控制系统典型环节与系统的模拟

控制系统典型环节与系统的模拟
控制系统典型环节与系统的模拟

控制系统典型环节与系统的模拟

一、实验目的

1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

二、实验设备

https://www.360docs.net/doc/5b12844465.html,KL-1控制理论实验箱1台

2.TDS1001B数字存储示波器1台

3.台式计算机

4.U盘1只

三、实验原理

1. 以运算放大器为核心,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节,用数字存储示波器测量各环节的阶跃响应曲线。

2. 操作过程注意事项。

A、接通TKKL-1实验箱的电源总开关。

B、接通TKKL-1实验箱上的直流电源开关。

C、接通TKKL-1实验箱上的阶跃信号发生器电源开关。

D、电位器顺时针调节时电阻值增大。

E、示波器探头接地端要与实验箱的地端牢固连接。

四、实验内容

1. 分别画出比例、积分、惯性、微分和振荡环节的电路原理图。

2. 按所设计的电路原理图接线,并在各电路的输入端输入阶跃信号,在电路的输出端观察并记录其单位阶跃响应的输出波形。

比例环节

G1(S)=1 和 G2(S)=2

积分环节

G1(S)=1/(S+1) 和 G2(S)=1/(0.51S+1)

惯性环节

G1(S)=1/S 和 G2(S)=1/(0.51S)

震荡环节

R1=100K, R2=1M, R3=100K, R4=100K, R5=1M, R6=100K, C1=1uF, C2=1uF

R1=100K, R2=1M, R3=100K, R4=100K, R5=1M, R6=100K, C1=2uF, C2=1uF 微分环节

G(s)=410(1+0.02S)/200

五、思考题

1. 用运算放大器模拟典型环节时,其传递函数是在哪两个假设条件下近似导出来的?

答:①假定运放具有理想特性,即满足“虚短”“虚断”特性。

②运放的静态量为零,输入量、输出量和反馈量都可以用瞬时值表示其动态变化。

2. 积分环节与惯性环节的主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?在什么条件下,又可以视为比例环节?

答:惯性环节的特点是,当输入x(t)作阶跃变化时,输出y(t)不能立刻达到稳态值,瞬态输出以指数规律变化。而积分环节,当输入为单位阶跃信号时,输出为输入对时间的积分,输出y(t)随时间呈直线增长。当t趋于无穷大时,惯性环节可以近似地视为积分环节,当t趋于0时,惯性环节可以近似地视为比例环节。

3.如何根据阶跃响应的波形,确定积分环节和惯性环节的时间常数。

答:用示波器的“时标”开关测出过渡过程时间t,即98%U0时的时间,由公式T = t/4计算时间常。

六、实验心得

通过该实验的学习,进一步熟悉对电路的连接,熟悉了数字存储示波器的使用方法,懂得如何测量典型环节的阶跃响应曲线。实验中的控制理论实验箱简单易懂,操作方便。实验指导老师辅导的很到位,让我们很清楚的了解到实验的原理。

典型环节地模拟研究实验报告材料

第三章 自动控制原理实验 3.1 线性系统的时域分析 3.1.1典型环节的模拟研究 一. 实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达 式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的 影响 二.典型环节的结构图及传递函数 方 框 图 传递函数 比例 (P ) K (S) U (S) U (S)G i O == 积分 (I ) TS 1(S)U (S)U (S)G i O == 比例积分 (PI ) )TS 11(K (S)U (S)U (S)G i O +== 比例微分 (PD ) )TS 1(K (S) U (S) U (S)G i O +== 惯性环节 (T ) TS 1K (S)U (S)U (S)G i O += = 比例积分微分(PID ) S T K S T K K (S)U (S)U (S)G d p i p p i O ++ == 三.实验容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告 运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。

1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 传递函数:0 1(S) (S)(S)R R K K U U G i O = == ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui ); 该信号为零输出时,将自动对模拟电路锁零。 ① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。 ② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。 ③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元右显示)。 (2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。 (b )测孔联线 (3)运行、观察、记录: 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线Uo (t )见图3-1-2。示波器的截图详见虚 拟示波器的使用。 图3-1-2 比例环节阶跃响应曲线图 图3-1-3 惯性环节阶跃响应曲 线 实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。

