数值分析报告与试验期末复习资料

合集下载

数值分析期末考试复习提纲10级

数值分析期末考试复习提纲10级
三次Lagrange插值多项式为:
17 1 x( x 1)( x 2) ( x 2)( x 1)( x 2) 24 4 2 17 ( x 2) x( x 2) ( x 2) x( x 1). 3 8 L3 ( x)
f (0.6) ≈L3(0.6) = -0.472. 误差:
( x x0 )( x x1 )
数值分析期末考试复习提纲
•考试范围:1—7章所学内容
•各章约占比例:第一章5%,第二章20%,第三章15%,
第四章18%,第五章12%,第六章15%,
第七章15%, •难易程度:易15%,中等75%,难10%。 •考试类型:填空题20%,计算题70%,证明题10%。 •参考依据:课后作业题(重点),上课所讲部分习题和例题。
f [ x , 2 0 , 21 ,
(7) f ( ) 6 ,2 ] 1, 7!
f [ x, 2 , 2 ,
0
1
,2 ]
7
f
(8)
( ) 0. 8!
n次Newton插值公式:
N n ( x) f ( x0 ) ( x x0 ) f [ x0 , x1 ] ( x x0 )( x x1 ) f [ x0 , x1, x2 ]
x2 f ( x2 ) x3 f ( x3 ) x4 f ( x 4 )
例5 设f(x)=2x2-1,求差商 f [0,1,2,3]= i x0 x1 x2
xi xi ] f (xi) f [xi −1, xi]
0
. 可用性质3
经计算得 (xi, f(xi)): (0, -1), (1, 1), (2, 7), (3, 17)。差商表如下
例 2: 设

数值分析复习重点.doc

数值分析复习重点.doc

第一章、绪论1、了解数值分析的研究对象与特点。

2、了解误差的来源与分类,会求有效数字,会简单的误差估计。

3、了解误茅的定性分析及避免误茅危害。

第一早、插值重点题目:P19, 5, 7.1、 了解插值的概念。

2、 掌握拉格朗日(Lagrange)插值法及其余项公式。

3、 了解均差的概念及基本性质,掌握牛顿(Newton)插值法。

4、 了解茅分的概念,会牛顿前插公式、后插公式。

5、 会埃尔米特(Hermite)插值及其余项公式。

6、 知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误并和收敛性。

7、 了解三次样条插值,知道其误差和收敛性。

重点题目:P5& 2, 6, 16.第三章、函数逼近与曲线拟合1、 了解函数逼近的基木概念,了解范数和内积空间。

2、 了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用止交多项式。

理解最佳一致逼近的概念和切比雪夫定理,掌握简单的最佳一致逼近多项式的求法。

理解最佳平方逼近的概念,掌握最佳平方逼近多项式的求法,了解用止交多项式做最佳平 方逼近的方法。

6、了解最佳平方逼近与快速傅里叶变换。

7、了解有理逼近。

重点题目:P115, 4, 13, 15, 17, 19.第四章、数值积分与数值微分1、 了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的 收敛性和稳定性。

2、 掌握低阶牛顿-柯特斯(Newton-Cotes)公式及其性质和余项。

3、 会复化梯形公式和复化辛普森公式及其余项。

4、 会龙贝格(Romberg)求积算法。

5、 了解高斯求积公式的理论,会高斯-勒让德求积公式和高斯-切比雪夫求积公式。

6、 了解儿种常用的数值微分方法。

重点题目:P15& 1, 4, 6.第五章、解线性方程组的直接方法1、 了解求解方程组的两类方法,了解矩阵基础知识。

2、 掌握高斯消去法,了解矩阵的三角分解。

(完整版),数值分析笔记期末复习汇总,推荐文档

(完整版),数值分析笔记期末复习汇总,推荐文档

x
*n )
e(x *1)
f
(x *1,
x *2 ,, xn
x *n
)
e(x *n )
n i 1
f
(x *1, x *2 ,, x *n ) xi
e(x *i )
9、加减乘除运算的误差估计
加法

对 误
e(x1 x2 ) e(x1) e(x2 )



