个弯,在5处转第三个弯,…,则转第100个弯处的数是______.17.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可测,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表222+++中,“…”即代表无数次重复,但该表达式却是个定值,它可以通过方程2x x +=,求得2x =,类比上述过程,则3333=__________.18.甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖.他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是__________. 19.观察下列等式:……据此规律,第个等式可为____________________________________. 20.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖__________________块.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性.22.已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241n n S a =+,n N +∈.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法予以证明. 23.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++()21213n n =+.24.已知数列{}n a 中,12a a =.()2122,n n a a a n n a *-=-≥∈N . (1)写出2a 、3a 、4a ;(2)猜想n a 的表达式,并用数学归纳法证明. 25.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。
2019—2020年北师大版高中数学选修1-2《推理与证明》同步练习及解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-2第三章 推理与证明 同步练习(一)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共27分)一、选择题(本大题共9小题,每小题3分,共27分) 1、如果数列{}n a 是等差数列,则( ) A 、1845a a a a +<+ B 、1845a a a a +=+C 、1845a a a a +>+D 、1845a a a a =2、下面使用类比推理正确的是( ) A 、“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B 、“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅” C 、“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D 、“n n a a b =n (b )” 类推出“n n a a b +=+n(b )”3、有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A 、大前提错误 B 、小前提错误 C 、推理形式错误 D 、非以上错误4、设)()(,s i n )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2007()f x =( ) A 、sin xB 、-sin xC 、cos xD 、-cos x5、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A 、29 B 、 254 C 、602 D 、20046、下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+∙+.其中不成立的有 ( )A 、1个B 、2个C 、3个D 、4个7、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A 、大前提错误B 、小前提错误C 、推理形式错误D 、非以上错误8、已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为( ) A 、4()22xf x =+ B 、2()1f x x =+ C 、1()1f x x =+ D 、2()21f x x =+9、已知33q p +=2,关于p +q 的取值范围的说法正确的是( ) A 、一定不大于2 B 、一定不大于22 C 、一定不小于22D 、一定不小于2第Ⅱ卷(非选择题 共73分)二、填空题(本大题共5小题,每小题4分,共20分) 10、用演绎法证明y=x 2是增函数时的大前提是。
高中数学《推理与证明》练习题(附答案解析)
高中数学《推理与证明》练习题(附答案解析)一、单选题1.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+( ) A .2π B .πC .32π D .2π2.用数学归纳法证明()11111231n n n n ++++>∈+++N ,在验证1n =时,左边的代数式为( ) A .111234++ B .1123+C .12D .13.两个正方体1M 、2M ,棱长分别a 、b ,则对于正方体1M 、2M 有:棱长的比为a:b ,表面积的比为22:a b ,体积比为33:a b .我们把满足类似条件的几何体称为“相似体”,下列给出的几何体中是“相似体”的是( ) A .两个球B .两个长方体C .两个圆柱D .两个圆锥4.用数学归纳法证明1115 (1236)n n n +++≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .11113132331k k k k ++-++++ C .131k + D .133k + 5.现有下列四个命题: 甲:直线l 经过点(0,1)-; 乙:直线l 经过点(1,0); 丙:直线l 经过点(1,1)-; 丁:直线l 的倾斜角为锐角.