微机原理与接口技术 最好的知识点总结
微机原理与接口技术大汇总
微机原理与接口技术大汇总1.介绍微机原理与接口技术是计算机科学与技术专业中的一门重要课程,主要涉及计算机硬件体系结构、计算机系统、控制系统以及各种接口技术的原理和应用。
接口技术是实现不同设备之间信息传递和互联的关键技术,具有广泛的应用领域和重要的研究价值。
2.计算机硬件体系结构计算机硬件体系结构是计算机系统的基础,它包括计算机的存储器、中央处理器、输入输出设备和总线等。
微机原理与接口技术课程中,学生需要掌握计算机硬件体系结构的基本原理和关键技术,包括CPU的结构和工作原理、存储器的分类和存储方式、总线的种类及特点等。
3.计算机系统计算机系统是由硬件和软件组成的一套相互配合的系统。
微机原理与接口技术课程中,学生需要了解计算机系统的组成和工作原理,以及各个组成部分之间的配合关系。
例如,学生需要了解计算机引导过程的原理和方法,了解操作系统的作用和主要功能,以及了解系统维护和系统调试的基本方法。
4.接口技术接口技术是实现不同设备之间信息传递和互联的重要技术。
微机原理与接口技术课程中,学生需要学习各种接口技术的原理和应用,包括串行接口、并行接口、USB接口、以太网接口等。
学生需要了解接口技术的基本原理、接口的分类和特点,以及如何设计和实现接口电路。
5.接口技术的应用接口技术具有广泛的应用领域,如网络通信、嵌入式系统、自动化控制等。
微机原理与接口技术课程中,学生需要学习接口技术在各个领域中的具体应用,了解接口技术在实际工程中的应用案例,以及学习如何根据实际需求设计和实现合适的接口。
6.接口技术的发展趋势随着科技的不断进步,接口技术也在不断发展和改进。
微机原理与接口技术课程中,学生需要了解接口技术发展的趋势,例如,学生需要了解新一代接口技术的特点和优势,了解无线接口技术的原理和应用,以及了解接口技术在云计算、物联网等新兴领域中的应用。
7.实践教学微机原理与接口技术是一门实践性较强的课程,学生需要通过实验和实践来加深对理论知识的理解和掌握。
(完整版)微机原理与接口技术知识点总结
第一章概述一、计算机中地数制1、无符号数地表示方法:<1)十进制计数地表示法特点:以十为底,逢十进一;共有0-9十个数字符号.<2)二进制计数表示方法:特点:以2为底,逢2进位;只有0和1两个符号.<3)十六进制数地表示法:特点:以16为底,逢16进位;有0--9及A—F<表示10~15)共16个数字符号. 2、各种数制之间地转换<1)非十进制数到十进制数地转换按相应进位计数制地权表达式展开,再按十进制求和.<见书本1.2.3,1.2.4)<2)十进制数制转换为二进制数制●十进制→二进制地转换:整数部分:除2取余;小数部分:乘2取整.●十进制→十六进制地转换:整数部分:除16取余;小数部分:乘16取整.以小数点为起点求得整数和小数地各个位.<3)二进制与十六进制数之间地转换用4位二进制数表示1位十六进制数3、无符号数二进制地运算<见教材P5)4、二进制数地逻辑运算特点:按位运算,无进借位<1)与运算只有A、B变量皆为1时,与运算地结果就是1<2)或运算A、B变量中,只要有一个为1,或运算地结果就是1<3)非运算<4)异或运算A、B两个变量只要不同,异或运算地结果就是1二、计算机中地码制1、对于符号数,机器数常用地表示方法有原码、反码和补码三种.数X地原码记作[X]原,反码记作[X]反,补码记作[X]补.b5E2RGbCAP注意:对正数,三种表示法均相同.它们地差别在于对负数地表示.<1)原码定义:符号位:0表示正,1表示负;数值位:真值地绝对值.注意:数0地原码不唯一<2)反码定义:若X>0 ,则 [X]反=[X]原若X<0,则 [X]反= 对应原码地符号位不变,数值部分按位求反注意:数0地反码也不唯一<3)补码定义:若X>0,则[X]补= [X]反= [X]原若X<0,则[X]补= [X]反+1注意:机器字长为8时,数0地补码唯一,同为000000002、8位二进制地表示范围:原码:-127~+127反码:-127~+127补码:-128~+1273、特殊数10000000●该数在原码中定义为: -0●在反码中定义为: -127●在补码中定义为: -128●对无符号数:(10000000>2= 128三、信息地编码1、十进制数地二进制数编码用4位二进制数表示一位十进制数.有两种表示法:压缩BCD码和非压缩BCD 码.<1)压缩BCD码地每一位用4位二进制表示,0000~1001表示0~9,一个字节表示两位十进制数.<2)非压缩BCD码用一个字节表示一位十进制数,高4位总是0000,低4位地0000~1001表示0~9p1EanqFDPw字符地编码计算机采用7位二进制代码对字符进行编码<1)数字0~9地编码是0110000~0111001,它们地高3位均是011,后4位正好与其对应地二进制代码<BCD码)相符.DXDiTa9E3d<2)英文字母A~Z地ASCII码从1000001<41H)开始顺序递增,字母a~z地ASCII 码从1100001<61H)开始顺序递增,这样地排列对信息检索十分有利.RTCrpUDGiT第二章微机组成原理第一节、微机地结构1、计算机地经典结构——冯.诺依曼结构<1)计算机由运算器、控制器、输入设备和输出设备五大部分组成<运算器和控制器又称为CPU)<2)数据和程序以二进制代码形式不加区分地存放在存储器总,存放位置由地址指定,数制为二进制.<3)控制器是根据存放在存储器中地指令序列来操作地,并由一个程序计数器控制指令地执行.3、系统总线地分类<1)数据总线<Data Bus),它决定了处理器地字长.<2)地址总线<Address Bus),它决定系统所能直接访问地存储器空间地容量.