第七章:钢筋混凝土偏心受力构件承载力计算1(11)
精编第七章 钢筋溷凝土偏心受力构件承载力计算资料
本章的重点是: 了解偏心受压构件的受力特性,熟悉两种不同的受压
破坏特性及两类受压构件 掌握其判别方法; 熟悉偏心受压构件的二阶效应及计算方法; 掌握偏心受压构件的受力特性及正截面承载力计算方
法; 掌握偏心受压构件斜截面受剪承载力计算方法。
§7.1 概述
结构构件的截面上受到轴力和弯矩的共同作用或受 到偏心力的作用时,该结构构件称为偏心受压构件。
xn
cu
h0 xnb
cu
h0
3. 矩形截面偏心受压构件不对称配筋计算
(1)构件大小偏心的判别
理论判别式:当
时,为大偏心受压构件;
b
当 b时,为小偏心受压构件。
经验判别式:
当偏心距ηei≤0.3h0 时,按小偏心受压计算;
当偏心距ηei>0.3h0时,先按大偏心受压计算.
1 1 1400 ei
fyAs
f'yA's
◆ 截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展
较快,首先达到屈服。
◆ 裂缝迅速开展,受压区高度减小。
◆ 最后受压侧钢筋A's 受压屈服,压区混凝土压碎而达到破坏。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与配有受 压钢筋的适筋梁相似,承载力主要取决于受拉侧钢筋。
D3
D2
D1
ÓÐ ²à ÒÆ ¿ò ¼Ü ½á ¹ µÄ ¶þ ½×Ч¦Ó
(1)无侧移钢筋混凝土柱:η-l0法
对于无侧移钢筋混凝土柱在偏心压力作用下将产生挠曲
变形,即侧向挠度 。侧向挠度引起附加弯矩N 。当柱的长
细比较大时,挠曲的影响不容忽视,计算中须考虑侧向挠度 引起的附加弯矩对构件承载力的影响。
《钢筋混凝土结构设计原理》复习资料
第一章混凝土结构用材料的性能1、在钢筋混凝土构件中钢筋的作用是替混凝土受拉或协助混凝土受压.2、混凝土的强度指标有混凝土的立方体强度、混凝土轴心抗压强度和混凝土抗拉强度。
3、混凝土的变形可分为两类:受力变形和体积变形。
4、钢筋混凝土结构使用的钢筋,不仅要强度高,而且要具有良好的塑性、可焊性,同时还要求与混凝土有较好的粘结性能。
5、影响钢筋与混凝土之间粘结强度的因素很多,其中主要为混凝土强度、浇筑位置、保护层厚度及钢筋净间距。
6、钢筋和混凝土这两种力学性能不同的材料能够有效地结合在一起共同工作,其主要原因是: 钢筋和混凝土之间具有良好的粘结力、钢筋和混凝土的温度线膨胀系数接近和混凝土对钢筋起保护作用.7、混凝土的变形可分为混凝土的受力变形和混凝土的体积变形 .其中混凝土的徐变属于混凝土的受力变形,混凝土的收缩和膨胀属于混凝土的体积变形。
第二章混凝土结构的设计方法1、结构设计的目的,就是要使所设计的结构,在规定的时间内能够在具有足够可靠性性的前提下,完成全部功能的要求。
2、结构能够满足各项功能要求而良好地工作,称为结构可靠,反之则称为失效,结构工作状态是处于可靠还是失效的标志用极限状态来衡量。
3、国际上一般将结构的极限状态分为三类:承载能力极限状态、正常使用极限状态和“破坏一安全”极限状态。
4、正常使用极限状态的计算,是以弹性理论或塑性理论为基础,主要进行以下三个方面的验算:应力计算、裂缝宽度验算和变形验算.5、公路桥涵设计中所采用的荷载有如下几类:永久荷载、可变荷载和偶然荷载。
6、结构的安全性、适用性和耐久性通称为结构的可靠性.7、作用是指使结构产生内力、变形、应力和应变的所有原因,它分为直接作用和间接作用两种. 直接作用是指施加在结构上的集中力或分布力如汽车、人群、结构自重等,间接作用是指引起结构外加变形和约束变形的原因,如地震、基础不均匀沉降、混凝土收缩、温度变化等。
8、结构上的作用按其随时间的变异性和出现的可能性分为三类:永久作用(恒载)、可变作用和偶然作用.9、我国《公路桥规》根据桥梁在施工和使用过程中面临的不同情况,规定了结构设计的三种状况:持久状况、短暂状况和偶然状况。
偏心受压构件的正截面承载力计算
xhoho 22[0Ndesffcsd 'db A s'(hoas')]
➢当 2as x时bh,0
As fcdbxffs'dsdAs' 0Nd
➢当 x ,b h且0
时x , 2 a s
令 x ,2则a可s 求得
As
0 Nd es
偏压构件是同时受到轴向压力N和弯矩M的作用, 等效于对截面形心的偏心距:e。=M/N的偏心压力的 作用。
图7-1偏心受压构件与压弯构件图
偏心距: 压力N的作用点离构件截面形心的距离e0 压弯构件: 截面上同时承受轴心压力和弯矩的构件。
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
fsd (ho as)
2)当 e0 0时.3h0
已知:b hN d M d f c d f s d f s d l 0
求: As 、 As '
注:As不论是拉还是压,均未达屈服强度,可按一则最小配筋 率来进行设计.