模拟路灯控制系统附硬件图及c程序

摘要 本文介绍了一个模拟路灯控制系统的应用方案,用以实现模拟路灯的智能控制。本方案以宏晶公司的MCU芯片STC12C5410AD为核心,加以简单的外围电路,实现了模拟路灯控制系统所要求的全部技术内容。STC单片机在最近几年应用越来越广泛,因其抗干扰能力强、稳定性好,性价比高,因此是低成本路灯控制解决方案的首选。该控制系统除了选用廉价的单片机芯片,还采用了廉价的红外对射传感器,大大降低了系统成本。整个系统的电路简单,结构紧凑,电源驱动仅采用变压器与三端稳压器相结合,附加少许滤波电容便实现了稳定的电源输出。经过多次测试,证实该系统能长时间稳定工作,完全满足设计要求指标。 关键词:模拟控制;LED照明;单片机

ABSTRACT This paper introduces a simulation control system application scheme street, to simulate the street lamp of intelligent control. This plan to macro crystal company MCU, STC12C5410AD as the core, to chip the periphery of the simple circuit, realize the simulation street lamp control system all of the requested technology content. STC SCM in recent years more and more wide application, because of its strong anti-interference ability, good stability, high performance/price ratio, and so is the low cost street lamp control solutions of choice. The control system in addition to choose cheap single-chip microcomputer chip, also adopted the cheap infrared mutual illuminate sensor, and greatly reduce the cost of system. The whole system of the circuit is simple, compact structure, power drive only used three transformer and the regulators, and the combination of a few additional filter capacitance will realize the stable power output. After many test, and confirm that the system can work stably for a long time, fully meet the design requirements index. Keywords: Simulate controlling; LED lighting; Single-chip microcomputer

1 典型环节的电路模拟

实验报告 课程名称: 控制理论(乙) 指导老师: 韦巍老师的助教 成绩:_________________ 实验名称: 典型环节的电路模拟 实验类型: 控制理论实验 同组学生姓名: 无 第一次课 典型环节的电路模拟 一、实验目的 1.1熟悉THBDC-2型实验平台及“THBDC-2”软件的使用; 1.2熟悉各典型环节的阶跃响应特性及其电路模拟; 1.3测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。 二、实验内容 2.1设计并组建各典型环节的模拟电路; 2.2测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。 三、实验原理 自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。 本实验中的典型环节都是以运放为核心元件构成,其原理框图如图3-1所 示。图中Z 1和Z 2表示由R 、C 构成的复数阻抗。 图3-1 3.1 积分环节 积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为: 设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图3-2所示。 图3-2 3.2比例积分(PI)环节 比例积分环节的传递函数与方框图分别为: )11(11)()()(21211212CS R R R CS R R R CS R CS R S U S U s G i O +=+=+== 其中T=R 2C ,K=R 2/R 1 设U i (S)为一单位阶跃信号,图3-3示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。 图 3-3 Ts S U S U s G i O 1 )()()(= =

控制系统典型环节性能分析

控制系统典型环节性能分析 题目: 熟悉Matlab 软件Simulink 的基本使用方法,利用Simulink 建立各典型环节的仿真模型,并通过仿真得到各典型环节的单位阶跃响应曲线,给出各典型环节相关参数变化对典型环节动态性能的影响。 解答: 1.比例环节 1.1比例环节1)(1=s G 图1_1_1 比例环节simulink 仿真模型 图1_1_2 比例环节阶跃响应曲线 1.2比例环节2)(1=s G 图1_2_1 比例环节simulink 仿真模型 图1_2_2 比例环节阶跃响应曲线