<3)控制总线<Control Bus)第二节、8086微处理器1、8086是一种单片微处理芯片,其内部数据总线地宽度是16位,外部数据总线宽度也是16位,片内包含有控制计算机所有功能地各种电路.5PCzVD7HxA8086地址总线地宽度为20位,有1MB<220)寻址空间.1、8086CPU由总线接口部件BIU和执行部件EU组成.BIU和EU地操作是异步地,为8086取指令和执行指令地并行操作体统硬件支持.2、8086处理器地启动4、寄存器结构8086微处理器包含有13个16位地寄存器和9位标志位.4个通用寄存器<AX,BX,CX,DX)4个段寄存器<CS,DS,SS,ES)4个指针和变址寄存器<SP,BP,SI,DI)指令指针<IP)1)、通用寄存器<1)8086含4个16位数据寄存器,它们又可分为8个8位寄存器,即:●AX →AH,AL●BX→BH,BL●CX→CH,CL●DX→DH,DL常用来存放参与运算地操作数或运算结果<2)数据寄存器特有地习惯用法●AX:累加器.多用于存放中间运算结果.所有I/O指令必须都通过AX与接口传送信息;●BX:基址寄存器.在间接寻址中用于存放基地址;●CX:计数寄存器.用于在循环或串操作指令中存放循环次数或重复次数;●DX:数据寄存器.在32位乘除法运算时,存放高16位数;在间接寻址地I/O指令中存放I/O端口地址.jLBHrnAILg2)、指针和变址寄存器●SP:堆栈指针寄存器,其内容为栈顶地偏移地址;●BP:基址指针寄存器,常用于在访问内存时存放内存单元地偏移地址.●SI:源变址寄存器●DI:目标变址寄存器变址寄存器常用于指令地间接寻址或变址寻址.3)、段寄存器CS:代码段寄存器,代码段用于存放指令代码DS:数据段寄存器ES:附加段寄存器,数据段和附加段用来存放操作数SS:堆栈段寄存器,堆栈段用于存放返回地址,保存寄存器内容,传递参数4)、指令指针<IP)16位指令指针寄存器,其内容为下一条要执行地指令地偏移地址.5)、标志寄存器<1)状态标志:●进位标志位<CF):运算结果地最高位有进位或有借位,则CF=1●辅助进位标志位<AF):运算结果地低四位有进位或借位,则AF=1●溢出标志位<OF):运算结果有溢出,则OF=1●零标志位<ZF):反映指令地执行是否产生一个为零地结果●符号标志位<SF):指出该指令地执行是否产生一个负地结果●奇偶标志位<PF):表示指令运算结果地低8位“1”个数是否为偶数<2)控制标志位●中断允许标志位<IF):表示CPU是否能够响应外部可屏蔽中断请求●跟踪标志<TF):CPU单步执行5、8086地引脚及其功能<重点掌握以下引脚)●AD15~AD0:双向三态地地址总线,输入/输出信号●INTR:可屏蔽中断请求输入信号,高电平有效.可通过设置IF地值来控制.●NMI:非屏蔽中断输入信号.不能用软件进行屏蔽.●RESET:复位输入信号,高电平有效.复位地初始状态见P21●MN/MX:最小最大模式输入控制信号.第三章 8086指令系统第一节8086寻址方式一、数据寻址方式1、立即寻址操作数(为一常数>直接由指令给出(此操作数称为立即数>立即寻址只能用于源操作数例:MOV AX, 1C8FHMOV BYTE PTR[2A00H], 8FH错误例:× MOV 2A00H,AX 。
微机原理与接口技术要点总结
输入输出与中断
1. CPU和外设间的数据传送方式
2. CPU与外设间的接口信号
3.中断向量的置换
4.中断的类型:软件中断、可屏蔽硬件中断、非屏蔽硬件中断;以及CPU对可屏蔽硬件中断和非屏蔽硬件中断的不同的响应条件5.中断向量表、中断向量的概念
6. 输入输出指令
7.8259的基本结构和工作原理
8. 8259的初始化命令字ICW2,ICW3
9.8259的操作命令字:包括各个命令字的作用、格式、具体的操作10.软件中断与硬件中断的异同点
8254程序设计
1.8254的基本结构和工作原理
2. 8254的工作方式2和方式3
2.8254的命令字格式,以及对于8254各个计数器工作方式的设定
8255程序设计
1.8255的基本结构和工作原理
2.8255的命令字格式,以及对于8255各端口的操作
16550
1. 异步串行通信中,波特率的概念,数据帧的概念
2. 16550的数据发送和接收
ADC0809和DAC0832
1.计数式ADC与逐次逼近ADC的区别
2. ADC0809的内部结构,编程控制
3. 权电阻DAC和T型网络DAC的基本概念
4. DAC0832的内部结构。
微机原理与接口技术知识点总结整理
微机原理与接口技术知识点总结整理微机原理与接口技术是计算机科学中的重要分支,其主要研究方向是了解计算机的硬件构造、操作系统、编程语言以及各种数据通信协议等相关知识。
本文将对微机原理与接口技术的相关知识点进行总结整理。
一、微机原理1.微机概述:微机是指由微处理器、存储器、输入/输出设备等组成的计算机系统,是应用最为广泛的计算机类型。
2.计算机硬件构成:计算机硬件由内部和外部两部分组成,内部主要包括CPU、主板、显卡、内存、硬盘等,外部主要包括鼠标、键盘、显示器、打印机等。
3.CPU结构:CPU由控制单元和运算单元组成,控制单元用于控制程序的执行,运算单元用于进行算数和逻辑运算。
4.存储器结构:存储器主要包括ROM和RAM两种,ROM为只读存储器,RAM为随机存储器,可以随时进行数据的读写操作。
5.总线结构:计算机内部的各个部件都需要通过总线进行连接和通信,常用的总线包括数据总线、地址总线和控制总线。
二、接口技术1.接口概述:接口是计算机系统中连接不同设备之间的桥梁,是实现设备间数据交换的通道。
2.串行接口:串行接口能够传输或接收一个比特位或字节序列,常用的串行接口包括RS-232、RS-485和USB等。
4.键盘扫描接口:键盘扫描接口通常采用矩阵式扫描技术,可以实现多个按键同时使用的功能。
5.鼠标接口:鼠标接口主要包括串行和PS/2两种,其中PS/2接口常用于笔记本电脑和台式机。
6.网络接口:网络接口可以实现计算机之间的数据交换和共享,主要包括局域网和广域网。
三、总结通过以上对微机原理与接口技术的知识点总结整理,我们可以了解到计算机硬件组成、CPU结构、存储器结构、总线结构以及各种接口技术的作用和应用,进而更深入地学习和应用计算机科学相关知识。