解: 令 A sm 'in b h 0 .0 0 2 b h
由式(7-6)和式(7-10),可求得x方程组
由7-10可钢筋应力 s
s cuEs(xh0 1)
由7-4可求得NU
0 N d fc d b x fs dA s sA s
2.当 h时/ h,0 取 代x入7h-10得钢筋应力
承载力NU1
近偏心则破坏
再由 7s -4求得截面
由公式7-13求截面承载力NU2 远偏心则破坏
0 N d e s f c d b h ( h 0 h /2 ) f s d A s ( h 0 a s )
偏心受压构件承载力.
N
N
As 太
多
ssAs
f'yA's
ssAs
f'yA's
7.2 偏心受压构件的破坏形态
第七章 偏心受压构件承载力
2、受压破坏compressive failure
N
产生受压破坏的条件有两种情况:
⑴当相对偏心距e0/h0较小 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
ssAs
f'yA's
◆ 纵向钢筋的保护层厚度要求见表8-3,且不小于钢筋直径d。 ◆ 当柱为竖向浇筑混凝土时,纵筋的净距不小于50mm; ◆ 对水平浇筑的预制柱,其纵向钢筋的最小应按梁的规定取值。 ◆ 截面各边纵筋的中距不应大于350mm。当h≥600mm时,在柱
侧面应设置直径10~16mm的纵向构造钢筋,并相应设置复合 箍筋或拉筋。
◆ 对于长细比较大的构件,二阶 N ei 效应引起附加弯矩不能忽略。
◆ 图示典型偏心受压柱,跨中侧 向挠度为 f 。
N ( ei+ f ) ◆ 对跨中截面,轴力N的偏心距 为ei + f ,即跨中截面的弯矩为 M =N ( ei + f )。 ◆ 在截面和初始偏心距相同的情 况下,柱的长细比l0/h不同,侧 向挠度 f 的大小不同,影响程度 会有很大差别,将产生不同的破 坏类型。
◆ 当柱中全部纵筋的配筋率超过3%,箍筋直径不宜小于8mm, 且箍筋末端应应作成135°的弯钩,弯钩末端平直段长度不 应小于10箍筋直径,或焊成封闭式;箍筋间距不应大于10倍 纵筋最小直径,也不应大于200mm。
◆ 当柱截面短边大于400mm,且各边纵筋配置根数超过多于3 根时,或当柱截面短边不大于400mm,但各边纵筋配置根 数超过多于4根时,应设置复合箍筋。
偏心受力构件承载力的计算
第七章 偏心受力构件承载力的计算西安交通大学土木工程系 杨 政第七章 偏心受力构件承载力的计算结构构件的截面受到轴力N和弯矩M共同作用,只在截 面上产生正应力,可以等效为一个偏心(偏心距 e0=M/N ) 作用的轴力N。
因此,截面上受到轴力和弯矩共同作用的结 构构件称为偏心受力构件。
N NM N(a )N N M(b )N(c )(d )(e )(f)第七章 偏心受力构件承载力的计算显然,轴心受力( e0=0 )和受弯( e0=∞)构件为其特 例。
当轴向力为压力时,称为偏心受压;当轴向力为拉力 时,称为偏心受拉。
偏心受压构件多采用矩形截面,工业建筑中尺寸较大的 预制柱也采用工字形和箱形截面,桥墩、桩及公共建筑中的 柱等多采用圆形截面;而偏心受拉构件多采用矩形截面。
e0=0 轴心受拉 偏心受拉 大偏心 e0=∞ 纯弯 偏心受压 小偏心 e0=0 轴心受压小偏心大偏心第七章 偏心受力构件承载力的计算7.1 偏心受压构件正截面承载力计算7.1.1 偏心受压构件的破坏形态偏心受压构件是工程中使用量最大 的结构构件,其受力性能随偏心距、配 筋率和长细比( l0/h )等主要因素而变 化。
与轴心受压构件类似,根据构件的 长细比,偏心受压柱也有长柱和短柱之 分。
此外,其他一些重要因素,例如混 凝土和钢筋材料的种类和强度等级、构 件的截面形状、钢筋的构造、荷载的施 加途径等,都对构件的受力性能和破坏 形态产生影响。
第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 偏心受压构件破坏类型 受拉(大偏心受压)破坏7.1 偏心受压构件正截面承载力计算第七章 偏心受力构件承载力的计算受压(小偏心受压)破坏 受压应力较大一侧的应变首先达到混凝土的极限压应变 而破坏,同侧的纵向钢筋也受压屈服;而另一侧纵向钢筋可 能受压也可能受拉,如果受压可能达到受压屈服,但如果受 拉,则不可能达到受拉屈服。
构件的承载力主要取决于受压混凝土和受压纵向钢筋。
6钢筋混凝土偏心受力构件承载力计算
6钢筋混凝土偏心受力构件承载力计算钢筋混凝土偏心受力构件是一种常用的结构形式,常见于各种建筑和桥梁工程中。