如果只有一个假命题,则假命题是( ) A .甲B .乙C .丙D .丁6.用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k +B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++7.已知数列{}n a 中,11a =,()*111nn na a n a +=+∈+N ,用数学归纳法证明:1n n a a +<,在验证1n =成立时,不等式右边计算所得结果是( )A .12B .1C .32D .28.设平面内有k 条直线,其中任何两条不平行,任何三条不共点,设k 条直线的交点个数为()f k ,则()1f k +与()f k 的关系是( ) A .()()11f k f k k +=++ B .()()11f k f k k +=+- C .()()1f k f k k +=+D .()()12f k f k k +=++9.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 ( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙10.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19…,则在这个子数列中第2 020个数是( ) A .3976 B .3974 C .3978D .3973二、填空题11.用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++(n 为正整数)时,第一步应验证的等式是______.12.用数学归纳法证明命题“1+1123++…+1222n n +>(n ∈N +,且n ≥2)”时,第一步要证明的结论是________.13.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.14.已知等差数列{}()*n a n N ∈中,若10100a =,则等式()121220192019,*n n a a a a a a n n N -+++=+++<∈恒成立;运用类比思想方法,可知在等比数列{}()*n b n N ∈中,若1001b =,则与此相应的等式_________________恒成立.三、解答题15.(1)请用文字语言叙述异面直线的判定定理;(2)把(1)中的定理写成“已知:...,求证:...”的形式,并用反证法证明.16.把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为___________.17.下列各题在应用数学归纳法证明的过程中,有没有错误?如果有错误,错在哪里? (1)求证:当N*n ∈时,1=+n n .证明:假设当(*)n k k N =∈时,等式成立,即1k k =+. 则当1n k =+时,左边1(11)k k =+=++=右边. 所以当1n k =+时,等式也成立.由此得出,对任何N*n ∈,等式1=+n n 都成立. (2)用数学归纳法证明等差数列的前n 项和公式是1()2n n n a a S +=. 证明,∈当1n =时,左边=11S a =,右边1a =,等式成立. ∈假设当(*)n k k N =∈时,等式成立,即1()2k k k a a S +=.则当1n k =+时, 11231k k k S a a a x a a ++=+++++, 11121k k k k S a a a a a ++-=+++++.上面两式相加并除以2,可得 111(1)()2k k k a a S ++++=,即当1n k =+时,等式也成立.由∈∈可知,等差数列的前n 项和公式是1()2n n n a a S +=18.一本旧教材上有一个关于正整数n 的恒等式22211223(1)(1)12n n n n ⨯+⨯+++=+? 其中问号处由于年代久远,只能看出它是关于n 的二次三项式,具体的系数已经看不清楚了.请你猜想这个恒等式的形式,并用数学归纳法证明.参考答案与解析:1.B【分析】根据题意相当于增加了一个三角形,从而得出选项. 【详解】由凸k 边形变为凸k +1边形时, 增加了一个三角形,故f (k +1)=f (k )+π. 故选:B 2.A【分析】将1n =代入计算可得结果. 【详解】解:1111231n n n ++++++代入1n =为:111234++. 故选:A 3.A【分析】分别使用表面积公式、体积公式计算后即可发现结论. 【详解】设两个球的半径分别为R ,r . 这两个球的半径比为::R r , 表面积比为:22224:4:R r R r ππ=, 体积比为:333344::33R r R r ππ=, 所以,两个球是相似体. 故选:A . 4.B【分析】比较n k =、1n k =+时不等式左边代数式的差异后可得需添加的项,从而得到正确的选项. 【详解】当n k =时,所假设的不等式为1115 (1236)k k k +++≥++, 当1n k =+时,要证明的不等式为1111115 (2233132336)k k k k k k ++++++≥+++++, 故需添加的项为:11113132331k k k k ++-++++, 故选:B.【点睛】本题考查数学归纳法,应用数学归纳法时,要注意归纳证明的结论和归纳假设之间的联系,必要时和式的开端和结尾处需多写几项,便于寻找差异.本题属于基础题. 5.C【分析】设(0,1)A -,(1,0)B ,(1,1)C -,计算AB k 和BC k ,可判断三点共线,可知假命题是甲、乙、丙中的一个,再由斜率即可求解.【详解】设(0,1)A -,(1,0)B ,(1,1)C -则10101AB k --==-,101112BC k -==---,因为AB BC k k ≠,所以,,A B C 三点不共线,所以假命题必是甲、乙、丙中的一个,丁是真命题,即直线l 的斜率大于0, 而0AB k >,0BC k <,0AC k <,故丙是假命题. 故选:C. 6.D【分析】由n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++可得答案.