分析:比例环节使得输出量与输入量成正比,比例系数越大,输出量越大。 2.积分环节 2.1积分环节s s G 1)(1= 图2_1_1 积分环节simulink 仿真模型 图2_1_2 积分环节阶跃响应曲线 2.2积分环节s s G 5.01 )(2= 图2_2_1 积分环节simulink 仿真模型 图2_2_2 积分环节阶跃响应曲线 分析:积分环节的输出量反映了输入量随时间的积累,时间常数越大,积累速度越快。 3.微分环节

微分环节s s G =)(1 图3_1_1 微分环节simulink 仿真模型 图3_1_2 微分环节阶跃响应曲线 4.惯性环节 4.1惯性环节1 1)(1+= s s G 图4_1_1 惯性环节simulink 仿真模型 图4_1_2 惯性环节阶跃响应曲线 4.2惯性环节1 5.01 )(2+= s s G

图4_2_1 惯性环节simulink 仿真模型 图4_2_2 惯性环节阶跃响应曲线 分析:惯性环节使得输出波形在开始时以指数曲线上升,上升速度与时间常数有关,时间常数越大,上升越快。 5.导前环节 导前环节1)(1+=s s G 图5_1_1 导前环节simulink 仿真模型 图5_1_2 导前环节阶跃响应曲线 分析:比例作用与微分作用一起构成导前环节,输出反映了输入信号的变化趋势,波形也与时间常数有关。 6.振荡环节 6.1振荡环节4 s s 4 )(2 1++= s G (ξ=0.25)

典型环节的模拟研究自动控制实验报告

实验报告 实验课程:自动控制理论 学生: 学号: 专业班级:

2013年 12 月 20日 大学实验报告 学生:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩: 典型环节的模拟研究 一、实验要求: 1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 二、主要仪器设备及耗材: 1.计算机一台(Windows XP操作系统) 2.AEDK-labACT自动控制理论教学实验系统一套 3.LabACT6_08软件一套 三、实验容和步骤: 选用虚拟示波器,只要运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。 1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 实验步骤:注:‘S ST’不能用“短路套”短接! (1)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号(Ui): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1的Y测孔)调整为4V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。 (2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。 (a)安置短路套(b)测孔联线

电风扇模拟控制系统模板

单片机技术课程设计 题目风扇模拟控制系统 院系轨道交通学院 专业铁道信号年级 2013级 学生姓名张三李四王五 学号 指导教师罗世民

需求书 题目十一:电风扇模拟控制系统设计★★ 1.用4个LED显示电风扇的工作状态(1,2,3,4四档风力),显示风类:“自然风”、“常风”和“睡眠风”。(20分) 2.设计“自然风”、“常风”和“睡眠风”三个风类键用于设置风类; 设计一个“摇头”键用于控制电机摇头。(20分) 3.设计一个“定时”键,用于定时时间长短设置;(20分) 4*.设计过热检测与保护电路,若电风扇电机过热,则电机停止转动,蜂鸣器报警,电机冷却后电机又恢复转动。 5*. 用LCD作为用户界面显示风扇运行模式等信息。 6@.其他功能(创新部分 10分)

电风扇模拟控制系统设计 通信工程专业 学生张三李四王五指导教师简磊 【摘要】本设计以直流电机控制为基础,基于传感器技术,以单片机控制技术为核心,实现电风扇的智能控制,同时设计采用轻触开关即可具有电风扇的调档功能。使用集成电路LM298N完成电风扇的驱动设计,通过单片机STC89C52的定时器0以及定时器1产生不同占空比的PWM波形控制电风扇电机驱动芯片从而改变电风扇电机的输入电流,最终实现电风扇电机转速调节功能,使得设计更加人性化,更加环保节能。 【关键词】调速功能单片机测温智能控制