误 (x1 x2 ) (x1) (x2 )
x1
b
sign(b) 2a
b2 4ac 109
x1
x2
c a
x2
c a x1
109 109
1
求和时从小到大相加,可使和的误差减小。若干数相加,采用绝对值较小者先加的算法,
结果的相对误差限较小
y 54321100 0.4100 0.3100 0.4100 54322
(三) 注意简化计算步骤,减少运算次数,避免误差积累(秦九韶)
则称 r (x*) 为近似值 x*的相
对误差限。 (2)性质:
当|| er (x*) | 较小时,可用下
是有量纲的。 (2)绝对误差限是正的,有无穷
常取
er
( x*)
e( x*) x*
式计算
绝对误差是误差的绝对值? 多个【则比 * 大的任意正数均
(错)
是绝对误差
限】
r
( x*)
(x*) | x |

x2* =3.14
作为 π 的近似值,则 | e2
| 0.00159
1 102 :三个有效数字 2

x3* =3.1416 作为 π 的近似值,则 | e3
| 0.00000734

数值分析复习提纲(修改完)

数值分析复习提纲(修改完)

第一章 绪论【考点1】绝对误差概念。

近似数的绝对误差(误差):()a =x a E -,如果()δa E ≤则称δ为a 的绝对误差限(误差限)。

【考点2】相对误差限的概念。

近似数a 的相对误差:()()/x a x =a E r -,实际运算()()/a a x a E r -=,a r /δδ=。

【考点3】有效数字定义。

设*x 的近似值a 可表示为n m a a .a a= 21010⨯±,m 为整数,其中1a 是1到9中的一个整数,n a a 2为0到9中的任意整数,若使()n m a||=|x a |E -*⨯≤-1021成立,则a 称近似*x 有位有效数字。

例:设256010002560,00256702.×=.a .=x -*=,则4-10×21=0.00005a -x ≤*。

因为,2-m=所以2n=,a 有2位有效数字。

若257.01000257.02⨯==-a ,则5102100000500000030-≤×=..=x-a ,因为2-=m ,所以3=n ,a 有3位有效数字。

例:设000018.x=,则00008.a=具有五位有效数字。

41021000010-≤×.=x-a ,因为1=m ,所以5=n ,即a 具有五位有效数字。

例:若3587.64=x *是x 的具有六位有效数字的近似值,求x 的绝对误差限。

410×0.358764=x *,即4=m ,6=n ,0.005=1021x -x 6-4⨯≤*【考点4】四舍五入后得到的近似数,从第一位非零数开始直到末位,有几位就称该近似数有几位有效数字。

【考点5】有效数字与相对误差的关系。

设x 的近似数为n m a a .a ×a= 21010±,)(a 01≠如果a 具有n 位有效数字,则的相对误差限为()111021--≤n r ×a δ,反之,若a 的相对误差限为()()1110121--+≤n r ×a δ,则a 至少具有n 位有效数字。

数值分析-期末复习(整理版).doc

数值分析-期末复习(整理版).doc

Chapter 1误差
误差限计算、有效数字分析
Chapter 2插值法
差值条件(唯一性)
1、拉格朗日差值
a)插值基函数
b)差值余项
2、牛顿插值
构造差商表
3、埃尔米特插值
构造三次埃尔米特插值多项式如下
4、分段低次插值
5、三次样条插值(概念)
Chapter 3函数逼近与曲线拟合(送分)1、最小二乘法写出法方程
2、范式计算(向量、矩阵)
Chapter 4数值积分与数值微分1、梯形公式、辛普森公式
2、代数精度判断
3、龙贝格求积公式
4、高斯求积公式
5、高斯-勒让德求积公式
6、数值微分了解即可
Chapter 5解线性方程组的直接方法
1、消元法
2、 LU 分解法
Chapter 6解线性方程组的迭代法
1、雅克比迭代法、高斯- 塞德尔迭代法公式(会写)
2、给迭代公式,判断收敛性,谱半径。