在设计和施工过程中,对其承载力进行准确计算是十分重要的。
本文将介绍钢筋混凝土偏心受力构件的承载力计算方法,包括偏心受压构件和偏心受拉构件的计算。
首先,我们来介绍偏心受压构件的承载力计算方法。
偏心受压构件是指受压钢筋与截面重心之间有一个偏心距的构件。
其计算工作主要分为两个步骤:截面计算和偏心距计算。
1.截面计算:确定混凝土和钢筋的受力状态。
首先,计算构件的受拉区和受压区的面积,分别记为A_s和A_c。
其次,计算出受拉区的应力,记为σ_s。
然后,计算出受拉区的抗拉钢筋面积As',使得其能够承受施加在构件上的最大拉力。
最后,通过平衡条件,计算出混凝土的受压区的应力σ_c。
2.偏心距计算:确定偏心距的大小。
偏心距的计算与混凝土和钢筋的受力状态有关。
在受力状态已知的情况下,可以通过拉力平衡方程计算出偏心距的大小,即:e=(α*As'*σ_s-As*σ_c)/b*f_c其中,e为偏心距,α为抗拉钢筋的应力分配系数,As为受压区的钢筋面积,b为构件宽度,f_c为混凝土的抗压强度。
偏心距的计算对于后续的承载力计算非常重要。
当偏心距大于受压区最大尺寸的一半时,构件发生弯曲破坏;当偏心距小于受压区最大尺寸的一半时,构件发生压碎破坏。
下面,我们来介绍偏心受拉构件的承载力计算方法。
偏心受拉构件是指受拉钢筋与截面重心之间有一个偏心距的构件。
其计算工作同样分为两个步骤:截面计算和偏心距计算。
1.截面计算:确定混凝土和钢筋的受力状态。
首先,计算构件中混凝土的受拉面积A_c,然后计算受拉区的应力σ_c。
其次,计算出能够承受施加在构件上的最大拉力的钢筋面积A_s'。
最后,通过平衡条件,计算出抗拉钢筋的应力σ_s。
2.偏心距计算:确定偏心距的大小。
偏心距的计算方法同样适用于偏心受拉构件,即使用拉力平衡方程计算出偏心距e,公式如下:e=(A_s*σ_s-A_c*σ_c)/(b*f_c)在计算偏心受拉构件的承载力时,需要注意偏心距的大小。
混凝土结构设计概念题(含答案)
绪论1.什么是混凝土结构?根据混凝土中添加材料的不同通常分哪些类型?答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。
混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。
2.钢筋与混凝土共同工作的基础条件是什么?答:混凝土和钢筋协同工作的条件是:(1)钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;(2)钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;(3)设置一定厚度混凝土保护层;(4)钢筋在混凝土中有可靠的锚固。
3.混凝土结构有哪些优缺点?答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)整体浇筑的钢筋混凝土结构整体性好,适应灾害环境能力强,;(6)可以就地取材。
缺点:如自重大,不利于建造大跨结构;抗裂性差;浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。
4.简述混凝土结构设计方法的主要阶段。
答:四个阶段:材料力学的容许应力方法;按极限状态设计方法;概率论为基础的极限状态设计方法;性能化设计方法和理论。
第2章钢筋和混凝土的力学性能1.软钢和硬钢的区别是什么?设计时分别采用什么值作为依据?答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。
软钢有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度fyf,一般用作钢筋的实际破坏强度。
作为钢筋的强度极限。
另一个强度指标是钢筋极限强度u设计中硬钢极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。
第七章偏心受压构件的正承载力计算-PPT
基本计算公式
受压区混凝土都能达到极限压应变; As’达到抗压强度设计值fsd’ ;
As受拉,也可能受压,大小ss。
es e0 h 2 as
es' e0 h 2 as'
es 、 es' —分别为偏心应力 0 Nd 至钢筋 As 合力点和钢筋 As' 合力作用点的距离;
1 2
ei
N
f
s
t
c
h0
偏心距增大系数
1 f
ei
f
1 1717
l0 2 h0
1 2
1
1 1717ei
l0 2 h0