目录 任务书 (1) 摘要 (Ⅰ) 目录 (Ⅱ) 引言 (Ⅲ) 一、方案设计 (Ⅳ) 二、硬件电路 (Ⅳ) 2.1电路系统框图 (Ⅳ) 2.2 STC89C52RC最小系统 (Ⅴ) 2.3 按键模块 (Ⅴ) 2.4 LED指示灯模块 (Ⅵ) 2.5电机温度实时测量模块 (Ⅵ) 2.6电机驱动模块 (Ⅵ) 2.7 LCD显示模块 (Ⅶ) 三、软件程序 (Ⅷ) 3.1主函数程序流程图 (Ⅷ) 3.2按键模块接口程序 (Ⅸ) 3.3 LED指示灯接口程序 (Ⅸ) 3.4 电机测温接口程序 (Ⅸ) 3.5 电机驱动接口程序 (Ⅸ) 3.6 LCD显示驱动程序 (Ⅸ) 四、调试结果 (Ⅹ) 五、小结 (Ⅺ) 附录一总电路仿真 (ⅩⅢ) 附录二程序清单 (ⅩⅣ) 附录三元件清单 (ⅩⅤ)

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

实验一 控制系统典型环节的模拟实验

实验一控制系统典型环节的模拟实验 一、实验目的 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 二、实验内容 1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)

2.测试各典型环节在单位阶跃信号作用下的输出响应。 3.改变各典型环节的相关参数,观测对输出响应的影响。 三、实验内容及步骤

1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。 ①准备:使运放处于工作状态。 将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(K30A)夹断,这时运放处于工作状态。 ②阶跃信号的产生: 电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。 具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。 以后实验若再用阶跃信号时,方法同上,不再赘述。 实验步骤: ①按表二中的各典型环节的模拟电路图将线接好(先接比例)。(PID先不接) ②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变比例参数,重新观测结果。 ④同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线参见表三。 2.观察PID环节的响应曲线。 实验步骤:

实验一--典型环节的电路模拟

自动控制原理实验报告 院(系):能源与环境学院 专业:热能与动力工程 姓名:周宇盛学号: 03010130 同组人员:王琪耀马晓飞 实验时间: 2012 年 10 月 23 日 实验名称:典型环节的电路模拟

一、实验目的 1. 熟悉THBDC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用; 2. 熟悉各典型环节的阶跃响应特性及其电路模拟; 3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。 二、实验设备 1. THBDC-1型控制理论·计算机控制技术实验平台; 2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线; 三、实验内容 1. 设计并组建各典型环节的模拟电路; 2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;

一、各典型环节电路图 1. 比例(P )环节 根据比例环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。 图中后一个单元为反相器,其中R 0=200K 。 若比例系数K=1时,电路中的参数取:R 1=100K ,R 2=100K 。 若比例系数K=2时,电路中的参数取:R 1=100K ,R 2=200K 。 2. 积分(I )环节 根据积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。 图中后一个单元为反相器,其中R 0=200K 。 若积分时间常数T=1S 时,电路中的参数取:R=100K ,C=10uF(T=RC=100K ×10uF=1); 若积分时间常数T=时,电路中的参数取:R=100K ,C=1uF(T=RC=100K ×1uF=; 3. 比例积分(PI)环节 根据比例积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。 图中后一个单元为反相器,其中R 0=200K 。 若取比例系数K=1、积分时间常数T=1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=10uF(K= R 2/ R 1=1,T=R 1C=100K ×10uF=1); 若取比例系数K=1、积分时间常数T=时,电路中的参数取:R 1=100K ,R 2=100K ,C=1uF(K= R 2/ R 1=1,T=R 1C=100K ×1uF=。 -+ + R 1 R 2u i -+ + R 0 R 0 u o -+ + R C u i -+ + R 0 R 0 u o

实验报告1--典型环节的模拟研究

南昌大学实验报告 学生姓名:梁志甲学号:6101113153 专业班级:电气134 实验类型:■验证□综合□设计□创新实验日期:实验成绩: 一、实验项目名称:典型环节的模拟研究 二、实验要求 1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响三、主要仪器设备及耗材 1.计算机一台(Windows XP操作系统) 2.AEDK-labACT自动控制理论教学实验系统一套 3.LabACT6_08软件一套 四、实验内容和步骤 1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 实验步骤:注:‘S ST’不能用“短路套”短接! (1)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号(Ui):B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1的Y测孔)调整为4V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。 (2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。 (a)安置短路套(b)测孔联线 (3)运行、观察、记录:(注:CH1选‘×1’档。时间量程选‘×1’档) ①打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V阶跃),