微机原理及接口技术知识点总结
微机原理及接口技术知识点总结微机原理和接口技术是计算机科学与技术专业中非常重要的一门课程,主要涉及到计算机的基本构造、工作原理和外部接口的设计与应用。
下面将对微机原理和接口技术的知识点进行总结,包括计算机的基本构成、计算机的工作原理、外部接口的设计与应用方面的内容。
一、计算机的基本构成1.主机和外部设备:计算机由CPU、内存、I/O设备组成。
外部设备包括输入设备(如键盘、鼠标)、输出设备(如显示器、打印机)和存储设备(如硬盘、光盘)等。
2.总线系统:计算机的内部通信系统,用于传输数据、地址和控制信号。
3.存储器:包括主存储器(RAM)和辅助存储器(硬盘、光盘等),主要用于存储指令和数据。
4.CPU:计算机的核心部件,包括控制单元和算术逻辑单元,负责执行指令和进行数据处理。
二、计算机的工作原理1.运行过程:计算机的运行过程分为取指令、译码、执行和访存四个阶段,其中取指令和访存是主存和CPU之间的数据交换,译码和执行是CPU对指令的操作过程。
2.指令周期:指令在计算机中的执行单位。
包括取指令周期、译码周期、执行周期和访存周期。
3.指令集结构:计算机支持的指令集合,分为精简指令集(RISC)和复杂指令集(CISC)。
4.中断和异常处理:当计算机发生中断事件(如外部设备请求)或异常情况(如除零错误)时,会中断当前指令的执行,并跳转到相应的中断处理程序或异常处理程序。
三、外部接口的设计与应用1.并行接口:通过多根信号线同时传输数据和控制信号,如并行打印接口(LPT)和辅助存储器接口(IDE)等。
2.串行接口:通过单根信号线逐位传输数据和控制信号,如串行通信接口(COM)和USB接口等。
3.总线接口:用于连接主机和外部设备之间的数据传输,如PCI总线和USB总线等。
4.DMA控制器:直接内存存取控制器,用于实现主存和外设之间的数据直接传输,减轻CPU的负担。
5.中断控制器:用于管理和处理外设的中断信号,实现中断的优先级和响应。
(完整版)微机原理与接口技术知识点总结
第一章概述一、计算机中地数制1、无符号数地表示方法:<1)十进制计数地表示法特点:以十为底,逢十进一;共有0-9十个数字符号.<2)二进制计数表示方法:特点:以2为底,逢2进位;只有0和1两个符号.<3)十六进制数地表示法:特点:以16为底,逢16进位;有0--9及A—F<表示10~15)共16个数字符号. 2、各种数制之间地转换<1)非十进制数到十进制数地转换按相应进位计数制地权表达式展开,再按十进制求和.<见书本1.2.3,1.2.4)<2)十进制数制转换为二进制数制●十进制→二进制地转换:整数部分:除2取余;小数部分:乘2取整.●十进制→十六进制地转换:整数部分:除16取余;小数部分:乘16取整.以小数点为起点求得整数和小数地各个位.<3)二进制与十六进制数之间地转换用4位二进制数表示1位十六进制数3、无符号数二进制地运算<见教材P5)4、二进制数地逻辑运算特点:按位运算,无进借位<1)与运算只有A、B变量皆为1时,与运算地结果就是1<2)或运算A、B变量中,只要有一个为1,或运算地结果就是1<3)非运算<4)异或运算A、B两个变量只要不同,异或运算地结果就是1二、计算机中地码制1、对于符号数,机器数常用地表示方法有原码、反码和补码三种.数X地原码记作[X]原,反码记作[X]反,补码记作[X]补.b5E2RGbCAP注意:对正数,三种表示法均相同.它们地差别在于对负数地表示.<1)原码定义:符号位:0表示正,1表示负;数值位:真值地绝对值.注意:数0地原码不唯一<2)反码定义:若X>0 ,则 [X]反=[X]原若X<0,则 [X]反= 对应原码地符号位不变,数值部分按位求反注意:数0地反码也不唯一<3)补码定义:若X>0,则[X]补= [X]反= [X]原若X<0,则[X]补= [X]反+1注意:机器字长为8时,数0地补码唯一,同为000000002、8位二进制地表示范围:原码:-127~+127反码:-127~+127补码:-128~+1273、特殊数10000000●该数在原码中定义为: -0●在反码中定义为: -127●在补码中定义为: -128●对无符号数:(10000000>2= 128三、信息地编码1、十进制数地二进制数编码用4位二进制数表示一位十进制数.有两种表示法:压缩BCD码和非压缩BCD 码.<1)压缩BCD码地每一位用4位二进制表示,0000~1001表示0~9,一个字节表示两位十进制数.<2)非压缩BCD码用一个字节表示一位十进制数,高4位总是0000,低4位地0000~1001表示0~9p1EanqFDPw字符地编码计算机采用7位二进制代码对字符进行编码<1)数字0~9地编码是0110000~0111001,它们地高3位均是011,后4位正好与其对应地二进制代码<BCD码)相符.DXDiTa9E3d<2)英文字母A~Z地ASCII码从1000001<41H)开始顺序递增,字母a~z地ASCII 码从1100001<61H)开始顺序递增,这样地排列对信息检索十分有利.RTCrpUDGiT第二章微机组成原理第一节、微机地结构1、计算机地经典结构——冯.诺依曼结构<1)计算机由运算器、控制器、输入设备和输出设备五大部分组成<运算器和控制器又称为CPU)<2)数据和程序以二进制代码形式不加区分地存放在存储器总,存放位置由地址指定,数制为二进制.<3)控制器是根据存放在存储器中地指令序列来操作地,并由一个程序计数器控制指令地执行.3、系统总线地分类<1)数据总线<Data Bus),它决定了处理器地字长.<2)地址总线<Address Bus),它决定系统所能直接访问地存储器空间地容量.