1
2
h 1.1h0
1 1
1400 ei
l0 h
2
1
2
h0
ei
N
f
s
t
c
h0
根据偏心压杆得极限曲率理论分析,《公路桥规》规定
1 1 1400
e0
(
l0 h
)2
1
2
h0
1
0.2 2.7
as 、 as' —分别为钢筋 As 合力点和钢筋 As' 合力作用点至截面边缘的距离。
基本计算公式
纵轴方向得合力为零
0 Nd
Nu
fcdbx
f
' sd
As'
s s As
对钢筋As合力点得力矩之与等于零
0 Nd es
Mu
fcd
bx(h0
x 2
)
f
' sd
As'
(h0
as'
)
1
2
偏心受拉构件正截面承载力计算
在此情况下,离轴力较远一侧的钢筋 As必然不屈服,
设计时取
As As
Ne f y (h0 a)
② 截面校核:按式(2)进行。
(4)偏心受拉构件的斜截面承载力计算
轴拉力的存在使斜裂缝贯通全截面,从而不存在剪 压区,降低了斜截面承载力。因此,受拉构件的斜截面 承载力公式是在受弯构件相应公式的基础上减去轴拉力 所降低的抗剪强度部分,即0.2N。
(1) (2)
②截面设计:已知构件尺寸、材料强度等级和内力, 求配筋。在此情况下基本公式中有二个未知数,可直 接求解。
③截面校核:一般已知构件尺寸、配筋、材料强度, 偏心距e0,由式(1)和式(2)都可直接求出N,并 取其较大者。
2)对称配筋
①截面设计:已知构件尺寸、材料强度等级和内力, 求配筋。
f y——纵向钢筋抗拉强度设计值;
N ——轴心受拉承载力设计值。
7.2 偏心受拉构件正截面承载力计算
(1)偏心受拉构件的破坏特征
1)大偏心受拉破坏 当轴力处于纵向钢筋之外时发生此种破坏。破坏时
距纵向拉力近的一侧混凝土开裂,混凝土开裂后不会形 成贯通整个截面的裂缝,最后,与大偏心受压情况类似, 钢筋屈服,而离轴力较远一侧的混凝土被压碎 。
受剪承载力的降低与轴向拉力N近乎成正比。 《规范》对矩形截面偏心受拉构件受剪承载力:
V
1.75
1.0
ftbh0
f yv
Asv s
h0
0.2N
当右边计算值小于
f yv
Asv s
h0 时,即斜裂缝
贯通全截面,剪力全部由箍筋承担,受剪承载
力应取
f yv
Asv s
h0 。
为防止斜拉破坏,此时的
0.36ftbh0。
钢筋混凝土偏心受力构件承载力计算
由式(7-19)得:
As
As'
Ne 1 fcbx(h0 0.5x)
f
' y
(h0
as' )
Ne 1 fcbh2 (1 0.5 )
f
' y
(h0
as' )
…7-34
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
❖Ⅰ形截面对称配筋偏心受压构件正截面承载力 概述:
主页
大偏压 ( b ) 小偏压 ( b )
f
' y
(h0
as' )
式中:e ei h / 2 as
…7-26
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
小偏压:
1.鉴别式 : > b 或 ei<0.3h0
或 ei >0.3h0 但 N > fc b bh0
2.计算式
:
s
1 b 1
fy
由式(7-18)有:
N
1 fcbh0
0.5x) 1 fc (bf'
fy (h0 as' )
b)hf'
(h0
0.5hf'
)
…7-38
主页 目录 上一章 下一章 帮助
混凝土构造设计原理
第7章
2.若x bh0,为小偏压。此时: 若 bh0 x h h f ,则
As
As'
Ne 1
fc (bf'
b)hf'
(h0 0.5hf' ) 1
x
2a
' s
2as' x hf'
钢筋混凝土偏心受力构件承载力计算习题课
一、填空题
1、小偏心受压构件的破坏都是由于 混凝土被压碎 而造成的。 2、大偏心受压破坏属于 延性 ,小偏心破坏属 于 脆性 。 3、偏心受压构件在纵向弯曲影响下,其破坏特 征有两种类型,对长细比较小的短柱属于 材料 破坏,对长细比较大的细长柱,属于 失稳 破坏。
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
判断题
第7章钢筋混凝土偏心受力构件承载力计算习题课
三、计算题
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力计算习题课
第7章钢筋混凝土偏心受力构件承载力力计算习题课
7、偏心受压构件 轴向压力N
是对抗剪有利。
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