Chapter 7非线性方程求根
1、二分法(先判断有根区间)
2、迭代的收敛性
3、牛顿迭代法(代公式)
Chapter 9常微分方程初值问题数值解法
1、公式计算:四种,欧拉公式、改进的欧拉公式、隐式、梯形公式
2、判断局部截断误差(泰勒公式)
3、单步法的收敛性和稳定性分析
4、
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考
5、。

数值分析期末实验试题及答案

数值分析期末实验试题及答案
-2 1 5 15
A =
1 0 0 2
0 1 0 4
0 0 1 3
Jacobi输出结果:
N x1 x2 x3 err
2, 1.656250, 3.875000, 3.175000, 1.250000
3, 1.925000, 3.850000, 2.887500, 0.287500
4, 1.990625, 3.948437, 3.000000, 0.112500
Gauss-Seidel迭代法:
N x1 x2 x3 err
2, 1.875000, 3.937500, 2.962500, 0.437500
3, 1.993750, 3.992188, 2.999063, 0.118750
4, 1.998281, 3.999023, 2.999508, 0.006836
SOR迭代法
N x1 x2 x3 err
2, 1.721568, 3.608925, 2.679907, 0.233925
3, 1.824455, 3.629131, 2.727301, 0.102888
4, 1.812174, 3.627893, 2.720033, 0.012281
5, 1.814371, 3.628155, 2.721265, 0.002197
end
function[y,n]=sor(A,b,x0,ep,w)
D=diag(diag(A));
L=-tril(A,-1);
U=-triu(A,1);
B=(D-w*L)\((1-w)*D+w*U);
f=w*(D-w*L)\b;
y=B*x0+f;
n=1;
whileabs(norm(y-x0,inf))>=ep

数值分析期末复习题答案

数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。

例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。

2. 说明数值微分与数值积分的区别。

答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。

数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。

三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。

答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。

具体计算过程略。

2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。

答案:首先确定区间划分,然后应用辛普森积分公式进行计算。

具体计算过程略。

四、论述题1. 论述数值分析中误差的来源及其控制方法。

答案:误差主要来源于舍入误差和截断误差。

舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。

控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。

五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。

数值分析资料报告复习题要问题详解

数值分析资料报告复习题要问题详解

第一章1、ln2=0.69314718…,精确到 10-3 的近似值是多少?解 精确到 10-3=0.001,即绝对误差限是 ε=0.05%,故至少要保留小数点后三位才可以。

ln2≈0.693。

2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x ,21x x +的绝对误差限解:记126.1025, 80.115x x == 则有1123241110, | 102|||2x x x x --≤⨯-≤⨯-所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤--341180.11610 6.101025220.007057-==⨯⨯+≤⨯⨯1212112243|()|||11|10100.0005522|x x x x x x x x --≤≤⨯+⨯=+-+-+-3、一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少。

解:()()22222222431421025400000033006422102540000251025100243644433006243624360073873833006,.....;()()()......,..().()..%.r d hV d h V mm d h V dh d d h V mm V V V πππππεεεεε=≈=⨯⨯===+=⨯⨯⨯+⨯==±====第二章:1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ),计算L 3(0.5)及N 3(-0.5)解:(1)先求332211003)()()()()(y x l y x l y x l y x l x L +++= (1分)=----+---+=------=)12)(02)(12()1)(0)(1())()(())()(()(3020103210x x x x x x x x x x x x x x x x l x x x )1)(1(61-+-, (2分)=----+---+=------=)11)(01)(21()1)(0)(2())()(())()(()(3121013201x x x x x x x x x x x x x x x x l x x x )1)(2(21-+ (2分)=-++-++=------=)10)(10)(20()1)(1)(2())()(())()(()(3212023102x x x x x x x x x x x x x x x x l )1)(1)(2(21-++-x x x (2分)=-++-++=------=)01)(11)(21()0)(1)(2())()(())()(()(2313032103x x x x x x x x x x x x x x x x l x x x )1)(2(61++(2分)x x x x x x x x x x L )1)(2(31)1)(2(21)1)(1(61)(3+++-++-+=x x x 212323-+= (1分)所以 41)5.0(3=L (1分)(2)再求Newton 插值多项式 列均差表如下:)(123221)(23100)(211)(12],,,[],,[],[222232103210分分分分x x x x x x x x f x x x f x x f y x k j i j i -----所以x x x x x x x N )1)(2()1)(2(23)2(21)(3+++++-++-=x x x 212323-+= (2分) 21)5.0(3=-N(1分)2、求过下面四个点的Lagrange 插值多项式L 3(x )和Newton 插值多项式N 3(x )。

(整理)《数值分析》期末复习纲要.