【详解】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D . 7.C【分析】将1n =代入即可得结果. 【详解】当1n =时,不等式右边为1211311122a a a =+=+=+. 故选:C. 8.C【分析】考虑当1n k =+时,任取其中1条直线,记为l ,由于直线l 与前面n 条直线任何两条不平行,任何三条不共点,所以要多出k 个交点,从而得出结果. 【详解】当1n k =+时,任取其中1条直线,记为l , 则除l 外的其他k 条直线的交点的个数为()f k , 因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点); 又因为任何三条直线不过同一点, 所以上面的k 个交点两两不相同,且与平面内其它的()f k 个交点也两两不相同, 从而1n k =+时交点的个数是()()1f k k f k +=+, 故选:C 9.A【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查. 10.A【分析】根据题意分析出第n 次取n 个数,前n 次共取(1)2n n +个数,且第n 次取的最后一个数为n 2,然后算出前63次共取了2016个数,从而能得到数列中第2 020个数是3976.【详解】由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了(1)1232n n n ++++⋯+=个数,且第n 次取的最后一个数为n 2, 当63n =时,()6363120162⨯+=, 即前63次共取了2016个数,第63次取的数都为奇数,并且最后一个数为2633969=, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,…,所以第2 020个数是3 976. 故选:A. 11.11122-= 【分析】根据数学归纳法的一般步骤,令1n =即可得出结论. 【详解】依题意,当1n =时, 1112121-=⨯⨯, 即11122-=, 故答案为:11122-=.12.1112212342++++> 【解析】根据数学归纳法的步骤可知第一步要证明2n =时的不等式成立.【详解】因为n ≥2,所以第一步要证的是当n=2时结论成立,即1+111222342+++>. 故答案为:1112212342++++> 13.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键. 【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”, 故答案为:a ,b ,c 中至少有两个偶数. 14.()*12112199199,N n n n b b b b b b b n n --=<∈【解析】根据等差数列的性质有12019101020n n a a a +-+==,等比数列的性质有21199100=1n n b b b +-=,类比即可得到结论.【详解】已知等差数列{}()*n a n N ∈中,12122019n n a a a a a a -+++=+++ 1122019n n n a a a a a +-++=++++,12201820190n n n a a a a ++-∴++++=.10100a =,由等差数列的性质得, 1201922018101020n n n n a a a a a +-+-+=+===.等比数列{}()*n b n N ∈,且1001b =,有等比数列的性质得,211992198100===1n n n n b b b b b +-+-=.所以类比等式()*121220192019,n n a n a a a a a n N -+++=+++<∈,可得()*12112199199,N n n n b b b b b b b n n --=<∈. 故答案为:()*12112199199,N n n n b b b b b b b n n --=<∈.【点睛】本题考查等差数列和等比数列的性质,结合类比的规则,和类比积,加类比乘,得出结论,属于中档题.15.(1)见解析; (2)见解析.【分析】(1)将判定定理用文字表述即可;(2)根据(1)中的前提和结论可得定理的形式,利用反证法可证该结论.【详解】(1)异面直线的判定定理:平面外一点与平面内一点的连线与平面内不过该点直线是异面直线. (2)(1)中的定理写成“已知:...,求证:...”的形式如下: ,,,P Q l Q l ααα∉∈⊂∉,求证:,PQ l 为异面直线.证明:若,PQ l 不为异面直线,则,PQ l 共面于β,故,,Q l ββ∈⊂ 而Q l ∉,故,αβ为同一平面,而P β∈,故P α∈, 这与P α∉矛盾,故,PQ l 为异面直线.16.正四面体内一点到四个面的距离之和为定值 【分析】将边类比为面,从而得出正确结论.【详解】把空间图形“正四面体”与平面图形“正三角形”对应,类比“正三角形内一点到三边距离之和是一个定值”得到的相应结论为“正四面体内一点到四个面的距离之和为定值”. 故答案为:正四面体内一点到四个面的距离之和为定值 17.(1)有错误,理由见解析;(2)有错误,理由详见解析.【分析】根据数学归纳法分为两步,∈证明当1n =时,结论成立,∈假设当n k =时,结论成立,当1n k =+时,应用归纳假设,证明1n k =+时,命题也成立,根据数学归纳法的步骤判断过程的错误之处. 【详解】(1)有错误,错误在于没有证明第(1)步,即没有证明1n =时等式成立;(2)有错误,错误在于证明1n k =+时,没有应用n k =时的假设,而是应用了倒序相加法,这不符合数学归纳法的证明过程. 18.222211223(1)(1)(31110)12n n n n n n ⨯+⨯+++=+++,证明见解析 【分析】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++即可求得f (1),f (2),f (3);假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立,由f (1),f (2),f (3)的值可求得a ,b ,c ;再用数学归纳法证明即可.