《模拟电路》PPT课件

合集下载

《模拟集成电路基础》PPT课件

《模拟集成电路基础》PPT课件

h
20
P
N
V
PN结的接触电位
(二)PN结的接触电位:
(1).内电场的建立,使PN结 中产生电位差。从而形成接 触电位V(又称为位垒)。
(2).接触电位 V决定于材 料及掺杂浓度:
硅: V=0.7 锗: V=0.2 (3).其电位差用 表示
h
21
(三)PN结的单向导电性
U
I
P
N
扩散
Q(V-U)
1.PN结加正向电压时:
第四节 二极管的应用
h
8
第一节 半导体基础知识
一1.、什半么导是体导的体特、性绝:缘体导、电半导率量导电1级0体率-2,2:为-如110:0-154s金.sc.、mc-m1-1
(1).导体:导电性能良好导量的电级物率,质为银如。1、:0-铜橡9-、胶10铝、2 s。云.c母m-、1 (2).绝缘体:几乎不导电量砷塑的级化料物,镓等质如等。。:。硅、锗、 (3).半导体:导电能力介于导体和半导体之间。
生载流子的扩散运用动下的定结向果移产动生称空
间电荷区耗尽层为(漂多移子运运动动)。
空穴 P
(2).空间电荷区产生建立了内电场 产生载流子定向运动(漂移运动)
N
•当扩散运动↑内电场↑漂移运
动↑扩散运动↓动态平衡。
(3).扩散运动产生扩散电流;漂移运动 产生漂移电流。
•动态平衡时:扩散电流=漂移电流。 PN结内总电流=0。 PN结的宽度一定 。
1.电子空穴对: 电子和空穴是成对产生的.
h
12
两种载流子——电子和空穴
外电场E 的方向
电子流
2.自由电子——载流子:
自由电子
• 在外电场作用下形成电子流(在 导带内运动),

《模拟电路》课件

《模拟电路》课件
详细描述
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。

模拟电路基础ppt课件可编辑全文

模拟电路基础ppt课件可编辑全文
*
1.4.3 三极管的工作状态
1. 放大状态 在上面一部分中分析了三极管的放大原理。为了使三极管有放大能力,在输入回路加基极直流电源VBB,在输出回路加集电极直流电源VCC,且VCC大于VBB,使发射结正向偏置、集电结反向偏置。此时称三极管处于放大状态,条件是发射结正向偏置、集电结反向偏置。 2. 饱和状态 如果输出回路的集电极直流电源VCC小于输入回路的基极直流电源VBB,则发射结和集电结都是正向偏置。由于发射结和集电结都是正向偏置,在开始发射结和集电结上的势垒都变窄,使发射区和集电区的自由电子同时涌入基区,但是由于基区面积很小,且掺杂浓度很低,涌入到基区的电子中只有极少部分与空穴复合,形成基极电流IB,绝大部分扩散到基区的电子堆积在发射结和集电结附近,使发射结和集电结上的势垒加宽,阻止了发射区和集电区的自由电子进一步扩散到基区,由此可见,此时三极管没有放大能力。 此种状态称三极管处于饱和状态,条件是发射结和集电结都是正向偏置。 3. 截止状态 如果在输入回路的基极直流电源VBB小于发射结的开启电压,则发射结处于零偏置或反偏置。由于外加电压没有达到发射结的开启电压,使发射区的自由电子不能越过发射结达到基区,不能形成电流,从而发射极、集电极和基极的电流都很小,也就谈不上放大了。此时称三极管处于截止状态,条件是发射结零偏置或反偏置、集电结反向偏置。
*
1.3.3 二极管的等效电阻
直流等效电阻也称静态等效电阻。如图1-9所示,在二极管的两端加直流电压UQ、产生直流电流IQ,此时直流等效电阻RD定义为 交流等效电阻表示,在二极管直流工作点确定后,交流小信号作用于二极管所产生的交流电流与交流电压的关系。在直流工作点Q一定,在二极管加有交流电压u,产生交流电流i,交流等效电阻r定义为
*
例1-1 图10(a)是由理想二极管D组成的电路,理想二极管是指二极管的导通电压U为0、反向击穿电压U为,设电路的输入电压u如图10(b)所示,试画出输出uo的波形 解:由二极管的单向导电特性,输入信号正半周时二极管导通,负半周截止,故输出uo的波形如右图所示。