(整理)《数值分析》期末复习纲要.

《数值分析》期末复习纲要 第一章 数值计算中的误差分析主要内容(一)误差分析 1、误差的基本概念:(1)绝对误差:设x 是精确值, *x 是其近似值,则称()E x x x*=-是近似值*x 的绝对误差,简称误差。

特点:可正可负,带量纲。

(2)相对误差:称()r x x E x x *-=是近似值*x 的相对误差,若精确值x 未知,则定义()r x x E x x **-=。

注: 由四舍五入得到的近似值,误差不超过最末位的半个单位(准确到最末位)。

2、有效数字的概念:P6;3、算法的数值稳定性:数值稳定的算法:初始数据所带有的误差在计算的过程中能得到有效控制,不至于因误差的过度增长影响计算结果的精度。

数值不稳定的算法:初始数据所带有的误差在计算的过程中得不到有效控制,以至于因误差的过度增长而使计算结果的精度大大降低。

P11:例子(二)算法设计的基本准则P11-15 应用实例:课堂练习,作业基本要求1、掌握误差、有效数字等基本概念2、熟记算法设计准则,并能依据算法设计准则构造或选择计算公式。

(参见课堂练习、作业)第二章 线性代数方程组的数值解法直接法:不计初始数据的误差和计算过程中的舍入误差,经过有限步四则运算求得方程组的精确解。

迭代法:先给出方程组解的某一初始值,然后按照一定的迭代法则(公式)进行迭代,经过有限次迭代,求得满足精度要求的方程组的近似解。

主要内容(一)直接法的基本模式:高斯顺序消去法基本思想:按照各方程的自然排列顺序(不交换方程),通过按列消去各未知元,将方程组化为同解的三角形方程组来求解求解过程:⎩⎨⎧回代过程消元过程应用实例:课堂例题;练习 (二)高斯列主元消去法基本思想:按列消元,但每次按列消元之前,先选取参与消元的 方程首列系数,选取绝对值最大者,通过交换方程,使之成为主元,再进行消元。

(每一步消元之前先按列选取主元) 应用实例:课堂例题,作业(三)迭代法基本原理:(1)将原方程组b Ax =改写成如下等价形式:f Bx x += (2)构造相应的迭代公式:f Bx x m m +=-)1()((3)任取一初始向量)0(x代入上述迭代公式,经迭代得到向量序列{}Tm n m m m x x x x ),,,()()(2)(1)( =,如果该向量序列{})(m x 收敛于某一向量Tn x x x x ),,,(21****= ,即),,2,1(lim )(n i x x i m i m ==*∞→Tn x x x x ),,,(21****= 即为原方程组的解。

数值分析期末复习

数值分析期末复习

《数值分析》期末复习提纲第一章数值分析中的误差(一) 考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

误差的定性分析(二)复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

4. 避免误差危害的若干原则第二章插值法(一) 考核知识点插值函数,插值多项式,被插值函数,节点;拉格朗日插值多项式:插值基函数;均差及其性质,牛顿插值多项式;分段线性插值、线性插值基函数。

(二)复习要求1. 了解插值函数,插值节点等概念。

2. 熟练掌握拉格朗日插值多项式的公式,知道拉格朗日插值多项式余项。

3. 掌握牛顿插值多项式的公式,了解均差概念和性质,掌握均差表的计算,知道牛顿插值多项式的余项。

4. 掌握分段线性插值的方法和线性插值基函数的构造。

第三章函数逼近(一) 考核知识点函数逼近的基本概念,内积,范数,勒让德与切比雪夫正交多项式,最佳一次一致逼近,最佳平方逼近,曲线拟合的最小二乘法(二)复习要求1. 熟练掌握内积,范数等基本概念。