<3)控制总线<Control Bus)第二节、8086微处理器1、8086是一种单片微处理芯片,其内部数据总线地宽度是16位,外部数据总线宽度也是16位,片内包含有控制计算机所有功能地各种电路.5PCzVD7HxA8086地址总线地宽度为20位,有1MB<220)寻址空间.1、8086CPU由总线接口部件BIU和执行部件EU组成.BIU和EU地操作是异步地,为8086取指令和执行指令地并行操作体统硬件支持.2、8086处理器地启动4、寄存器结构8086微处理器包含有13个16位地寄存器和9位标志位.4个通用寄存器<AX,BX,CX,DX)4个段寄存器<CS,DS,SS,ES)4个指针和变址寄存器<SP,BP,SI,DI)指令指针<IP)1)、通用寄存器<1)8086含4个16位数据寄存器,它们又可分为8个8位寄存器,即:●AX →AH,AL●BX→BH,BL●CX→CH,CL●DX→DH,DL常用来存放参与运算地操作数或运算结果<2)数据寄存器特有地习惯用法●AX:累加器.多用于存放中间运算结果.所有I/O指令必须都通过AX与接口传送信息;●BX:基址寄存器.在间接寻址中用于存放基地址;●CX:计数寄存器.用于在循环或串操作指令中存放循环次数或重复次数;●DX:数据寄存器.在32位乘除法运算时,存放高16位数;在间接寻址地I/O指令中存放I/O端口地址.jLBHrnAILg2)、指针和变址寄存器●SP:堆栈指针寄存器,其内容为栈顶地偏移地址;●BP:基址指针寄存器,常用于在访问内存时存放内存单元地偏移地址.●SI:源变址寄存器●DI:目标变址寄存器变址寄存器常用于指令地间接寻址或变址寻址.3)、段寄存器CS:代码段寄存器,代码段用于存放指令代码DS:数据段寄存器ES:附加段寄存器,数据段和附加段用来存放操作数SS:堆栈段寄存器,堆栈段用于存放返回地址,保存寄存器内容,传递参数4)、指令指针<IP)16位指令指针寄存器,其内容为下一条要执行地指令地偏移地址.5)、标志寄存器<1)状态标志:●进位标志位<CF):运算结果地最高位有进位或有借位,则CF=1●辅助进位标志位<AF):运算结果地低四位有进位或借位,则AF=1●溢出标志位<OF):运算结果有溢出,则OF=1●零标志位<ZF):反映指令地执行是否产生一个为零地结果●符号标志位<SF):指出该指令地执行是否产生一个负地结果●奇偶标志位<PF):表示指令运算结果地低8位“1”个数是否为偶数<2)控制标志位●中断允许标志位<IF):表示CPU是否能够响应外部可屏蔽中断请求●跟踪标志<TF):CPU单步执行5、8086地引脚及其功能<重点掌握以下引脚)●AD15~AD0:双向三态地地址总线,输入/输出信号●INTR:可屏蔽中断请求输入信号,高电平有效.可通过设置IF地值来控制.●NMI:非屏蔽中断输入信号.不能用软件进行屏蔽.●RESET:复位输入信号,高电平有效.复位地初始状态见P21●MN/MX:最小最大模式输入控制信号.第三章 8086指令系统第一节8086寻址方式一、数据寻址方式1、立即寻址操作数(为一常数>直接由指令给出(此操作数称为立即数>立即寻址只能用于源操作数例:MOV AX, 1C8FHMOV BYTE PTR[2A00H], 8FH错误例:× MOV 2A00H,AX 。
微机原理与接口技术知识点总结整理
微机原理与接口技术知识点总结整理引言微机原理与接口技术是计算机科学与技术专业的核心课程之一,它涵盖了微处理器的工作原理、计算机体系结构、输入输出接口技术以及相关的硬件设计和编程技巧。
本文档旨在对微机原理与接口技术的主要内容进行总结和整理,帮助读者系统地掌握相关知识点。
微处理器与计算机体系结构微处理器基础发展历史:从Intel 4004到现代多核处理器的演进。
指令集架构:包括CISC和RISC的区别。
寄存器组:通用寄存器、状态寄存器、控制寄存器等。
计算机体系结构冯·诺依曼模型:存储程序的概念和计算原理。
哈佛模型:指令和数据分开存储的特点。
流水线技术:提高指令执行效率的方法。
存储系统主存储器:RAM和ROM的区别与应用。
高速缓存:L1、L2缓存的作用和工作原理。
虚拟内存:页面置换算法和段页式管理。
输入输出(I/O)接口技术I/O接口基础接口分类:并行接口与串行接口。
数据传输方式:同步传输与异步传输。
控制方式:程序控制、中断驱动、DMA。
常见接口标准ISA:工业标准架构。
PCI:外设组件互连标准。
USB:通用串行总线。
SATA:串行高级技术附件。
中断系统中断类型:硬件中断与软件中断。
中断向量表:中断服务例程的地址存储。
中断优先级:不同中断源的处理优先级。
DMA传输DMA控制器:直接内存访问的硬件支持。
DMA传输过程:数据在内存和外设间的直接传输。
总线技术总线分类数据总线:传输数据的通道。
地址总线:指定数据传输的目标地址。
控制总线:控制信号的传输。
总线标准EISA:扩展工业标准架构。
AGP:加速图形端口。
PCI Express:新一代的PCI总线。
总线仲裁链式仲裁:按顺序分配总线使用权。
计数器定时器仲裁:基于时间片分配总线使用权。
微机硬件组成中央处理单元(CPU)运算器:执行算术和逻辑运算。
控制器:协调CPU内部操作和外部设备通信。
主板(Motherboard)芯片组:决定主板功能和性能的关键组件。
微机原理与接口技术知识点归纳
微机原理与接口技术知识点归纳一、微机原理基础知识1.计算机的历史与发展:从早期的计算器到现代电子计算机的演变过程,了解计算机的历史与发展。
2.计算机的基本组成:包括中央处理器(CPU)、存储器、输入设备、输出设备等基本组成部分,并对各部分的功能和作用进行了解。
3.计算机的工作原理:包括指令的执行过程、数据在计算机内部的传输和处理过程等。
4.存储器的类型:主要包括随机存取存储器(RAM)和只读存储器(ROM)等。
5.计算机的指令系统和运算器:了解计算机指令系统的组成和指令的执行过程,以及运算器的功能和实现方法。
6.计算机的时序与控制:了解计算机的时序与控制,包括时钟信号的产生与同步,以及各种控制信号的生成与传输。
二、微机接口技术知识点1.总线的基本概念:了解总线的定义、分类以及总线的特点和功能。