《模拟集成电路》课件

《模拟集成电路》课件

,以便对设计的电路进行全面的测试和评估。
PART 05
模拟集成电路的制造工艺
REPORTING
半导体材料
硅材料
硅是最常用的半导体材料,具有 稳定的物理和化学性质,成熟的 制造工艺以及低成本等优点。
化合物半导体
如砷化镓、磷化铟等化合物半导 体材料,具有高电子迁移率、宽 禁带等特点,常用于高速、高频 和高温电子器件。
《模拟集成电路》课 件
REPORTING
• 模拟集成电路概述 • 模拟集成电路的基本元件 • 模拟集成电路的分析方法 • 模拟集成电路的设计流程 • 模拟集成电路的制造工艺 • 模拟集成电路的优化与改进
目录
PART 01
模拟集成电路概述
REPORTING
定义与特点
定义
模拟集成电路是指由电阻、电容、电 感、晶体管等电子元件按一定电路拓 扑连接在一起,实现模拟信号处理功 能的集成电路。
围和失真。
信号分析方法
01
02
03
04
频域分析
将时域信号转换为频域信号, 分析信号的频率成分和频谱特
性。
时域分析
研究信号的幅度、相位、频率 和时间变化特性,分析信号的
波形和特征参数。
调制解调分析
研究信号的调制与解调过程, 分析信号的调制特性、解调失
真等。
非线性分析
研究电路的非线性效应,分析 信号的非线性失真和互调失真
音频领域
模拟集成电路在音频领域中主要用于 音频信号的放大、滤波、音效处理等 功能,如音响设备、耳机等产品中的 模拟集成电路。
模拟集成电路的发展趋势
集成度不断提高
随着半导体工艺的不断发展,模 拟集成电路的集成度不断提高, 能够实现更加复杂的模拟信号处

模拟电路课件---放大电路的基本知识

模拟电路课件---放大电路的基本知识

RL RL

所以
Ro

Vo Vo
RL

RL
另一方法
Ro

VT IT
Vs 0
Ro +
AVOVi –
+ Vs=0


Ro
+
大+
Vo

AVOVi

路–
+ Vo RL –
放大电路
IT
+ VT

Ro
注意:输入、输出电阻为交流电阻
1.2.3 放大电路的主要性能指标
2. 输出电阻
❖ 输出电阻R0的大小决定放大电路带负载的能力 ❖ 如输出为电压信号的放大电路(电压放大、互阻放大)

V0k

k=2
V01
100%
其中,V01为输出电压信号基波分量的有效值 V0k为高次谐波分量的有效值
1.2.3 放大电路的主要性能指标
5. 非线性失书真 中有关符号的约I 定
由元器件非线性特性
•引起大的失写真字。 母、大写下标表示直流量。如,VCEt、
非线IC性等失。真系数
O
• 小写字母、大写下标表示总量(含交、直流)。
衰减

Rs + Vi –
Ro
+
+
Ri
AVOVi
Vo RL



V&i
Rs
Ri
Ri
V&s
1 Rs
V&s 1
Ri
要想减小衰减,则希望…?
Ri Rs
理想 Ri
1.2.2 放大电路模型

模拟电路ppt课件

模拟电路ppt课件
(4-10)
例:求Au =?
i2 R2 M R4 i4
i3 R3
i1 ui
R1
_ +
+
RP
虚短路
u u 0
i1= i2
虚开路
uo
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
(4-11)
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
Au
uo ui
)
RF
2
RF1 R4
( ui1 R1
ui 2 R2
)
ui3 R5
(4-29)
五、三运放电路
ui1 +
A+
+
ui2
A+
uo1
R
R1
a
RW b
R
R1
uo2
R2
+
uo
A+
R2
(4-30)
ui1 +
A+
+
ui2
A+
uo1
R a
RW b
ua ui1 ub ui2
uo1 uo2 ua ub
t
思考:如果输入是正弦波,输出波形怎样,请 自己计算。运放实验中请自己验证。
(4-36)
积分电路的主要用途: 1. 在电子开关中用于延迟。 2. 波形变换。例:将方波变为三角波。 3. A/D转换中,将电压量变为时间量。 4. 移相。
其他一些运算电路:对数与指数运算电路、乘 法与除法运算电路等,由于课时的限制,不作 为讲授内容。