用示波器观测A6输出端(Uo )的实际响应曲线Uo (t )。 ② 改变比例系数(改变运算模拟单元A1的反馈电阻R 1),重新观测结果,填入实验报告。 2).观察惯性环节的阶跃响应曲线 典型惯性环节模拟电路如图3-1-4所示。 图3-1-4 典型惯性环节模拟电路 实验步骤: 注:‘S ST’不能用“短路套”短接! (1)用信号发生器(B1)的‘阶跃信号输出’ 和‘幅度控制电位器’构造输入信号(Ui ): B1单元中电位器的左边K3开关拨下(GND ),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1的Y 测孔)调整为4V (调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y 测孔)。 (2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。 (b )测孔联线 (1’档) ① 打开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo ),按下信号发生器(B1) 阶跃信号按钮时(0→+4V 阶跃),等待完整波形出来后,移动虚拟示波器横游标到4V (输入)×0.632处,,得到与惯性的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得惯性环节模拟电路时间常数T 。A6输出端(Uo )的实际响应曲线Uo (t )。 ② 改变时间常数及比例系数(分别改变运算模拟单元 A1的反馈电阻R1和反馈电容C ),重 新观测结果,填入实验报告。 3).观察积分环节的阶跃响应曲线 典型积分环节模拟电路如图3-1-5所示。 图3-1-5 典型积分环节模拟电路 实验步骤:注:‘S ST ’用短路套短接! (1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT ),代替信号发生

电风扇的模拟控制系统设计的设计

电风扇的模拟控制系统 设计的设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

单片机课程设计报告书 课题名 电风扇模拟控制系统设计 称: 姓名: 学号: 院系: 专业: 指导教 师: 时间:

设计项目成绩评定表

设计报告书目录 一、设计目的........................................................................ 错误!未定义书签。 二、设计思路........................................................................ 错误!未定义书签。 三、设计过程........................................................................ 错误!未定义书签。、系统方案论证 ....................................................................... 错误!未定义书签。、系统硬件设计电路图............................................................. 错误!未定义书签。系统软件设计......................................................................... 错误!未定义书签。 四、系统调试与结果............................................................ 错误!未定义书签。 五、主要元器件与设备........................................................ 错误!未定义书签。 六、课程设计体会与建议.................................................... 错误!未定义书签。、设计体会 .............................................................................. 错误!未定义书签。、设计建议............................................................................................... 错误!未定义书签。 七、参考文献........................................................................ 错误!未定义书签。

典型环节的电路模拟

典型环节的电路模拟

装 订 线实验报告 课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:_________典型环节的电路模拟______实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七 、 实 验 数 据 分 析 八、实验结果或结论 一、实验目的 1.熟悉THBDC-2型 控制理论·计算机控制技术实验平台及“THBDC-2”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟; 3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。 二、实验原理 自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。要对系统的设计和分析,必须熟悉这些典型环节的结构及其对阶跃输入的响应。 本实验中的典型环节都是以运放 专业: __

P .3 实验名称: 典型环节的电路模拟 姓名: 装 订 线为核心元件构成,原理图如左图 图中Z 1和Z 2表示由R 、C 构成的复数阻抗。 1. 积分环节(I ) 积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为: 设U i (S)为一单位阶跃信号,当积分系 数为T 时的响应曲线如右图所示。 2. 比例微分环节(PD ) 比例微分环节的传递函数与方框图分 别为: )1()1()(1 1 2 CS R R R TS K s G +=+= 其中C R T R R K D 1 12,/== 设U i (S)为一单位阶跃信号,右图示出了比例系数(K)为2、微分系数为T D 时PD 的输出响应曲线。 Ts S U S U s G i O 1 )()()(= =