2.ISA总线与PCI总线:介绍ISA总线和PCI总线的结构和工作原理,以及两者之间的差异和优劣。
B接口:了解USB接口的发展历程、工作原理和特点,以及USB接口的速度分类和设备连接方式。
4. 并行接口:介绍并行接口的原理和应用,包括Centronics接口和IEEE-1284接口等。
5.串行接口:了解串行接口的原理和应用,包括RS-232C接口和USB 接口等。
6.中断系统:介绍中断系统的工作原理和分类,以及中断向量表和中断服务程序的编写与应用。
7.DMA接口:了解DMA接口的工作原理和应用,包括DMA控制器和DMA传输方式等。
8.输入输出接口:介绍输入输出接口的原理和应用,包括键盘接口、显示器接口和打印机接口等。
9.总线控制与时序:了解总线控制和时序的设计和实现方法,包括总线仲裁、总线控制器和时序发生器等。
10.接口电路设计方法:介绍接口电路的设计和实现方法,包括接口电路的逻辑设计和电气特性的匹配等。
以上是关于微机原理与接口技术的一些知识点的归纳,通过学习这些知识可以更好地了解计算机的基本原理和各种接口技术的实现方法,为进一步深入学习和应用计算机提供基础。
必看的微机原理与接口技术知识点总结
必看的微机原理与接口技术知识点总结哎呀,你们这些小伙伴们,让我给你们说说微机原理与接口技术吧!这个可是咱们计算机专业的必修课哦,要是不学好,以后可怎么在IT界混呢?好了不多废话了,咱们开始吧!咱们要了解什么是微机原理。
哎呀,别看这个名字高大上,其实就是说咱们的计算机是由很多小零件组成的。
这些小零件就像人的身体一样,有脑袋、手、脚等等。
而微机原理就是研究这些小零件是怎么工作的,它们之间又是通过什么方式连接在一起的。
简单来说,就是研究计算机的内部构造和工作原理。
咱们来说说接口技术。
这个名字听起来有点玄乎,其实也就是说咱们的计算机和其他设备之间是通过什么方式进行数据交换的。
比如说,你要想让电脑显示一个图片,那么这个图片就必须要通过接口传输到电脑里才行。
所以说,接口技术就是研究这些传输方式的原理和方法。
咱们为什么要学习微机原理与接口技术呢?原因很简单啊,因为现在的社会已经离不开计算机了。
无论是工作还是生活,都离不开计算机的支持。
而要让计算机更好地为我们服务,咱们就必须要知道它的内部构造和工作原理,以及如何与其他设备进行数据交换。
这样一来,咱们就能更好地利用计算机来提高工作效率,丰富生活娱乐啦!好了我不能再说了,要不然你们该睡着了。
不过你们一定要记住啊,学习微机原理与接口技术可不能马虎。
一定要认真听讲,多做练习题,这样才能真正掌握这门课程。
当然了,如果有什么不懂的地方,可以随时来问我哦!我会尽我所能帮助你们的。
微机原理与接口技术是咱们计算机专业的重要课程,大家都要认真学习哦!希望通过我的讲解,你们能够对这门课程有一个更深入的了解。
好了我得去忙别的事情了,下次再见啦!。
微机原理与接口技术考点大汇总
微机原理与接口技术考点总结1.计算机的基本结构:1946年美籍匈牙利数学家冯·诺依曼提出的。
由运算器、控制器、存储器、输入设备和输出设备五部分构成。
2.两个基本能力:(1)能够存储程序(2)能够自动的执行程序3.技术机系统的组成(1)硬件系统、主要指物理设备(2)软件系统、是指管理计算机系统资源,控制计算机系统运行的程序、命令、指令和数据等。
4.计算机的分类:(1)巨型机(2)小巨型机(3)大型机(4)小型机(5)微型机(6)工作站5.计算机的运算基础:采用二进制来实现数据的存储和运算的。
6.计算机中数值数据的表示:(1)原码:表示机器数时,将符号为数值放在最高位(0表示正数,1表示负数)记做【X】原。
例如X1=+1001101则【X1】原=01001101;X2=-1000111则【X2】原=11000111.(2)反码:源码出符号位置外的其余各位数值取反。
结果为正数,等于原码。
(3)补码:表示一个负数的反码末尾加1,任意一个数的补码的补码即为其源码本身。
7.寄存器组(1)通用寄存器组:用来处理16位(或)32位算术逻辑指令,若8位寄存器处理单字节指令。
(2)指示器和编制寄存器组又称P组I 组存放偏移地址,供以段为基础的寻址方式使用。
(3)段寄存器组代码寄存器CS表地址;数据寄存器DS表数据段;堆栈段SS;附加段ES(4)程序寄存器IP:是寄存器阵列中的,他有计数功能,是一个16位寄存器,指示现行指令的存储器地址。
(5)标志寄存器FR(状态寄存器)由多个触发器组成,用于存放在操作时产生的溢出、进位、全0和符号等。
8.Intel8086/8088微处理器使用单一的+5V电压和40条引脚信号线双列直插式封装。
其数据总行和地址总线是分别使用的。
其时钟频率为4—-8MHZ.9.8086为微处理器,字长为16位处理器,地址位数20位即1M。
有16个寄存器。
10.8086/8088CPU的引脚功能:(1)AD15——AD0、I/O、三态、地址/数据/数据复用总线。
微机原理与接口技术知识点概要
第10章 微型计算机系统串行通信
教材必看章节 10.1 串行通信基础 10.2 可编程串行通信接口芯片8250 10.3.2 串行通信的外部环境 10.3.3 串行通信程序设计,仅看[例10.3.1] 知识点 1. 异步串行通信的数据传输方式(单工、半双工、全双工) 2.异步通信数据帧的格式及通信速率的计算 3.RS-232C电平的特点,RS-232C电平和TTL电平传输同一字符的波形特点 4.8250内部寄存器结构;8250初始化编程;8250应用编程 重点 1. 异步通信数据帧传送格式 2. 通信速率计算 3. 串行通信RS232连接器接线方式(P319) 4. 8250的初始化编程 ;8250查询方式下接收和发送数据的编程方法(直接访 19 问8250端口寄存器)
12