【详解】设222()1223(1)f n n n =⋅+⋅+⋅⋅⋅++, f ∴(1)2124=⋅=,f (2)22122322=⋅+⋅=, f (3)22212233470⋅+⋅+⋅=; 假设存在常数a ,b ,c 使得2(1)()()12n n f n an bn c +=++对一切自然数n 都成立, 则f (1)12()412a b c ⨯=++=, 24a b c ∴++=∈,同理,由f (2)22=得4244a b c ++=∈, 由f (3)70=得9370a b c ++=∈ 联立∈∈∈,解得3a =,11b =,10c =.2(1)()(31110)12n n f n n n +∴=++. 证明:1︒当1n =时,显然成立;2︒假设n k =时,2(1)(1)(2)(35)()(31110)1212k k k k k k f k k k ++++=++=, 则1n k =+时,2(1)()(1)[(1)1]f k f k k k +=++++2(1)(2)(35)(1)[(1)1]12k k k k k k +++=++++2(1)(2)(31724)12k k k k ++=++ (1)(2)(3)(38)12k k k k ++++=(1)[(1)1][(2)1][3(1)5]12k k k k +++++++=,即1n k =+时,结论也成立.综合1︒,2︒知,存在常数3a =,11b =,10c =使得2(1)()(31110)12n n f n n n +=++对一切自然数n 都成立。
(必考题)高中数学选修1-2第三章《推理与证明》测试(包含答案解析)(1)
一、选择题1.类比推理是一种重要的推理方法.已知1l ,2l ,3l 是三条互不重合的直线,则下列在平面中关于1l ,2l ,3l 正确的结论类比到空间中仍然正确的是( )①若13//l l ,23//l l ,则12l l //;②若13l l ⊥,23l l ⊥,则12l l //;③若1l 与2l 相交,则3l 必与其中一条相交;④若12l l //,则3l 与1l ,2l 相交所成的同位角相等 A .①④B .②③C .①③D .②④2.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣,”其体现的是一种无限与有限的转化过程,比如在“…”.即代表无限次重复,但原式却是个定值x,这可以通过方程x =确定出来2x =,类似地不难得到12122+=++⋅⋅⋅( )A .122 B.12- C1 D.13.将正奇数数列1,3,5,7,9,⋅⋅⋅依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),⋅⋅⋅,称(1,3)为第1组,(5,7,9)为第2组,依次类推,则原数列中的2021位于分组序列中( ) A .第404组B .第405组C .第808组D .第809组4.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 6.下面几种推理中是演绎推理的为( )A .高二年级有12个班,1班51人,2班53人,3班52人,由此推测各班都超过50人B .猜想数列111,,122334⋯⋯⨯⨯⨯的通项公式为()1(1)n a n N n n +=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π= D .由平面三角形的性质推测空间四面体的性质7.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了B .甲说对了C .乙说对了D .甲做对了8.在某次诗词大会决赛前,甲、乙、丙丁四位选手有机会问鼎冠军,,,A B C 三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:A 猜测冠军是乙或丁;B 猜测冠军一定不是丙和丁;C 猜测冠军是甲或乙。
(常考题)北师大版高中数学选修1-2第三章《推理与证明》测试(含答案解析)
一、选择题1.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有A .8种B .10种C .12种D .14种2.下列推理属于演绎推理的是( ) A .由圆的性质可推出球的有关性质B .由等边三角形、等腰直角三角形的内角和是180°,归纳出所有三角形的内角和都是180°C .某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分D .金属能导电,金、银、铜是金属,所以金、银、铜能导电3.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品B .D 作品C .B 作品D .A 作品4.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨辉所著的《评解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律,现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….记作数列{}n a ,若数列{}n a 的前n 项和为n S ,则57S =( )A .265B .521C .1034D .20595.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 6.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .657.苏格兰数学家纳皮尔发明了对数表,这一发明为当时的天文学家处理“大数运算”做出了巨大贡献.法国著名数学家和天文学家拉普拉斯曾说过:“对数倍增了天文学家的寿命.”比如在下面的部分对数表中,16,256对应的幂指数分别为4,8,幂指数和为12,而12对应的幂4096,因此162564096.⨯=根据此表,推算51216384⨯=( )x1 2 3 4 5 6 7 8 9 102x y = 24 8 16 32 64 128 256 512 1024x1112 13 14 15 16 17 18 19 202x y = 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576A .524288B .8388608C .16777216D .335544328.