《模拟电子技术》课件

《模拟电子技术》课件
《模拟电子技术》PPT课件
CATALOGUE
目录
模拟电子技术概述模拟电子技术基础知识模拟电路分析模拟电子技术实践应用模拟电子技术面临的挑战与解决方案模拟电子技术未来展望
01
模拟电子技术概述
总结词
模拟电子技术是研究模拟电子电路及其应用的科学技术,具有模拟信号处理的特点。
详细描述
模拟电子技术主要涉及对模拟信号的处理,即对连续变化的电压或电流信号进行处理,实现信号的放大、滤波、转换等功能。与数字电子技术相比,模拟电子技术具有处理连续信号、实时性强、精度高等特点。
例如,石墨烯、氮化镓等新型材料具有优良的导电性能和热稳定性,可以应用于高性能的电子器件中。
此外,还有一些新型复合材料也逐渐被应用于模拟电子技术中,以提高器件的性能和稳定性。
03
此外,还需要加强人才培养和技术交流,提高电路设计师的技术水平和创新能力。
01
高性能电路设计是模拟电子技术的重要组成部分,也是实现高性能电子器件的关键。
二极管的结构
二极管由一个PN结和两个电极组成,其结构简单、可靠,应用广泛。
正向导通特性
当二极管正向偏置时,电流可以通过PN结,表现出低阻抗的导通特性。
反向截止特性
当二极管反向偏置时,电流很难通过PN结,表现出高阻抗的截止特性。
03
02
01
1
2
3
三极管由三个半导体组成,包括两个N型和一个P型半导体,具有三个电极。
总结词
滤波电路是一种根据特定频率范围对信号进行筛选和处理的电路,主要用于提取有用信号、抑制噪声和干扰。
详细描述
滤波电路通过利用电感器和电容器的频率特性,将信号中特定频率范围内的成分保留或滤除,从而实现信号的处理和控制。常见的滤波电路有低通滤波器、高通滤波器和带通滤波器等。

(完整版)模拟电路讲义

(完整版)模拟电路讲义
(2)输入回路的接法应使输入电压 u 能够传送到三极管的 基极回路,使基极电流产生相应的变化量 iB。
(3)输出回路的接法应使变化量iC 能够转化为变化量 uCE,并传送到放大电路的输出端。
(4)此外对实用放大电路还要求输入和输出信号要共地、直 流电源种类尽可能少、负载上无直流分量。
实用的放大电路——直接耦合放大电路
问题: 1. 两种电源
将两个电源 合二为一
2. 信号源与放大电路不“共地”
共地,且要使信号 驮载在静态之上
直流分量:大写字母+大写下标;如:IB 交流分量:小写字母+小写下标;如:ib 瞬时值: 小写字母+大写下标;如:iB 直流分量+交流分量;如:iB = IB+ ib 交流有效值:大写字母+小写下标;如:Ib
总变化量(总瞬时值):是直流量与交流量的叠
加量,字母小写,下标大写,如:iB、iC、uBE、uCE
电流放大倍数 Ai = io/ ii
功率放大倍数 Ap = po/ pi
互阻增益 互导增益
放大 电路
io 2
+
RL
uo

2
电压增益 Au (dB) = 20lg |Au| 电流增益 Ai (dB) = 20lg |Ai| 功率增益 Ap (dB) = 10lg |Ap|
Ar=uo/ii Ag=io/ui
任何放大电路均可看成为二端口网络
1ii
io 2
RS +
+ ui
us –
– 1
放大 电路
+
RL
uo