2. 熟练掌握勒让德与切比雪夫正交多项式的性质。

3. 掌握用多项式做最佳平方逼近的方法。

4. 最小二乘法及其计算方法。

第四章数值积分与数值微分(一) 考核知识点数值求积公式,求积节点,求积系数,代数精度;插值型求积公式,牛顿―科特斯求积公式,牛顿―科特斯系数及其性质,(复合)梯形求积公式,(复合)Simpson求积公式;高斯型求积公式,高斯点,(二点、三点)高斯―勒让德求积公式;(二) 复习要求1. 熟练掌握数值积分和代数精度等基本概念。

2. 熟练掌握牛顿−科特斯求积公式和科特斯系数的性质。

熟练掌握并推导(复合)梯形求积公式和(复合)Simpson求积公式。

3. 知道高斯求积公式和高斯点概念。

会用高斯−勒让德求积公式求定积分的近似值。

数值分析总复习

数值分析总复习

A
4
5
4,
X
x2
,
8 4 22
x3
解: l11 a11 16 4,
l21 a21 l11 4 4 1,
l31 a31 l11 2,
4
b
3
.
10
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 19 第20页/共36页
l11 a11 , l21 a21 l11 , l22 a22 l221 ,
l31 a31 l11 , l32 a32 l21l31 l22 , l33 a33 l321 l322 . 18 第19页/共36页
一. 用平方根法求线性方程组AX=b, 其中
16 4 8
x1
26
第27页/共36页
六. 确定求解初值问题
y' f ( x, y), a x b,
y(a)
y0 .
的二步隐式Adams方法
yn1
yn
h 12
(5
fn1
fn
fn1 )
中的参数, 使该方法成为三阶方法, 并写出其局部截断误差主项.
可用数值积分方法或Taylor展开方法
8,
Rn1
1 24
h4
解 (1) 由已知, 当 f (x)分别为1, x, x2时, 求积公式等号成立. 即
11x3dx 1
0 1dx 14
11 2
((1x13
1)x23
)
2
故该公式具有3次代数精确度.
1 xdx 1
0

数值分析报告期末考试复习题及其问题详解

数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。

(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。

(完整版)数值分析复习题及答案

(完整版)数值分析复习题及答案

数值分析复习题一、选择题1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+= C .2323x x -+= D .230.5 1.5x x -=-二、填空1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。

4.求方程 21.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01x =, 那么 1______x =。

5.解初始值问题 00'(,)()y f x y y x y =⎧⎨=⎩近似解的梯形公式是 1______k y +≈。

数值分析期末复习总结(优选.)

数值分析期末复习总结(优选.)

线性插值多项式(一次插值多项式)
n=2
L2 ( x) =
y0
(x ( x0
− −
x1 )( x − x2 ) x1 )( x0 − x2 )
+
y1
(x ( x1
− −
x0 )( x − x2 ) x0 )( x1 − x2 )
+
y2
(x ( x2
− −
x0 )( x − x1 ) x0 )( x2 − x1 )
f ( x=) f ( x0 ) + ( x − x0 ) f [x, x0]
1
f [ x, x0 ] = f [ x0 , x1] + ( x − x1 ) f [ x, x0 , x1]
2
……
f [ x, x0 , ... , xn−1] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−1
19
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函
数 lk(x) 都需重新计算,不太方便。
解决办法
设计一个可以逐次生成插值多项式的算法,即 n 次插值多项式 可以通过 n-1 次插值多项式生成 —— Newton 插值法
20
新的基函数
设插值节点为 x0 , … , xn ,考虑插值基函数组 ϕ0(x) = 1 ϕ1( x)= x − x0 ϕ2( x) = ( x − x0 )( x − x1 )
18
插值余项
几点说明
余项公式只有当 f(x) 的高阶导数存在时才能使用
ξx 与 x 有关,通常无法确定, 实际使用中通常是估计其上界