二、判断题
不大于 0.2%bh 。 1、在偏心受压构件中,As (× ) 2、小偏心受压构件偏心距一定很小。( ×)
3、在偏心受力构件中,大偏压比小偏压材料受 力更合理。( √ )
填空题
第7章钢筋混凝土偏心受力构件承载力计算习题课
4、《混凝土结构设计规范》(GB50010-2010) 将柱端的附加弯矩计算,用 偏心距调节系数 和 弯矩增大系数 来表示。
b 5、大小偏心受压的分界限是 。
6、对于对称配筋的偏心受压构件,在进行截面 设计时, b 和 b 作为判别偏心受压类 型的唯一依据。
第七章偏心受力构件
§7.1 概 述
7.1.1 定义 偏心受力构件是指轴向力偏离截面形心或构件
同时受到弯矩和轴向力的共同作用。
N
NM
N
(a)
N
(b)
NM
(c)
N
图7-1
(d)
(e)
(f)
偏心受拉(拉弯构件) 偏心受压(压弯构件)
单向偏心受力构件 双向偏心受力构件
7.1.2. 工程应用
hf 100mm
d 80mm
第
混凝土
七 章
7.2.3 配筋形式
• 纵筋布置于弯矩作用方向两侧面 d12mm 纵筋间距>50mm 中距 350mm
构造给筋212
构造给筋416
h<600 (a)
600h1000 (b)
1000<h1500 (c)
600h1000 (d)
(g)
600h1000 (e)
N2 N2ei
短柱(材料破坏)
B
中长柱(材料破坏)
N1af1 C
细长柱(失稳破坏)
N2af2
E
图7-8 0
D
M
N
f
M = N(ei+f)
侧向挠曲将引起附加弯矩,
M增大较N更快,不成正比。
二阶矩效应
ei+ f = ei(1+ f / ei) = ei
=1 +f / ei
…7-6
––– 偏心距增大系数
构件破坏,As s。
)
(
受 压 破 坏
小 偏 心 受 压 破 坏
第
混凝土
七 章
7.3.2 界限破坏及大小偏心的界限
习题7 偏心受力构件承载力计算
第七章 偏心受力构件承载力计算(一)选择题1.钢筋混凝土大偏压构件的破坏特征是[ ]。
a 、远离纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎;b 、靠近纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎;c 、靠近纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈;d 、远离纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈。
2.钢筋混凝土偏心受压构件,其大小偏心受压的根本区别是[ ]。
a 、截面破坏时,受拉钢筋是否屈服;b 、截面破坏时,受压钢筋是否屈服;c 、偏心距的大小;d 、受压一侧混凝土是否达到极限压应变值。
3.偏压构件的抗弯承载力[ ]。
a 、随着轴向力的增加而增加;b 、随着轴向力的减少而增加;c 、小偏受压时随着轴向力的增加而增加;d 、大偏受压随着轴向力的增加而增加。
4.一对称配筋的大偏心受压柱,承受的四组内力中,最不利的一组内力为[ ]。
a 、M=500kN ·m N=200KN b 、M=491kN ·m N=304kNc 、M=503kN ·m N=398kNd 、 M=512kN ·m N=506kN5.一小偏心受压柱,可能承受以下四组内力设计值,试确定按哪一组内力计算所得配筋量最大?[ ]a 、M=525 kN ·m N=2050 kNb 、M=525 kN ·m N=3060 kNc 、M=525 kN ·m N=3050 kNd 、 M=525 kN ·m N=3070 kN6.钢筋混凝土矩形截面大偏压构件截面设计当s a 2x '< 时,受拉钢筋的计算截面面积As 的求法是[ ]。
a 、对受压钢筋合力点取矩求得,即按s a 2x '=计算;b 、按s a 2x '=计算,再按s A '=0计算,两者取大值;c 、按0b h x ξ=计算;d 、按最小配筋率及构造要求确定。
(完整版)第7章受拉构件的截面承载力习题答案
第7章 受拉构件的截面承载力7.1选择题1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。
A. 截面破坏时,受拉钢筋是否屈服;B. 截面破坏时,受压钢筋是否屈服;C. 受压一侧混凝土是否压碎;D. 纵向拉力N 的作用点的位置;2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。