知识点 1. 汇编源程序的编程结构 2. DOS、BIOS调用格式 3.分支程序、循环程序结构与编程 4.子程序编程格式与调用 5.宏指令的定义,宏指令与子程序的区别 6.不同代码之间转换的程序实现 重点 1.掌握DOS的01H,02H,09H,0AH,4CH功能调用及用法 2.掌握BIOS INT16H的00H、01H功能调用及用法 3.分支判断与循环程序控制 4.使用寄存器向子程序传递参数的方法 5.代码转换的算法分析
第11章并行I/O接口
教材必看内容 11.1 可编程并行I/O接口芯片8255A 11.2 8255A应用(P347~P350的前8行) 知识点 1.8255A内部结构,A组和B组控制分别管理哪些端口 2. 8255A的初始化编程(两个控制字如何应用) 3.8255A方式0、方式1和方式2的特点及适用端口 4.方式1输入时,联络信号STB和IBF的作用;方式1输出时,联络信号OBF和 ACK的作用 5.中断方式下,如何写入C端口按位置0/置1控制字允许8255A相应端口中断 6.8255A在方式0 及方式1查询方式下的输入输出编程 7. 打印机主要联络信号线及工作时序 重点 1. 8255A初始化编程,根据要求如何判断写入控制字类别,及如何写入 2. STB/IBF的作用与联络过程;OBF/ACK的作用与联络过程。 3.8255A工作在方式1查询方式时,程序如何判别IBF和OBF实现数据的输入 或输出
微机原理与接口技术复习总结
微机原理与接⼝技术复习总结《微机原理与接⼝技术》期末复习要点(选择、填空、判断、简答、分析、设计)第⼀章微型计算机的基础知识1、⼆进制数、⼗进制数,⼗六进制数转化P16第⼆章微处理器与系统结构1、8086CPU的两个独⽴的功能部件、各部件的组成与功能P22~24(⾄少5题)①名称:总线接⼝部件(BIU)和执⾏部件(EU)②BIU和EU的独⽴⼯作→→体现了⼀种指令流⽔技术③BIU组成:20位地址加法器;4个段寄存器和1个指令指针寄存器;指令队列缓冲器;输⼊/输出控制电路。
(记图)EU组成:ALU(算术逻辑单元);8个通⽤寄存器;标志寄存器FR;执⾏部件控制电路;(记图)④BIU功能:取指令、读/写存储器、读/写I/O接⼝(其实就是访问存储器和接⼝电路)EU功能:执⾏指令2、CPU内部寄存器:SP、IP P25、P26CPU中共有14个寄存器。
典型的有SP/IP,不能直接修改,完成操作后值⾃动加减(隐含的)。
SP:堆栈指针寄存器(向下⽣成,栈底地址最⼤)压栈push SP-2(占两个单元)IP:指令指针寄存器(只加)IP+指令长度例如:32位,取⼀条指令+43、CPU的地址线数量与最⼤寻址空间P274、标志寄存器的控制与状态位数及各标志位(ZF、IF、OF)表⽰的内容P25~26标志寄存器是:EU的组成部分共9个。
表⽰状态的有6个,表⽰控制的有3个。
零标志ZF(Zero Flag):若运算结果为0,则ZF=1;否则ZF=0。
中断标志IF(Interrupt Enable Flag):如果IF置“1”,则CPU可以接受可屏蔽中断请求;反之,则CPU不能接受可屏蔽中断请求。
溢出标志OF(Overflow Flag):若运算过程中发⽣了“溢出”,则OF=1。
5、8086可屏蔽中断请求信号与中断响应信号的有效电平P33、P34(信号线名称、什么时候有效、响应的条件、8259A和8086的连接的信号线叫什么)INTR(Interrupt Request)可屏蔽中断请求信号,输⼊、⾼电平有效。
微机原理与接口技术34
微机原理与接口技术34微机原理与接口技术是指控制器与外部设备之间的通讯,通过接口技术实现数据的传输和控制。
接口技术是微机系统中必须了解的重要基础知识之一,它涉及到外设与计算机之间的物理连接和传输操作,同时也包括外设和计算机之间通讯协议的规定。
以下是微机原理与接口技术方面的34个知识点:1. 计算机的I/O接口系统由I/O控制器、I/O地址译码器和I/O接口电路构成。
2. I/O接口电路负责处理计算机和外设之间的数据传输,其中包括数据传输的控制信号、数据传输的时序控制、数据传输模式的选择等。
3. I/O地址译码器负责将CPU输出的I/O地址转换为外设的物理地址。
4. 操作系统与计算机硬件之间的通讯是通过中断信号实现的。
5. 计算机的I/O交换方式有两种:基于端口和基于存储器。
6. 端口I/O方式是通过特定的端口将数据传输到外设,其优点是速度快、可靠。
7. 存储器I/O方式是指将I/O卡所需的数据存储到内存中,再通过CPU进行传输。
8. 输入设备的接口技术包括键盘、鼠标等。
9. 键盘的接口技术常用的有PS/2接口和USB接口。
11. 打印机的接口技术包括并口和串口。
12. 并口是指同步传输的数据通道,可实现高速数据传输。
13. USB接口是全球通用的外设连接方式,特点是插上即用,无需启动电脑。
14. 系统总线是指计算机各个部件之间的通讯线路,主要包括地址总线、数据总线和控制总线。
15. 数据总线是计算机各个部件之间进行数据传输的关键接口。
16. 地址总线是CPU向显卡、内存和外设传输地址的通道。
18. DMA技术是指直接存储器访问技术,它可减轻CPU的负担,实现数据高速传输。
19. 并行接口的常用标准是IEEE1284,它定义了并行接口的物理连接和信号电平。
20. USB接口标准的版本较多,常用的有 USB1.1、USB2.0、USB3.0和USB C。
21. USB接口具有热插拔、支持多级设备和开放式的特点,可连接传输速度、音频、视频和电源等多种需求。
微机原理与接口技术
微机原理与接口技术一、微机原理1.1. 微机的概念与发展微机是现代计算机的一种,通常包括中央处理器、存储器、输入/输出设备等部分,以及操作系统、应用软件等方面。
它是一种小型化的,具有高度自主、灵活性和可扩展性的计算机设备。
微机的发展源于计算机科学技术,始于19世纪60年代,经历了五十多年的演化发展,逐渐成为现代计算机的一个主要系列之一。
1.2. 微机的工作原理微机是一个高速度的计算机设备,它包括硬件和软件两个方面。