控制系统的典型环节

关于我们控制理论教学制冷机仿真热工设备仿真论坛博客联系我们 主页 习题演练控制系统实验控制理论教程学生作业档案教师办公室典型作业展示常见问题 第一章自动控制的基本概念 第二章控制系统的数学描述 第三章控制系统的时域分析 第四章控制系统的频域分析 第五章过程控制 2.3 控制系统的典型环节 2.3 控制系统的典型环节 自动控制系统是由不同功能的元件构成的。从物理结构上看,控制系统的类型很多,相互之间差别很大,似乎没有共同之处。在对控制系统进行分析研究时,我们更强调系统的动态特性。具有相同动态特性或者说具有相同传递函数的所有不同物理结构,不同工作原理的元器件,我们都认为是同一环节。所以,环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,从物理结构上千差万别的控制系统中,我们就发现,他们都是有为数不多的某些环节组成的。这些环节成为典型环节或基本环节。经典控制理论中,常见的典型环节有以下六种。 2.3.1 比例环节 比例环节是最常见、最简单的一种环节。 比例环节的输出变量y(t)与输入变量x(t)之间满足下列关系 (2.24) 比例环节的传递函数为

(2.25) 式中K为放大系数或增益。 杠杆、齿轮变速器、电子放大器等在一定条件下都可以看作比例环节。 例10 图2.10 是一个集成运算放大电路,输入电压为,输出电压为,为输入电阻, 为反馈电阻。我们现在求取这个电路的传递函数。 解从电子线路的知识我们知道这是一个比例环节,其输入电压与输出电压的关系是 (2.26) 按传递函数的定义,可以得到 (2.27) 式中,可见这是一个比例环节。如果我们给比例环节输入一个阶跃信号,他的输出同样也是一个阶跃信号。阶跃信号是这样一种函数 (2.28) 式中为常量。当时,称阶跃信号为单位阶跃信号。阶跃输入下比例环节的输出如图2.11 所示。比例环节将原信号放大了K倍。

控制系统典型环节与系统的模拟

控制系统典型环节与系统的模拟 一、实验目的 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 二、实验设备 https://www.360docs.net/doc/5b12844465.html,KL-1控制理论实验箱1台 2.TDS1001B数字存储示波器1台 3.台式计算机 4.U盘1只 三、实验原理 1. 以运算放大器为核心,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节,用数字存储示波器测量各环节的阶跃响应曲线。 2. 操作过程注意事项。 A、接通TKKL-1实验箱的电源总开关。 B、接通TKKL-1实验箱上的直流电源开关。 C、接通TKKL-1实验箱上的阶跃信号发生器电源开关。 D、电位器顺时针调节时电阻值增大。 E、示波器探头接地端要与实验箱的地端牢固连接。 四、实验内容 1. 分别画出比例、积分、惯性、微分和振荡环节的电路原理图。 2. 按所设计的电路原理图接线,并在各电路的输入端输入阶跃信号,在电路的输出端观察并记录其单位阶跃响应的输出波形。 比例环节 G1(S)=1 和 G2(S)=2

积分环节 G1(S)=1/(S+1) 和 G2(S)=1/(0.51S+1)

惯性环节 G1(S)=1/S 和 G2(S)=1/(0.51S)

震荡环节

R1=100K, R2=1M, R3=100K, R4=100K, R5=1M, R6=100K, C1=1uF, C2=1uF R1=100K, R2=1M, R3=100K, R4=100K, R5=1M, R6=100K, C1=2uF, C2=1uF 微分环节 G(s)=410(1+0.02S)/200