数值分析期末复习要点总结

数值分析期末复习要点总结

数值分析期末复习要点总结数值分析是一门研究用数值方法来解决数学问题和科学工程问题的学科。

它包括数值计算、数值逼近、数值求解以及数值模拟等内容。

本文将从数值计算的基础知识、数值逼近方法、数值求解方法以及数值模拟方法等方面进行复习要点总结。

一、数值计算的基础知识1. 计算误差:绝对误差、相对误差、有效数字、舍入误差等等。

2. 机器精度:机器数、舍入误差、截断误差等等。

3. 数值稳定性:条件数、病态问题等等。

4. 误差分析:前向误差分析、后向误差分析等等。

二、数值逼近方法1. 插值方法:拉格朗日插值、Newton插值、Hermite插值等等。

2. 曲线拟合:最小二乘法、Chebyshev逼近等等。

3. 数值微分:前向差分、后向差分、中心差分等等。

4. 数值积分:梯形法则、Simpson法则等等。

三、数值求解方法1. 非线性方程求解:二分法、牛顿迭代法、弦截法等等。

2. 线性方程组求解:直接法(Gauss消元法、LU分解法)和迭代法(Jacobi法、Gauss-Seidel法)。

3. 特征值和特征向量:幂法、反幂法、QR分解法等等。

4. 非线性最优化问题:牛顿法、拟牛顿法、梯度下降法等等。

四、数值模拟方法1. 常微分方程数值解法:Euler法、改进Euler法、Runge-Kutta法等等。

2. 偏微分方程数值解法:差分法、有限元法、有限差分法等等。

3. 数值优化方法:线性规划、非线性规划、整数规划等等。

五、数值计算软件1. MATLAB基础:向量、矩阵、符号计算等等。

2. MATLAB数值计算工具箱:插值与拟合工具箱、符号计算工具箱等等。

3. 其他数值计算软件:Python、R、Octave等等。

总结数值分析是一门重要的数学学科,它为解决实际问题提供了有效的数值方法。

在数值计算的基础知识中,我们需要了解计算误差、机器精度和数值稳定性等概念,同时也需要掌握误差分析的方法。

数值逼近方法包括插值、曲线拟合、数值微分和数值积分等内容,其中插值和拟合是常见的逼近方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. MA TLAB 计算中,在命令窗口运行语句f=polyval([2 3 1],2),返回结果f= . 2.设1)(2+=x x f ,则=]4,2[f .设函数13)(47+++=x x x x f ,则7阶差商]3,,3,3[710 f = . 8阶差商]3,,3,3[810 f = .若3219()5767f x x x =++,则()f x 的一阶差商[0,1]f = ,32阶差商0132[3,3,,3]f = .设(1)4,(2)6,(3)7f f f ===,则()f x 的二阶差商[1,2,3]f = . 3.在MATLAB 软件中,用于绘制平面数据散点图的函数为 .4.在求解方程组b AX =时,迭代格式f BX X)()1(+=+k k 对于任意初始向量)0(X 及任意f 都收敛的充要条件是 . 5.在函数22)(x x f =上任取四个互异点,通过这四个点的lagrange 插值多项式为 .在函数1)(2++=x x x f 上任取三个互异的点,通过这三个点的lagrange 插值多项式为 . 6.设4[1,1]()f x C -∈,已知节点1,21,0,13210===-=x x x x ,其相应的函数值为31(),0,0,22f x =-,则()f x 的三次Lagrange 插值多项式3()p x = .当2,1,1-=x 时, 4,0,3)(-=x f 则)(x f 的二次Lagrange 插值多项式为 .设(3)()[0,2]∈f x C ,已知节点0120,1,2===x x x ,其相应的函数值为()2,1,2f x =--,则()f x 的二次Lagrange 插值多项式的插值基函数1()l x = ,插值余项2()R x = . 7. MATLAB的值,可在命令窗口命令提示符后输入 .8.在MATLAB 操作中,把变量x ,y 定义为符号变量的语句为 . 9.设(0,1,,)j x j n =为互异节点,则lagrange 插值基函数满足0()nj j l x ==∑ .10.在MATLAB 软件中,进行MATLAB 操作的最主要的窗口称为 .11. 当1x >>改写为 . 12.用MATLAB 对一组数据进行多项式拟合的函数为 .13.用牛顿迭代法求2()1150=-=f x x 的正根时,迭代公式为 .14.MATLAB 中,用命令polyval 计算多项式13)(23++=x x x f 在100,,2,1,0 =x 时的值, 可在命令窗口中输入 . 