从硬件上看,微机包括中央处理器、内存、输入/输出设备等;软件方面主要包括操作系统和各种软件、程序。
微机的工作原理就是这两个方面的协同作用,首先通过输入设备将数据输入微机中,并与处理器和存储器进行交互,由操作系统控制各种资源,最后通过输出设备将结果反馈给使用者。
1.3. 微机的组成微机由中央处理器、存储器、输入/输出设备和操作系统等部分组成。
具体包括:中央处理器:是微型计算机最重要的组成部分,主要负责控制计算机运行、处理各种运算、指令执行等。
存储器:微机中的存储器由各种存储器构成,丰富的存储器可保证微计算机运行数据的高速存取、临时数据缓冲、预测等结果处理。
输入/输出设备:微机的输入设备主要包括键盘、鼠标等,输出设备主要包括显示器、打印机等。
操作系统:微机所使用的操作系统主要有Windows、Linux等,不同操作系统的功能、应用、兼容性也存在差别。
1.4. 微机的分类与应用微机根据不同的功能和应用可以分为不同的类别,如个人计算机(PC)、工作站、小型机、超级计算机等。
在应用方面,微机主要应用于办公、生产、控制、娱乐、医疗等广泛领域,其使用普及也是世界各地的各种行业、企业和机构。
二、接口技术2.1. 接口的定义与分类接口是指连接两个或多个系统、设备、技术等的一种机制,可以使它们之间进行数据传输和控制交互等。
接口按照数据传输的方向分为输入、输出或双向接口;按照数据传输的方式分为并行接口、串行接口等多种类型;按照物理连接方式,则分为USB、RS232、SCSI、IDE等种类。
微机原理与接口技术知识点总结
微机原理与接口技术知识点总结一、微机原理1.微机系统的组成:微处理器,存储器,输入输出设备和系统总线。
2.微处理器:CPU(中央处理单元),是微机中控制和数据处理的核心部件。
3.存储器:用于存储程序和数据的器件,分为只读存储器(ROM),随机存取存储器(RAM)。
4.输入设备:键盘,鼠标等,用于接收操作者的命令。
5.输出设备:显示器,打印机等,用于展示和输出处理结果。
二、接口技术1.接口技术是连接微机与外部设备的技术,其作用是实现微机与外部设备之间的信息交换和控制。
2.接口技术主要包括接口电路、接口程序和相关接口协议等方面的内容。
三、常用总线1.数据总线:用于在微处理器与其它器件之间传输数据,其宽度决定了微处理器一次能处理的最大数据位数。
2.地址总线:用于传输微处理器发出的地址信息,其宽度决定了微处理器能够寻址的最大地址范围。
3.控制总线:用于传达微处理器和其他部件之间的控制信号,如读写、中断等。
四、中断技术及其应用1.中断技术是微处理器处理紧急事件的一种技术,通过改变程序执行顺序,使微处理器处理外部设备产生的异常情况。
2.中断种类:硬件中断,软件中断。
3.中断处理过程:中断请求,中断响应,中断处理程序执行,中断返回。
五、微处理器指令系统1.微处理器的指令系统是指微处理器可以执行的指令集,包括数据传输指令、算术逻辑指令、程序控制指令等。
2.指令执行过程:取指令、分析指令、执行指令。
3.指令周期:取指周期、分析周期、执行周期。
六、存储器及其访问方式1.存储器:用于存储程序和数据的器件,分为只读存储器(ROM),随机存取存储器(RAM)。
2.存储器访问方式:按地址访问,按内容访问。
3.存储器的分类:主存储器,辅助存储器,外存储器。
4.存储器扩展技术:使存储器的地址空间与数据空间保持一致,实现存储器的扩展。
七、输入输出设备及其接口技术1.输入设备:键盘,鼠标等,用于接收操作者的命令。
2.输出设备:显示器,打印机等,用于展示和输出处理结果。
必看的微机原理与接口技术知识点总结
必看的微机原理与接口技术知识点总结在当今科技飞速发展的时代,微机原理与接口技术作为计算机科学与技术专业的重要基础课程,对于深入理解计算机系统的工作原理以及开发各类计算机应用具有至关重要的意义。
接下来,让我们一同梳理一下这门课程中的关键知识点。
一、微机系统概述微机系统由硬件和软件两大部分组成。
硬件方面,包括中央处理器(CPU)、存储器、输入输出设备等;软件则涵盖了系统软件和应用软件。
CPU 是微机的核心,它负责执行指令和进行数据处理。
常见的CPU 架构有 X86、ARM 等。
了解 CPU 的工作原理,包括指令周期、时序等,对于优化程序性能至关重要。
存储器分为内存和外存。
内存速度快但容量小,如随机存取存储器(RAM);外存容量大但速度较慢,如硬盘、光盘等。
输入设备如键盘、鼠标用于向计算机输入信息,输出设备如显示器、打印机则用于将计算机处理的结果展示给用户。
二、数制与编码在微机中,常用的数制有二进制、八进制、十进制和十六进制。
二进制是计算机内部处理数据的基本形式,因为其只有0 和1 两个数字,便于硬件实现逻辑运算。
不同数制之间可以相互转换。
例如,十进制转换为二进制可以通过除 2 取余的方法,二进制转换为十进制则通过位权相加。
编码是将信息转换为特定的代码形式。
常见的编码有 ASCII 码,用于表示字符;BCD 码,用于表示十进制数。
三、指令系统指令是 CPU 执行操作的命令,指令系统则是 CPU 所能执行的全部指令的集合。
指令通常包括操作码和操作数两部分。
操作码指明要执行的操作,操作数则指出操作的对象。
指令的寻址方式有立即寻址、直接寻址、寄存器寻址、寄存器间接寻址等。
不同的寻址方式适用于不同的场景,能够提高程序的灵活性和效率。
四、汇编语言程序设计汇编语言是一种面向机器的低级程序设计语言。
通过使用汇编语言,可以更直接地控制计算机硬件。
汇编语言程序的基本结构包括数据段、代码段和堆栈段。
编写汇编程序时,需要使用指令、伪指令和宏指令等。
(完整版)微机工作原理与接口技术知识点总结
输入输出设备
接口卡: 用于输入输出设备与计算机之 间的连接和通信
图形显示与图 形界面
图形显示与图形界面
显示方式: 点阵方式和矢量方 式 图形界面: 提供图形化用户界 面,更加直观和易用
图形显示与图形界面