实验1-典型环节的模拟研究

实验一 典型环节的模拟研究 一.实验目的 1.通过搭建典型环节模拟电路,熟悉并掌握自动控制综合实验台的使用方法。 2.了解并掌握各典型环节的传递函数及其特性,观察和分析各典型环节的响应曲线,掌握电路模拟研究方法。 二.实验内容 1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。 2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。 三.实验步骤 在实验中观测实验结果时,可选用普通示波器。 1.观察比例环节的阶跃响应曲线 实验中所用到的功能区域: 阶跃信号、示波器、实验电路A1、实验电路A2。 注: a.掌握示波器的使用、标定和测量。 b.搭建阶跃信号的电路,用示波器观察波形。 c.了解运算放大器的引脚定义。 典型比例环节模拟电路如图1-1-1所示,比例环节的传递函数为: 0() () i U s K U s 图1-1-1典型比例环节模拟电路 实验步骤: (1) 设置阶跃信号源: A .将阶跃信号区的“0~1V ”端子与实验电路A1的“Ui ”端子相连接 B .按压阶跃信号开关按钮就可以在“0~1V ”端子产生阶跃信号。 C. 用示波器通道CH2观察。 (2) 搭建典型比例环节模拟电路: A .将实验电路A1的“OUT1”端子与实验电路A2的“IN ”端子相连接; B .按照图1-1-1拨动阶跃信号开关按钮: (3) 连接示波器: 将实验电路A2的“Uo ”与示波器通道CH1相连接。 (4) 输入阶跃信号,通过示波器观测输出阶跃响应曲线并进行记录。

2.观察积分环节的阶跃响应曲线 实验中所用到的功能区域: 阶跃信号、示波器、实验电路A1、实验电路A2。 典型积分环节模拟电路如图1-1-2所示,积分环节的传递函数为: 0()1 ()i U s U s TS = 图1-1-2典型积分环节模拟电路 同上1实验步骤 3.观察比例积分环节的阶跃响应曲线 实验中所用到的功能区域: 阶跃信号、示波器、实验电路A3、实验电路A5。 典型比例积分环节模拟电路如图1-1-3所示,比例积分环节的传递函数为: 0()1 ()i U s K U s TS =+ 图1-1-3典型比例积分环节模拟电路 同上1实验步骤 4.观察微分环节的阶跃响应曲线 实验中所用到的功能区域: 阶跃信号、示波器、实验电路A1、实验电路A2。 典型微分环节模拟电路如图1-1-4所示,微分环节的传递函数为: 0() () i U s TS U s =

控制系统的典型环节的模拟实验报告修订版

控制系统的典型环节的 模拟实验报告修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

课程名称:控制理论乙指导老师:成绩:实验名称:控制系统典型环节的模拟实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉超低频扫描示波器的使用方法 2.掌握用运放组成控制系统典型环节的电子电路 3.测量典型环节的阶跃响应曲线 4.铜鼓哦是暗夜男了解典型环节中参数的变化对输出动态性能的影响 二、实验内容和原理 以运算放大器为核心元件,由其不同的RC输入网络和反馈网络组成的各种典型环节,如下图所示。

右图中可以得到: 由上式可求得有下列模拟电路组成的典型环节的传递函数及其单位阶跃响应 1.积分环节 连接电路图如下图所示 和第一个实验相同,电源为峰峰值为30V 的阶跃函数电源,运放为LM358型号运放。在这次实验中,R2并不出现在电路中,所以我们可以同时调节R1的值和C 的值来改变该传递函数的其他参量值。具体表达式为: 式中:RC T = 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像 实验要求积分环节的传递函数需要达到(1)s s G 1)(1=(2)s s G 5.01)(2= 2.比例微分环节 连接电路图如下图所示 在该电路中,实验器材和第一次实验与第二次实验不变,R2仍然固定为1M 不改变。R1与C 并联之后与运算放大器的负端相连,R2接在运放的输出端和负输入端两端,起到了负反馈调节作用。具体表达式为: 式中,12R R K = ,C R T 1= 由表达式可以画出在阶跃函数的激励下,电路所出现的阶跃响应图像

典型环节的模拟研究报告实验报告

第三章自动控制原理实验 3.1线性系统的时域分析 3.1.1典型环节的模拟研究 .实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 .典型环节的结构图及传递函数 三.实验内容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影 响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验 报告 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟 示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。