A. 如果b ξξ>,说明是小偏心受拉破坏;B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担;C. 大偏心构件存在混凝土受压区;D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置;7.2判断题1. 如果b ξξ>,说明是小偏心受拉破坏。
( × )2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。
( ∨ )3. 大偏心构件存在混凝土受压区。
( ∨ )4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。
( ∨ )7.3问答题1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同?答:(1)当N 作用在纵向钢筋s A 合力点和's A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和's A 合力点范围之间时,为小偏心受拉;(2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同?答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。
3.大偏心受拉构件为非对称配筋,如果计算中出现'2s a x <或出现负值,怎么处理?答:取'2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩, )('0's y s a h f Ne A -=,bh A s 'min 'ρ=4.为什么小偏心受拉设计计算公式中,只采用弯矩受力状态,没有采用力受力状态,而在大偏心受拉设计计算公式中,既采用了力受力状态又采用弯矩受力状态建立?答:因为,大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。
2024年电大混凝土结构设计原理考试题库答案
混凝土结构设计原理试题库及其参考答案第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
(错)2.混凝土在三向压力作用下的强度能够提升。
(对)3.一般热轧钢筋受压时的屈服强度与受拉时基本相同。
(对)4.钢筋经冷拉后,强度和塑性均可提升。
(错) 5.冷拉钢筋不宜用作受压钢筋。
(对)6.C20表示f cu =20N/mm 。
(错)7.混凝土受压破坏是因为内部微裂缝扩展的成果。
(对)8.混凝土抗拉强度伴随混凝土强度等级提升而增大。
(对)9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
(错)10.混凝土受拉时的弹性模量与受压时相同。
(对)11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增加与应力不成正比。
(对)12.混凝土强度等级愈高,胶结力也愈大(对)13.混凝土收缩、徐变与时间有关,且相互影响。
(对)第3章 轴心受力构件承载力1.轴心受压构件纵向受压钢筋配备越多越好。
( 错 )2.轴心受压构件中的箍筋应作成封闭式的。
( 对 )3.实际工程中没有真正的轴心受压构件。
( 对 )4.轴心受压构件的长细比越大,稳定系数值越高。
( 错 )5.轴心受压构件计算中,考虑受压时纵筋轻易压曲,因此钢筋的抗压强度设计值最大取为。
( 2/400mm N错 )6.螺旋箍筋柱既能提升轴心受压构件的承载力,又能提升柱的稳定性。
( 错 )第4章 受弯构件正截面承载力1.混凝土保护层厚度越大越好。
( 错 )2.对于的T 形截面梁,因为其正截面受弯承载力相称于宽度为的矩形截面梁,因此其配筋率应按'f h x ≤'f b 来计算。
( 错 )0'h b A f s =ρ3.板中的分布钢筋布置在受力钢筋的下面。
( 错 )4.在截面的受压区配备一定数量的钢筋对于改进梁截面的延性是有作用的。
(对 )5.双筋截面比单筋截面更经济合用。
( 错 )6.截面复核中,假如,阐明梁发生破坏,承载力为0。
第七章钢筋混凝土偏心受力构件承载力
Nb Nc Ne
Nbei Nc ei Ne ei
B
Nc a f C Ne a f
长柱(材料破坏)
细长柱(失稳破坏)
E D M
O
Nb >Nc >Ne
混凝土结构设计原理
第七章