用命令polyval 计算多项式124)(33+++=x x x x f 在2,1,1-=x 时的值,可在命令窗口中输入 . 用命令feval 要计算函数f1.m 在0x 处的值,在命令窗口中应输入 . 15.梯形求积公式的代数精度是 ,辛普森求积公式的代数精度是 . 16.求积公式2141()(0)(1)(2)333f x dx f f f ≈++⎰的代数精度是 . 17. 误差的来源大体可分为观测误差、 、 、 等四类.18.用二分法求3()251f x x x =--=0在[1,3]内的实根时,进行一步后根所在的区间为 ,进行二步后根所在的区间为 .19. 若x 的相对误差为3%,则nx 的相对误差为 .1.求积公式)1()1()(11f f dx x f +-≈⎰-在]1,1[-上具有( )次代数精确度.A. 1B. 2C. 3D. 4 2.下面对可进行LU 分解的矩阵A 的描述不正确的是( ).A. 分解所得的L 为单位下三角矩阵B. 分解所得的U 为上三角矩阵C. A 的顺序主子式可以等于零 D. 这种分解是唯一的3.通过点),(k k y x 、),(11++k k y x 的拉格朗日插值基函数)(x l k 、)(1x l k +满足( ).A. 0)(,0)(11==++k k k k x l x lB. 1)(,1)(11==++k k k k x l x lC. 0)(,1)(11==++k k k k x l x lD. 1)(,0)(11==++k k k k x l x l4.应用牛顿迭代法于方程03=-a x ,导出的求立方根3a 的迭代公式为( ).A. a x a x x x k k k k ---=+2313 B. ax ax x x k k k k --+=+2313 C. 2313k k k k x a x x x --=+ D. 2313k k k k x ax x x -+=+ 5.MA TLAB 命令窗口中,运行语句A=[1 2;3 4];A(1,2)^A(2,1),所得结果为( )A .6 B. 16 C. 8 D. 96.辛普森求积公式的代数精度为( ).A. 1B. 2C. 3D. 47.用雅可比迭代法求解方程组⎪⎩⎪⎨⎧=++=++=-+5223122321321321x x x x x x x x x ,则迭代矩阵)(B =.A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----022101220 B. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---022110220 C. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----522311122 D. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1221112218.通过点),(k k y x 、),(11++k k y x 的拉格朗日插值基函数)(x l k 、)(1x l k +满足( ).A. 0)(,0)(11==++k k k k x l x lB. 1)(,1)(11==++k k k k x l x lC. 0)(,1)(11==++k k k k x l x lD. 1)(,0)(11==++k k k k x l x l 9.关于用MA TLAB 库函数对方阵A 的操作下面叙述不正确的是( ).A. 运行diag (A ),可得一列向量B. 运行diag (diag (A )),可得一对角阵C. 运行triu (A )可得一上三角矩阵 D. 运行triu (A )可得一下三角矩阵 10.下面表达式是MATLAB 软件中合法变量名的是( )A. 3a_xB. ab_34C. a%3eD. bn+x 三、简答题1.请给出MATLAB 中M 函数文件的格式. 2.请给出数值积分中代数精度的概念. 3.请给出算法稳定的概念.4.请给出MATLAB 软件中分号、圆括号、方括号的功能.5.请给出数值分析中截断误差、舍入误差的概念. 6.请给出Matlab 软件中合法的变量名的命名规则.7.请给出数值计算中避免误差危害的至少四条原则. 8.请给出用迭代法解非线性方程时收敛阶的概念.四、解答题1. 线性方程组b AX =的系数矩阵A =11(0)1a a a a a a a ⎡⎤⎢⎥>⎢⎥⎢⎥⎣⎦,求能使解方程组的Jacobic 迭代法收敛的a 的范围.2. 用梯形公式,辛普森公式计算21sin ⎰xdx x,21ln(1+⎰dx ,10⎰x e dx .(小数点后保留四位).