2
us — 信号源电压 Rs — 信号源内阻 RL — 负载电阻

模拟电路基础教程PPT完整全套教学课件全

模拟电路基础教程PPT完整全套教学课件全

返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。

模拟电路ppt课件

模拟电路ppt课件
1. 开环差模电压放大倍数Aod 无外加反馈回路的差模放大倍数。一般在
105 107之间。理想运放的Aod为。
2. 共模抑制比KCMR 常用分贝作单位,一般100dB以上。
3. 差模输入电阻rid
ri>1M, 有的可达100M以上。
(4-22)
4. 输出电阻ro
ro =几-几十。
5. 最大共模输入电压UIcmax 6. 最大差模输入电压UIdmax 7. -3dB带宽fH
第四章 结束
(4-26)
由镜像关系: Δ iC3= Δ iC4;
-VEE
所以: Δ io= Δ iC4 -Δ iC2= Δ iC1 –(-Δ iC1)=2 Δ iC1
此时,单端输出的放大 倍数接近于双端输出:
Aiu
iO uI
2iC1 2iB1rbe1
1 rbe1
(4-20)
§4.3 集成运放电路简介
(4-21)
§4.4 集成运放的性能指标及低频等效电路 4.4.1 主要性能指标
ln IR IC1
可用图解法或累试法求解
例:P177
(4-15)
4.2.2 改进型电流源电路
一、加射极输出器的电流源
+VCC
IR R
IB
IC0
T0
2
T2
IE2 IB1
IB0
Re2
特点:利用T2管的电流放大 作用,减小了基极电流IB0和 IC1 IB1对基准电流IR的分流。
IC1 IC0 IR IB2
集成电路的分类:
模拟集成电路、数字集成电路; 小、中、大、超大规模集成电路;
(4-2)
集成电路内部结构的特点:
1. 电路元件制作在一个芯片上,元件参数偏差方 向一致,温度均一性好。

模拟电路课件PPT-2-4-1-近似估算法求Q点、图解法

模拟电路课件PPT-2-4-1-近似估算法求Q点、图解法
(1) 图解分析静态
① 先用估算的方法计算输入回路 IBQ、 UBEQ。 ② 用图解法确定输出回路静态值
方法:根据 uCE = VCC iCRc 式确定两个特殊点
当 iC 0 时 ,uCE VCC

uCE
0
时 ,iC
VCC Rc
输出回路 输出特性

iC 0,uCE VCC
uCE
0, iC
iC / mA
ib(不失真)
Q
ICQ
NPN 管 uo波形
O
tO
UCEQ
O
t
uo = uce
IB = 0
uCE/V
uCE/V
(二)用图解法估算最大输出幅度
输出波形没有 明显失真时能够输 出最大电压。即输 出特性的 A、B 所 限定的范围。
iC / mA
交流负载线
A
Q
U om
CD 2
DE 2
O
C
D
B
iB = 0
0
2
4
6
8
10 12
uCE /V
图 2.4.3(b)
由 Q 点确定静态值为:
IBQ = 40 µA ,ICQ = 2 mA,UCEQ = 6 V.
(二) 图解分析动态
1. 交流通路的输出回路 输出通路的外电路是 Rc 和 RL 的并联。
2. 交流负载线
iC / mA
交流负载线斜率为:
1 ,其中 RL
c b
IBQ e
ICQ UCEQ
ICQ IBQ
UCEQ = VCC – ICQ RC
图 2.4.1(a)
【例】图示单管共射放大电路中,VCC = 12 V,

模拟电路PPT (华成英)

模拟电路PPT (华成英)
简化的h参数等效电路-交流等效模型
基区体电阻
发射结电阻
发射区体电阻 数值小可忽略
利用PN结的电流方程可求得
rbe
U be Ib

rbb'
rb'e

rbb'
(1 ) UT
I EQ
查阅手册 在输入特性曲线上,Q点越高,rbe越小!
由IEQ算出
安博mranbo@
Weinan Normal University
消除方法:增大VBB,即向上平移输入回路负载线。
减小Rb能消除截止失真吗?
安博mranbo@
Weinan Normal University
• 饱和失真 :饱和失真是输出回路产生失真。
Q ''' Q ''
Rc↓或VCC↑
Rb↑或 β↓或 VBB ↓
这可不是 好办法!
• 消除方法:增大Rb,减小Rc,减小β,减小VBB,增大VCC。 • 最大不失真输出电压Uom :比较UCEQ与( VCC- UCEQ ),取
diB

iC uCE
IB duCE
电阻
无量纲
Ube h11Ib h12Uce

Ic h21Ib h22Uce
无量纲
电导
交流等效模型(按式子画模型)
安博mranbo@
Weinan Normal University
h参数的物理意义
h11

uBE iB
• 对实用放大电路的要求:共地、直流电源种类 尽可能少、负载上无直流分量。
安博mranbo@
Weinan Normal University
两种实用放大电路:(1)直接耦合放大电路

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程

模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程
常使用的二极管,是不允许出现这种现象的。
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三