——0 dtnn 传递函数: 模块号跨接座号 1A5S4, S12 2B5‘ S-ST' 1信号输入(Ui)B5 (OUT T A5 ( H1) 2示波器联接A6 (OUT T B3 ( CH1) 3X 1档B5 (OUT T B3 (CH2) +4V 阶 1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 单位阶跃响应:U(t)=K R o 实验步骤:注:‘ S ST'用短路套短接! (1)将函数发生器(B5)所产生的周期性矩形波信号(OUT,作为系统的信号输入(Ui); 该信号为零输出时,将自动对模拟电路锁零。 ①在显示与功能选择(D1)单元中,通过波形选择按键选中’矩形波’(矩形波指示灯亮)。 ②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度〉1秒(D1单元左 显示)。 ③调节B5单元的“矩形波调幅”电位器使矩形波输出电压=4V (D1单元右显示) (2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。 跃),观测A5B输出端(Uo)的实际响应曲线Uo (t )见图3-1-2。示波器的截图详见虚拟示 波器的使用。 实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。 R0 R1 输入Ui 比例系数K 计算值测量值 200K 100K 4V 0.5 0.51 200K 4V 1 1.02 同期住矩爪谀信号 B5 OUT 一 ?C0K (a)安置短路套 (3)运行、观察、记录: 打开虚拟示波器的界面,点击 (b)测孔联线 开始,按下信号发生器(B1)阶跃信号按钮

自动配料模拟控制系统设计

引言 自动配料控制系统是采用PLC控制方式以及新颖的变频调速喂料机构,配合配料控制 软件包,实现物料传送、配料控制、配方设计、生产数据管理等功能。并可以通过网络实现多个配料系统的集合控制。 自动配料控制系统设计步骤: 1.主电路设计,并画出接线示意图。 2.分配I/O地址,列出分配表。 3.设计系统控制的程序框图。 4.根据程序框图设计该系统的控制梯形图。 5.上机调试通过。 6.利用PLC系统进行模拟运行 1自动配料控制系统结构和工作原理 1.1自动配料控制系统方案 系统启动后,配料装置能自动识别货车到位情况及对货车进行自动配料,当车装满时,配料系统自动关闭。本设计的突出点是故障检测部分的设计,首先,当某一节传送带发生故障时,该节传送带和其前面的传送带会立即停止,该节之后的传送带会在一定的延时后

停止。其次,当某节传送带上的物体过重时,该节传送带和其前面的传送带会立即停止, 并且数码显示电路会显示发生故障的电机的号码,该节之后的传送带会在一定的延时后停止。 1.2 自动配料控制系统基本结构 自动配料的模拟面板如图1.1所示,从图中可以看出四节传送带是本次设计的核心电路,PLC编程也是围绕此面板进行的 图1.1 自动配料系统图 自动配料系统的功能是利用四节传送带为小车自动配料,重物通过传送带进行传输, 发生故障时系统自动停机。自动配料实验面板与PLC接线控制对应关系如表1.1.1所示。 表1.1.1 输入/输出接线列表 面板SB1SB2S1SQ1SQ2D1 PLC I0.0I0.1I0.2I0.4I0.5Q0.0 面板D2D3D4L1L2M1 PLC Q0.1Q0.2Q0.3Q0.4Q0.5Q0.6 面板M2M3M4A B C PLC Q0.7Q1.0Q1.1I0.6I0.7I1.0

典型环节的电路模拟

实验报告 课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:_________典型环节的电路模拟______实验类型:________________同组学生:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论 一、实验目的 1.熟悉THBDC-2型 控制理论·计算机控制技术实验平台及“THBDC-2”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟; 3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。 二、实验原理 自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。要对系统的设计和分析,必须熟悉这些典型环节的结构及其对阶跃输入的响应。 本实验中的典型环节都是以运放为核心元件构成,原理图如左图 图中Z 1和Z 2表示由R 、C 构成的复数阻抗。 1. 积分环节(I ) 积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为: 设U i (S)为一单位阶跃信号,当积分系 数为T 时的响应曲线如右图所示。 2. 比例微分环节(PD ) 比例微分环节的传递函数与方框图分别为: )1()1()(11 2 CS R R R TS K s G +=+= 其中C R T R R K D 112,/== 设U i (S)为一单位阶跃信号,右图示出了比例系数(K)为2、微分系数为T D 时PD 的输出响应曲线。 专业: __ Ts S U S U s G i O 1 )()()(==

相关文档
最新文档