(已知:9975.0)5.1sin(,9093.02sin ,8415.01sin === ) (已知:ln2 0.6931,ln(1 0.8814,ln(10.7996===)(已知:122.7183, 1.6487==e e )3. 已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=2222222222222222A 求1A 、2A 、∞A .4. 叙述压缩映象不动点定理,并证明不动点的存在性.5. 正方形的边长大约为100cm ,应怎样测量才能使得其面积误差不超过1cm 2?6.用列主元消去法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--421641284247321x x x 7.用简单迭代法理论分析:对于任意的]4,0[0∈x ,由迭代格式 2,1,0,21=+=+k x x k k 得到的序列∞=0}{k k x 均收敛于同一个数*x .8.计算球体积要使相对误差限为1%,问度量半径R 所允许的相对误差限是多少? 9. 计算函数[]1(),0,12=-∈f x x x 关于[0,1]C 的1,f f ∞与2f .10. 已知数据表用复化梯形公式计算2.42.0()f x dx ⎰.11.(8分)已给数据表(取步长0.1h =) 用复化辛普森公式计算⎰4.10.1)(dx x f12. 设有解线性方程组b AX =的迭代格式g BX X k K +=+)()1(,其中A I B -=,如果A B ,的特征值全为正数,分析该迭代格式是否收敛.13. 设线性方程组b AX =的系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111a a a a a a , 证明:当121<<-a 时,高斯-塞德尔迭代法收敛.14.取初始向量(0)(0,0,0)=T X ,用Jacobic 迭代法求解如下方程组,给出(1)(2)(3),,.X X X1231231232213225x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩ 15.(7分)计算61)f =≈1.4,若利用等式f =计算,试分析所得近似值的相对误差是多少? 16.(8分)设线性方程组b AX =的系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a 232131, 试求能使Jacobic 方法收敛的a 的范围.17.(8分)求方程0123=--x x 在5.10=x 附近的一个根,分析下列迭代公式是否收敛:在区间]6.1,3.1[上考察(1)2111kK x x +=+ (2)211)1(1-=+k K x x (已知4648.06.023=)18.(8分)若A 是n 级实矩阵,证明:F FA A An≤≤2119.(10分)设(0,1,,)j x j n =为互异节点,),...,1,0)((n j x l j =为拉格朗日插值基函数.证明: (1) 1)(0≡∑=nj j x l(2)⎩⎨⎧===∑=nk k x l kjnj j ,...,2,1001)0(0四、程序设计题(10分)1. 在某次阻尼振荡试验中测得如下表所列的9组数据点,已知阻尼振荡对应的函数模型为w x e )kx cos(a )x (f =,利用已知数据,求拟合函数的待定参数w k a ,,.(请写出用MATLAB 软件编程求解该题的代码)2. 用最小二乘法确定经验公式x be a y +=中的参数b a ,,使该曲线拟合下面的数据。

请给出用MATLAB 软件的fit 函数求解该问题的程序代码.3. 用MATLAB 函数polyfit 对下面两组数据按要求进行数据拟合,写出操作过程.(1)用c bx ax y ++=2作为拟合函数,拟合上表中数据,应如何操作?(2)用b ax y +=作为拟合函数,拟合上表中数据应如何操作?要计算拟合函数在X 处的值,应如何操作? 4.为求方程01)(23=--=x x x f 在5.10=x 附近的根,将方程改写为等价形式211)(x x x +==ϕ. 用MATLAB 语言编写m 函数,求以)(x ϕ为迭代函数,5.10=x 为初值,迭代10次后的方程0)(=x f 的近似解.5.(7分)用Matlab 语言编写m 文件,用Jacobi 迭代法求下面方程组的解,其中迭代初值为T X )0,0,0()0(=,迭代次数为10.⎪⎩⎪⎨⎧=++=-+=+-3612363311420238321321321x x x x x x x x x6.(10分)用Matlab 语言编写m.函数,用牛顿迭代法求15的值. 其中迭代初值为4,迭代次数为8.。

相关文档
最新文档