基于Proteus仿真模拟电路实验与设计PPT课件

基于Proteus仿真模拟电路实验与设计PPT课件
❖ 常用的无极性电容的名称为“CAP”,极性电容为 “CAP-ELEC”,还有一个可动画演示充放电电荷的 电容为“CAPACITOR”。极性电容“CAP-ELEC”的 原理图符号正端不带填充,负端方框中填充有斜纹。 使用时可直接输入名字拾取即可。
.
13
❖ (5) 电感和变压器
❖ 电感和变压器同属电感“Inductors”这一分类,只不 过在子类中,又分为通用电感、表面安装技术(SMT) 电感和变压器。一般来说,使用电感时直接拾取 “INDUCTOR”元件,使用变压器时,要看原、副 边的抽头数而定。
❖ 变压器的匝比是通过改变原、副边的电感值来实现 的。打开“TRAN-2P2S”变压器的元件属性对话框, 如图4-5所示,原边和副边的电感值都是1H,即变 比n为1:1。如果我们想使它成为n=10:1的降压变压 器,可以改变原边电感,也可改变副边电感,还可 以两者同时改变,但要保证,即原、副边电压比值 等于原边电感与副边电感的平方比。
.
14
❖ 如“TRSAT2P2S2B”即Saturated Transformer with secondary and bias windings,意思是具有副边和 偏置线圈的饱和变压器。
图4-4 变压器拾取对话框
.
15
❖ 变压器在调用时,由于对称按钮可能处于选中状态, 原、副边绕组的位置就颠倒了,使用时要注意,尤 其是原边和副边绕组数目相同的变压器,这涉及到 原、副边的匝比是升压或降压变压器的问题。
直接输入“NPN”或“PNP”来拾取通用元件即可。 如果用到场效应管,则可以在对应的子类中查找。
如图4-1中右侧所示。
.
6
图4-1 三极管元件拾取对话框
.
7
(2) 二极管

模拟电子技术第一章PPT课件

模拟电子技术第一章PPT课件

06 反馈放大电路
反馈的基本概念
反馈:将放大电路输出信号的一部分或全部,通过一定 的方式(反馈网络)送回到输入端的过程。
反馈的判断:瞬时极性法。
反馈的分类:正反馈和负反馈。 反馈的连接方式:串联反馈和并联反馈。
正反馈和负反馈
正反馈
反馈信号使输入信号增强的反 馈。
负反馈
反馈信号使输入信号减弱的反 馈。
集成化与小型化
随着便携式设备的普及,模拟电子技术需要实现 更高的集成度和更小体积,以满足设备小型化的 需求。
未来发展趋势
智能化
01
随着人工智能技术的发展,模拟电子技术将逐渐实现智能化,
能够自适应地处理各种复杂信号和数据。
高效化
02
未来模拟电子技术将更加注重能效,通过优化电路设计和材料
选择,提高能量利用效率和系统稳定性。
电压放大倍数的大小与电路中 各元件的参数有关,可以通过 调整元件参数来改变电压放大 倍数。在实际应用中,需要根 据具体需求选择合适的电压放 大倍数。
输入电阻和输出电阻
总结词
详细描述
总结词
详细描述
输入电阻和输出电阻分别表 示放大电路对信号源和负载 的阻抗,影响信号源和负载 的工作状态。
输入电阻越大,信号源的负 载越轻,信号源的输出电压 越稳定;输出电阻越小,放 大电路对负载的驱动能力越 强,负载得到的信号电压越 大。
共基放大电路和共集放大电路
共基放大电路的结构和工作原理
共基放大电路是一种特殊的放大电路,其输入级和输出级采用相同的晶体管,输入信号 通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的信
号。
共集放大电路的结构和工作原理
共集放大电路是一种常用的放大电路,其结构包括输入级、输出级和偏置电路。输入信 号通过输入级进入,经过晶体管的放大作用,输出信号被送到输出级,最终输出放大的 信号。共集放大电路的特点是电压增益高、电流增益低、输出电压与输入电压同相位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 共发截止频率 fβ
值下降到 的0.707倍时的频率。 0
2.特征频率 f T 降为1时的频率。 当 3.共基截止频率
共基截止频率。
f = f α 时,
π

值下降为 的0.707倍时的
0
4.发射结电容 C 与
2018/11/25
fT
的关系

gm 2f T
15
hongfeng@
电子线路基础
5.2.1 共射基本放大器全频段微变等效电路
2018/11/25
16
hongfeng@
电子线路基础
.
. . .
2018/11/25
17
hongfeng@