5、结构侧移和构件挠曲引起的附加内力
二阶效应 偏心受压构件的轴向力在结构发生层间位移和 挠曲变形时会引起附加内力,即二阶效应。
M1
混凝土结构设计原理
第七章
配筋形式
T形、工字形柱
方形柱
矩形柱
混凝土结构设计原理 偏心受力构件分类 轴力特征: 偏心受压构件 偏心受拉构件 受拉破坏 破坏特征: 受压破坏 矩形截面 截面形式: 工字形截面 圆形截面
第七章
截面承载力:
正截面承载力 斜截面承载力
配筋方式:
对称配筋 非对称配筋 单向偏心 双向偏心
M2
M2
b
M1 M1
lc——构件的计算长度,可近似取偏心受压构件相应主 轴方向上下支撑点之间的距离; i——偏心方向的截面回转半径。
混凝土结构设计原理
第七章
C m ns 法
(2)考虑P-δ效应的方法(非排架结构)——
除排架结构柱外,其他偏心受压构件考虑轴向压力在 挠曲杆件中产生的二阶效应后控制截面的弯矩设计值 M为: M C m ns M 2 (7- 5 )
γ0 N N u γ0 M M u
混凝土结构设计原理
第七章
1、矩形截面偏心受压构件计算
(1)基本计算公式 大偏心受压(
b)
N 1 f c bx f y' As' f y As
(7- 12 )
x f y(h0 a Ne α1 fc bx(h0 ) As s ) (7- 13 ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一章 帮助
91
混凝土结构设计原理
第7章
不考虑P-δ效应的条件。即:对于弯矩作用平面内截 面对称的偏心受压构件,当同一主轴方向的杆端弯 矩比 M1 / M不2 大小0.9,且轴压比不大于0.9,若构 件的长细比满足公式(7- 4 )的要求,可不考虑轴 向压力在该方向挠曲杆中产生的附加弯矩的影响。
lc / i 34 12 M1 / M2
主页 目录 上一章 下一章 帮助
121
混凝土结构设计原理
第7章
Cm ns 法(考虑P-δ效应的方法)
除排架结构柱外,其他偏心受压构件考虑轴向压力在
挠曲杆件中产生的二阶效应后控制截面的弯矩设计值
M为:
M C m ns M2
(7- 5 )
主页 目录
Cmns小于1.0时取1.0;对剪力墙及核心筒墙,可取等于1.0 上一章
a
M1
M1 b
主页 目录 上一章 下一章 帮助
111
af
混凝土结构设计原理
第7章
lc ——构件的计算长度,可近似取偏 心受压构件相应主轴方向上下支撑 点之间的距离;
i ——偏心方向的截面回转半径。
构件长细比的大小,直接影 响到偏心受压柱在偏心力作 用下的侧向挠度 a(f 图7-8)。 长细比较小时,其侧向挠曲 引起的附加弯矩也小,长细 比越大, 也N会af越大。
主页 目录
上一章
下一章
无侧移 P-δ效应
有侧移 P-Δ效应
帮助
71
混凝土结构设计原理
第7章
结构的二阶效应不仅与结构形式、构件的几何尺寸有关, 还与构件有受力特点(变形曲率、轴压比)有关。
P-δ效应:
N e0
主页 目录
lc /2
lc
f1 Δf
Ne0
lc /2
e0 N
Ne0
N (f1+Δf )
上一章 下一章
帮助
81
混凝土结构设计原理
P-∆效应
N1 Δ1 Δk Vi
N2 Δ1 Δk
第7章
N3 Δ1 Δk
N4 Δ1 Δk
M ΔM
主页
目录
Vi1
Vi2
Vi3
Vi4上一章N1 NhomakorabeaN2
N3
N4
当结构的二阶效应可能使作用效应显著增大时,在结构分 析中应考虑二阶效应的不利影响。
混凝土结构的重力二阶效应可采用有限元分析方法计算, 计算时宜考虑混凝土构件开裂对构件刚度的影响。
上一章 下一章
➢掌握偏心受拉构件的受力特性及正截面承载力计算; ➢掌握偏心受力构件斜截面受剪承载力计算;
帮助
41
混凝土结构设计原理
§7.1 概 述
第7章
纵向力不与构件轴线重合的受力构件称为偏心受力构件 主 页
目录
上一章
下一章
单向偏心受压
双向偏心受压
帮助
51
混凝土结构设计原理
第7章
§7.2 偏心受压构件正截面承载力计算
31
混凝土结构设计原理
本章重点
第7章
➢了解偏心受压构件的受力工作特性;熟悉两种不同 的受压破坏特征及由此划分成的两类偏心受压构件, 掌握两类偏心受压构件的判别方法;
主页 目录
➢熟悉偏心受压构件的二阶效应及计算方法; ➢掌握两类偏心受压构件正截面承载力的计算方法; ➢了解双向偏心受压构件正截面承能力计算;
帮助
171
混凝土结构设计原理
第7章
两类偏心受压构件的界限:
受拉破坏和受压破坏的 最大区别在于:远离力 一侧钢筋是否屈服?