定义两个运算:1212a b a lgb ⊗=+,132a b lga b -⊕=+.若925M =⊗,127N =,则(M N += ) A .6B .7C .8D .99.已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2. 表1 田径综合赛项目及积分规则A .甲B .乙C .丙D .丁10.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲B .乙C .丙D .丁11.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9612.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式11111+++中“”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=,求得15x +=. 类似上述过程,则222+++=A .1312+ B .3C .2D .22二、填空题13.若ABC 的三边之长分别为a 、b 、c ,内切圆半径为r ,则ABC 的面积为()2r a b c ++.根据类比思想可得:若四面体A BCD -的三个侧面与底面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为r ,则四面体的体积为__________.14.已知函数2()42(0)f x x x x =++≥,若1()()f x f x =,1()(())n n f x f f x +=,*n N ∈,则2020()f x 在[0,1]上的最大值为____________.15.已知对任意正实数1a 、2a 、1b 、2b 都有22212121212()b b b b a a a a ++≥+,类比可得对任意正实数1a 、2a 、3a 、1b 、2b 、3b 都有________. 16.若()()()12f k k k k =+++++()2k k N *∈,则()()1f k f k +-=________.17.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在222+++222?··中“”即代表无限次重复,但原式却是个定值x . 这可以通过方程2x x +=确定x =2,则11111+=++_______.18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.如图,在圆内画1条线段,将圆分成2部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成11部分.则在圆内画n 条线段,将圆最多分割成______部分.20.刘徽是中国古代最杰出的数学家之一,他在中国算术史上最重要的贡献就是注释《九章算术》,刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,体现了无限与有限之间转化的思想方法,这种思想方法应用广泛.如数式12122+++⋅⋅⋅是一个确定值x (数式中的省略号表示按此规律无限重复),该数式的值可以用如下方法求得:令原式x =,则12x x+=,即2210x x --=,解得12x =正数得21x =.666+++⋅⋅⋅=_____________.三、解答题21.(1)求证:cot tan 2cot 2ααα=+(2)请利用(1)的结论证明:cot tan 2tan24cot 4αααα=++(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明: (4)化简:tan52tan104tan208tan50︒+︒+︒+︒.22.已知两个正数x y ,,证明:这两个正数的算术平均数不小于这两个正数的几何平均数,并指出何时相等.23.(13725<(2)已知数列{}n a 的前n 项和为n S ,123a =-,满足()122nn nS a n S ++=≥,计算,1234,,,S S S S ,并猜想n S 的表达式.24.(1)在平面上,若两个正方形的边长的比为1:3,则它们的面积比为1:9.类似地,在空间中,对应的结论是什么? (2)已知数列{}n a 满足11212,4n n n a a a a +-==+,求2345,,,a a a a ,并由此归纳得出{}n a 的通项公式(无需证明).25.(1)1233.a a a a a -<--> (2)求由曲线y x =2y x =-及y 轴所围成的图形的面积.26.已知动圆过定点(0,2)F ,且与定直线:2L y =-相切.(1)求动圆圆心的轨迹C的方程;F,分别以A、B为切点作轨迹C的切(2)若AB是轨迹C的动弦,且AB过(0,2).线,设两切线交点为Q,证明:AQ BQ【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据表格进行逻辑推理即可得到结果.【详解】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.【点睛】本题以实际生活为背景,考查了逻辑推理能力与分类讨论思想,属于中档题.2.D解析:D【解析】选项A, 由圆的性质类比推出球的有关性质,这是类比推理;180,归纳出所有三角形的内角和都是选项B, 由等边三角形、直角三角形的内角和是0180,是归纳推理;选项C, 某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分,是归纳推理;选项D, 金属能导电,金、银、铜是金属,所以金、银、铜能导电,这是三段论推理,属于演绎推理;故选D.3.C解析:C 【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断. 详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.4.C解析:C 【分析】由归纳推理及等比数列前n 项和可得:即57a 在第11组中且为第11组中的第2个数,则01901571010222()1034S C C =++⋯+++=,得解.