电子线路基础
5.2.2三极管的频率参数
2018/11/25
j j 2f
8( f ) arctg ( f / f H )
hongfeng@
电子线路基础
绘出幅频特性:
2018/11/25
9
hongfeng@
电8/11/25
10
hongfeng@
电子线路基础
放大器具有如下理想的幅频特性和相频特性: Au ( f ) k (k为常数)
( f ) td 2 f td (td为常数)
2018/11/25
5
hongfeng@
20 lg Au ( f )
电子线路基础
5.1.2
波特图及简单RC电路的频率响应
18
hongfeng@
电子线路基础
5.2.3 共射基本放大器频率响应分析
1. 共射基本放大器中频段源电压增益
.
2018/11/25 19
. . .
hongfeng@
电子线路基础
A usm
Ri P g m RL RS Ri
20
hongfeng@
是一个与频率无关的常数。 A usm
2018/11/25
电子线路基础
2. 共射基本放大器低频段源电压增益
2018/11/25
21
hongfeng@
电子线路基础
1 A A usl usm 1 j ( f L1 / f ) 1 j ( f L2 / f )
共发基本放大器低频段源电压增益有两个转折频率:
1 f L1 2 1 2 ( RS Ri ) C1
1
1 f L2 22 2 ( RC RL ) C2
2018/11/25 22
hongfeng@
1
电子线路基础
3. 共射基本放大器高频段源电压增益 经过一系列变化,可以得到
电子线路基础
3.1 3.2 3.3 3.4
频率响应概述 单级共射放大器的频率响应 其它放大器的频率响应 多级放大器的频率特性
3.5
2018/11/25
频率响应与阶跃响应
1
hongfeng@
电子线路基础
3.1 频率响应概述
放大器频率响应: 幅频特性 : A u 相频特性 : Au ( f )


• 一旦电路的通带放大倍数及截止频率确定,电路电压传
的频率特性。
2018/11/25
14
hongfeng@
电子线路基础
5.2 单级共射放大器的频率响应
5.2.1 共射基本放大器全频段微变等效电 路
5.2.2三极管的频率参数
5.2.3 共射基本放大器频率响应分析
2018/11/25
电子线路基础
2018/11/25
13
hongfeng@
电子线路基础
结论:
• 电路的截止频率决定于电容所在回路的时间常数 递函数也随之确定。 • 当信号频率等于下限频率或上限频率时,放大电路的增 益下降3dB,且产生相移。 • 近似分析中,可以用折线化的近似波特图表示放大电路
A ush
=
A usm
1 f 1 j fH
2018/11/25
23
hongfeng@
电子线路基础
4 . 共射放大器完整的频率特性
整个频率范围内的源电压增益表达式为: A usm A us f f L1 f L2 (1 j )(1 j )(1 j ) f f fH
=
1 p s p
p
实际频率: s 且: f f H p
R1C1
:极点角频率。
1 1 2 H 2R1C1 U 1 o A 电压传递函数: u U 1 j( f / f ) i H 1 幅频特性表达式为: Au ( f ) 2 1 ( f / fH ) 相频特性表达式为:
Au ( jf ) Au ( f ) e
j ( f )
3.1.1 3.1.2
2018/11/25
( f ) 研究放大器频率响应的必要性
波特图及简单RC电路的频率响应
2
hongfeng@
电子线路基础
3.1.1
1.
研究放大器频率响应的必要性
频率失真
幅度失真: 由于不同频率的成分幅度上得不 到同样放大而使输出波形产生的失真;
电子线路基础
2. 高通RC
幅频特性表达式为:
Au ( f )
1 1 ( fL / f )
2
相频特性表达式为:
( f ) arctg ( f L / f )
2018/11/25
11
hongfeng@
电子线路基础
2018/11/25
12
hongfeng@
波特图:绘制在两张半对数坐标纸上的幅频特 性和相频特性曲线图。
2018/11/25
6
hongfeng@
电子线路基础
1. 低通RC
2018/11/25
7
hongfeng@
电子线路基础
电压传递函数为:
U o (s) 1 1 Au ( s) U i ( s) R1C1 s 1 R1C1 1
相位失真: 由于不同频率的成分产生的相移 不同而使输出波形产生的失真。
2018/11/25 3
hongfeng@
电子线路基础
线性失真:由电路的线性电抗元件引起的失真。
2018/11/25
4
hongfeng@
Au ( f ) k
2. 不产生频率失真的条件
相关文档
最新文档