当M=0时,为轴心受力构件; 当N=0时,为受弯构件。
主页 目录 上一章 下一章 帮助
21
混凝土结构设计原理
第7章
偏心受力构件:
偏心受压构件 偏心受拉构件
正截面承载力 斜截面承载力
受拉破坏 受力破坏特征:
受压破坏
矩形截面 截面形式: 工字形截面
圆形截面
对称配筋 配筋方式: 非对称配筋
主页 目录 上一章 下一章 帮助
…7-11
当 c 1.0时,取 c 1.0。
ei N
af ei
N
主页 目录 上一章 下一章 帮助
151
混凝土结构设计原理
第7章
7.2.1 偏心受压构件的破坏特征
破 坏 类 型
受拉破坏
受压破坏
主页 目录 上一章 下一章 帮助
161
混凝土结构设计原理
第7章
❖受拉破坏:破坏始于受拉侧 大偏心受压
发生条件:远离力一侧钢筋数量适中,
混凝土结构设计原理 混凝土结构设计原理
第7章
第7章 钢筋混凝土偏心受力构件承载力主 页
第7章
目录
钢筋混凝土偏心受力构件承载力
研制单位:湖南大学
上一章
下一章
高等教育出版社 高等教育电子音像出版社
帮助
11
混凝土结构设计原理
偏心受力构件:
第7章
介于受弯构件和轴心受力构件之间的一种构件。
其作用效应为M,N(+,-)和V。
初始偏心距
理论偏 心距
附加偏 心距
e0
M N
(7-1)
初始偏 心距
ea≥20mm ≥(1/30)偏心方向 截面边长
(7-2)
ei e0 ea
(7-3)
主页 目录 上一章 下一章 帮助
61
混凝土结构设计原理
第7章
二阶效应 偏心受压构件的轴向力在结构发生层间位移和挠曲 变形时会引起附加内力,即二阶效应。
(7- 4)
主页 目录 上一章 下一章
帮助
101
混凝土结构设计原理
第7章
式中:
M1, M2 ——分别为已考虑侧移影响的偏心受压构 件两端截面按弹性分析确定的对同一主轴的组合弯
矩设计值;绝对值较大端为
M
,绝对值较小端
2
为 M1 ; 当构件按单曲率弯曲时
M2
M2
(图a),取正值;否则取
负值(图 b);
)ei
Ne ins
ns
1
af ei
弯矩增大系数
主页 目录 上一章 下一章 帮助
141
混凝土结构设计原理
第7章
ηs—l0法(排架柱考虑P-∆效应的方法)
构件计
s =1 +af / ei …7-9 算长度
1 af
ei
1
1 1500ei
/
h0
l0 h
2
c
截面曲率
…7-10
c
0.5 fc A N
修正系数
外荷载的偏心距较大。
主页
破坏特征:随力的加大,远离力一侧砼开裂,As应力 增加,当力增大到一定程度,As屈服,然 后受压区砼压碎,A’s压屈。
目录
❖受压破坏:破坏始于受压侧
小偏心受压
上一章
发生条件:外荷载的偏心距较小,或远离力一侧 钢筋配置过多。
下一章
破坏特征:截面为全部受压或部分截面受拉、部分 截面受压。构件破坏始于近力侧砼压碎、 A’s压屈,远离力一侧钢筋As无论拉压均 达不到屈服。
截面偏心距调节系数
下一章
Cm
0.7 0.3 M1 M2
0.7
(7- 6 )
帮助
131
混凝土结构设计原理
第7章
弯矩增大系数
ns
1
1300
(M2
1 /N
ea
)
/
h0
( l0 h
)2
c
c
0.5 fc A N
(7- 7 ) (7- 8 )
考虑纵向弯曲影响后的弯矩:
Ne i
Na f
N (1
af ei