【详解】解:将1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,⋯. 分组为(1),(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)⋯ 则第n 组n 个数且第n 组n 个数之和为12n -, 设57a 在第n 组中, 则(1)(1)5722n n n n -+, 解得:11n =,即57a 在第11组中且为第11组中的第2个数,即为110C ,则01901571010222()1034S C C =++⋯+++=, 故选:C . 【点睛】本题考查了归纳推理及等比数列前n 项和,属于中档题.5.D解析:D 【分析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案. 【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学 (另外武汉大学、清华大学、北京大学、复旦大学也满足). 故选:D . 【点睛】本题考查了逻辑推理,意在考查学生的推理能力.6.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.7.B解析:B 【解析】 【分析】先通过阅读,理解题意后再进行简单的合情推理即可得解. 【详解】由上表可知:95122=,14163842=,即512,16384对应的幂指数分别为9,14,幂指数和为23,而23对应的幂为8388608,因此512163848388608⨯=. 故选B . 【点睛】本题考查了阅读理解能力及进行简单的合情推理,属简单题.8.B解析:B 【分析】根据定义的新运算,求出M 、N 的值,相加即可得答案. 【详解】根据题意,121925925352M lg lg =⊗=+=+, 13112()232727N lg -===+,则(35)(23)1337M N lg lg +=+++=++=。
最新北师大版高二数学选修12推理与证明测试题及答案
推理与证明命题人:杨建国 审题人:郝 蓉本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.测试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分)1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 20044. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800 B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块. A.21 B.22 C.20 D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A)假设,,a b c 不都是偶数 (B)假设,,a b c 都不是偶数 (C)假设,,a b c 至多有一个是偶数 (D)假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧•=•=-•+-⎨<⎩、定义运算例如则的最大值为( )A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+•+.其中不成立的有A.1个B.2个C.3个D.4个 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22xf x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 . 14.下列表述正确的是 .①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(含答案解析)
一、选择题1.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=2.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -3.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立4.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确5.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球8.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .189.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12510.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=,…. 按照以上规律,若11111111n n=具有“穿墙术”,则n =_______. 15.观察下列等式:请你归纳出一般性结论______.16.点00(,)x y 到直线0Ax By C ++=的距离公式为0022d A B=+,通过类比的方法,可求得:在空间中,点(0,1,3)到平面2330x y z +++=的距离为__________. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 19.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.20.甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖.他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是__________.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性. 22.已知函数2()1f x x =-,数列{}n a 的前n 项和为n S ,且满足2425()n n S n n f a +=+. (1)求1234,,,a a a a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.23.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式;(2)用数学归纳法证明:()*23n a n n N =-∈.24.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.25.已知各项均不为零的数列{}n a 的前n 项和为n S ,且()141n n n S a a n N *+=⋅+∈,其中11a =.(1)求证:135,,a a a 成等差数列; (2)求证:数列{}n a 是等差数列;(3)设数列{}n b 满足()121nb nn N a *=+∈,且n T 为其前n 项和,求证:对任意正整数n ,不等式212log n n T a +>恒成立. 26.给出下面的数表序列:其中表()1,2,3,...n n =有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表()3n n ≥(不要求证明)(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b ,求数列{}n b 的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3),利用平面法向量为n =(﹣1,﹣2,1),即可求得结论. 【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3)∵平面法向量为n =(﹣1,﹣2,1), ∴﹣(x ﹣1)﹣2×(y ﹣2)+1×(z ﹣3)=0 ∴x +2y ﹣z ﹣2=0, 故选A . 【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.2.C解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 7 2 5 北师大版高中数学选修 2-2 高二数学推理与证明测试题及答案
2n + 1
A.
2
n -1
2n - 1
B.
2
n -1
n (n + 1) C .
2n
D .1- 1
2n -1
试卷满分 100 分,考试时间 150 分钟
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 1、 下列表述正确的是( ).
①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ).
A.“若 a ⋅ 3 = b ⋅ 3 ,则 a = b ”类推出“若 a ⋅ 0 = b ⋅ 0 ,则 a = b ”
B. “若(a + b )c = ac + bc ”类推出“ (a ⋅ b )c = ac ⋅ b c ”
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前 120 个圈中的●的个数是 。
12、 类比平面几何中的勾股定理:若直角三角形 ABC 中的两边 AB 、AC 互相垂直,则三角形三边长之间满足关系: AB 2 + AC 2 = BC 2 。
若三棱锥 A-BCD 的三个侧面 ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
13、从 1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为 .
14、设平面内有n条直线(n ≥ 3) ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用
a +
b a b C. “若(a + b )
c = ac + bc ” 类推出“ = + c c c
D. “(b a )n = a n b n ” 类推出“(a b )+ n = a n + b n ”
(c≠0)”
f (n ) 表示这n条直线交点的个数,则 f (4) = ;当n>4时, f (n )
= (用含 n 的数学表达式表示)。
三、解答题:本大题共 6 题,共 80 分。
3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/ 平面,直线 a ⊂ 平面
,直线b ∥平面,则直线b ∥直线a ”的结论显然是错误的,这是因为
( )
≠
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于 60 度”时,反设正确的是( )。
(A)假设三内角都不大于 60 度; (B) 假设三内角都大于 60 度; (C) 假设三内角至多有一个大于 60 度; (D) 假设三内角至多有两个大于 60 度。
5、在十进制中2004 = 4 ⨯100 + 0 ⨯101 + 0 ⨯102 + 2 ⨯103 ,那么在 5 进制中数码 2004 折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 1 - a n +2
6、利用数学归纳法证明“1+a +a 2+…+a n +1=
, (a ≠1,n ∈N)”时,在验证 n=1 成立时,左边
1 - a
15、(14 分)求证:(1) a 2 + b 2 + 3 ≥ ab + 3(a + b ) ;
(2) + >2 + 。
应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3
7、某个命题与正整数 n 有关,如果当 n = k (k ∈ N + ) 时命题成立,那么可推得当 n = k + 1时命题也成立. 现已知当n = 7 时该命题不成立,那么可推得 ( )
A .当 n=6 时该命题不成立
B .当 n=6 时该命题成立
C .当 n=8 时该命题不成立
D .当 n=8 时该命题成立
8、用数学归纳法证明“ (n + 1)(n + 2) (n + n ) = 2n ⋅1⋅ 2 ⋅ ⋅ (2n - 1) ”( n ∈ N + )时,从“
16、设 a ,b ,x ,y ∈R ,且
(14 分)
n = k 到n = k + 1”时,左边应增添的式子是
( )
A . 2k + 1
B . 2(2k + 1)
2k + 1
C .
k + 1 2k + 2
D .
k + 1
9、已知 n 为正偶数,用数学归纳法证明
1 - 1 + 1 - 1 + + 1 = 2( 1 + 1 + + 1 ) 时,若
2
3
4 n - 1 n + 2 n + 4 2n
已假设 n = k (k ≥ 2 为偶数)时命题为真,则还需要用归纳假设再证 ( )
A . n = k + 1时等式成立
B . n = k + 2 时等式成立
C . n = 2k + 2 时等式成立
D . n = 2(k + 2) 时等式成立 10、数列{a n }中,a 1=1,S n 表示前 n 项和,且 S n ,S n+1,2S 1 成等差数列,通过计算 S 1,S 2, S 3,
猜想当 n ≥1 时,S n =
( )
17、若a,b,c 均为实数,且, , ,
求证:a,b,c 中至少有一个大于0。
(14 分)
18、用数学归纳法证明:
19、数学归纳法证明:能被整除,. (15 分)
12 (Ⅰ)+
1⋅ 3 22
3 ⋅5
+ +
n 2
=
(2n - 1)(2n + 1)
n(n + 1)
;(7 分)
2(2n + 1)
20、已知数列{a n}满足S n+a n=2n+1, (1) 写出a1, a2, a3,并推测a n的表达式;(2) 用数学归纳法证明
所得的结论。
(16 分)
(Ⅱ)1 +1
2
+
1
+
3
1
++
4
≤n ;(7 分)
2n- 1
1
6 2 5 42 第四十一中学高二数学选修 2-2《推理与证明测试题》答案
∴2k +1-a k +2a k +1=2(k +1)+1=2k +3,
一、 选择题:本大题共 10 小题,每小题 3 分,共 30 分. 1
∴2a k +1=2+2- 2k 1
, a k +1=2- 2
k +1 , DCABB CABBB
二、 填空题:本大题共 4 小题,每小题 3 分,共 12 分. 11、14 12、 即当 n =k +1 时,命题成立. 根据①②得 n ∈N + , a n =2-
1
都成立
n
2
13、
14、 5 ;
三、解答题:本大题共 6 题,共 58 分。
15、证明:(1) ∵ a 2 + b 2 ≥ 2ab ,
a 2 + 3 ≥ 2 3a ,
b 2 + 3 ≥ 2 3b ; 将此三式相加得
2 (a 2 + b 2 + 3) ≥ 2ab + 2 3a + 2 3b ,
∴ a 2 + b 2 + 3 ≥ ab + (2)要证原不等式成立,
3(a + b ) .
只需证( + 即证2 > 2 7 )
2 >(2 + ) 2 , 。
∵上式显然成立, ∴原不等式成立.
16、可以用综合法与分析法---略 17、可以用反证法---略
18、(1)可以用数学归纳法---略
(2)当 n = k + 1时,左边= (1 + 1
+ +
2
1 2k - 1
) + ( 1 2k
+ +
1 2k +1 - 1
) ≤ k + ( 1 + 1 2k 2k + + 1 2k ) = k + 2k ⋅ 1 2k
= k + 1 =右边,命题正确
2k 项
19、可以用数学归纳法---略 20、解:
3 7 15 (1) a 1= , a 2= , a 3= ,
2
4
8
1 猜测 a n =2-
2
n
(2) ①由(1)已得当 n =1 时,命题成立;
1
②假设 n =k 时,命题成立,即 a k =2-
2k
,
当 n =k +1 时, a 1+a 2+……+a k +a k +1+a k +1=2(k +1)+1, 且 a 1+a 2+……+a k =2k +1-a k
40。