图形处理器: 负责图形处理和显示控制 任务
谢谢您的观赏聆听
中断与DMA
中断与DMA的区别: 中断是CPU主动响应 事件,DMA是数据传输时直接访问内存
总Hale Waihona Puke 结构总线结构内部总线: 连接微处理器和内 存、输入输出设备,数据传输 速度快 外部总线: 连接计算机与外部 设备,数据传输速度慢
总线结构
总线宽度: 决定数据传输的速度和能力 ,常见的有16位和32位
存储器
存储器
内存的分类: 主存储器和辅助 存储器 主存储器: 包括随机存取存储 器(RAM)和只读存储器(ROM )
存储器
辅助存储器: 包括硬盘、光盘、U盘等 ,用于长期存储数据
输入输出设备
输入输出设备
输入设备: 键盘、鼠标、扫描 仪等,将外部信息输入到计算 机 输出设备: 显示器、打印机、 音响等,将计算机处理结果输 出
(完整版)微机工作原理 与接口技术知识点总结
目录 微机工作原理 接口技术知识点 中断与DMA 总线结构 存储器 输入输出设备 图形显示与图形界面
微机工作原理
微机工作原理
微机基本构成: 微处理器、内 存、输入输出设备 微机工作过程: 取指令、分析 指令、执行指令、存结果
微机工作原理
微处理器功能: 控制、运算、存储
接口技术知识 点
接口技术知识点
并行接口: 数据同时传输,适 用于高速数据传输 串行接口: 数据逐位传输,适 用于远距离传输
微机原理与接口技术总结
微机原理与接口技术总结第一章1、总线是计算机系统中互连各部件的一组公用信号线,负责在CPU与存贮器和输入输出设备之间传送地址、数据和控制信息,是计算机系统的神经中枢。
总线包括数据总线DB:双向,用来传递数据信息。
地址总线AB:单向,用于传送CPU发出的地址信息。
控制总线CB:用来传送CPU与存储器和I/O设备之间的读、写控制信号,时序信号和状态信号。
2、进位计数制十进制:数:0、1、2、3、4、5、6、7、8、9权:10的幂。
逢十进一,借一当十(245.25)10=2×102 +4×101 +5×100 +2×10-1 +5×10-2二进制:数:0、1权:2的幂。
逢二进一,借一当二(1101.01)2 =1×23 +1×22+0×21+1×20+0×2-1+1×2-2 =(13.25)10十六进制:数:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F权:16的幂。
即逢十六进一,借一当十六(F5.4)16 =F×161+5×160 +4×16-1 =()103、进位计数制之间的转换第二章1、通用寄存器:存放数据或地址AX:累加器BX:基址寄存器CX:计数器DX:寄存器SI :源变址寄存器DI:目标变址寄存器BP:基址寄存器SP:堆栈指针2.段寄存器(16位):存放存储器逻辑段的起始地址CS:代码段寄存器DS:数据段寄存器SS:堆栈段寄存器ES:附加段寄存器3.标志寄存器(FR)运算结果标志:CF:最高位向前有进位(或借位)CF=1 PF:偶数个1 PF=1 AF:低四位向前有进位(或借位)AF=1ZF:结果为零ZF=1 SF:结果为负SF=1OF;结果溢出OF=1 控制标志:TF:单步标志IF:中断标志DF:方向标志5、实模式下,物理地址=段基址×16+偏移地址第三章指令系统一、数据类型类型所占位数字节8位字16位双字32位单字符8位(ASCII码)例:‘A’存储形式为01000001(65),‘a’为01100001(97)近指针32位远指针48位BCD码压缩BCD码;1字节存放两位BCD码例:25 存储形式为00100101非压缩BCD码:1字节存放一位BCD码(低4位)例:25存储形式为00000010 00000101二、寻址方式1、立即数方式:立即数位于操作码之后,存放在代码段中。
微机原理与接口技术知识点总结整理
微机原理与接口技术知识点总结整理一、微机原理1.计算机的基本组成:计算机由中央处理器(CPU)、内存、输入输出设备和存储设备等组成。
2.CPU的结构和功能:CPU由运算器、控制器和寄存器组成。
运算器执行各种运算操作,控制器管理程序的执行,寄存器存储指令和数据等。
3.存储器的分类和层次:存储器分为主存储器和辅助存储器。
主存储器包括RAM和ROM,辅助存储器包括硬盘、光盘等。
存储器按照访问速度和容量划分为高速缓存、主存储器和辅助存储器。
4.指令的执行过程:指令执行包括取指令、译码、执行和访存等阶段。
5.总线的分类和作用:总线包括数据总线、地址总线和控制总线。
数据总线负责数据的传输,地址总线负责指定存储器地址,控制总线负责控制信号的传输。
6.输入输出的基本原理:计算机通过端口和总线与外部设备进行数据的输入输出。
输入输出分为同步IO和异步IO,同步IO需要CPU等待,异步IO不需要CPU等待。
7.中断和异常处理:中断是指计算机在执行过程中突然发生的事件,而异常是指非法指令或运算错误等。
中断和异常处理能保证计算机在发生突发事件时及时处理。
8.复杂指令的执行原理:计算机中的复杂指令可以通过硬件实现多个基本指令的功能,从而提高计算机的运行效率。
二、接口技术1.接口技术的基本概念:接口技术是指计算机与外部设备之间的连接和通信技术。
常见的接口技术有串行接口、并行接口和通用接口等。
2.并行接口的原理和应用:并行接口是指通过多根数据线实现数据的同时传输。
常见的并行接口有并行打印口(LPT)、扩展接口等。
并行接口适用于数据传输速度较快的设备,如打印机和硬盘等。
3.串行接口的原理和应用:串行接口是指通过一条数据线实现数据的逐位传输。
常见的串行接口有串行通信口(COM)和通用串行总线(USB)等。
串行接口适用于数据传输速度较慢的设备,如鼠标和键盘等。
B接口的标准和应用:USB接口是目前应用最广泛的接口技术,它通过通用的串行总线实现计算机与各种外部设备的连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STACK SEGMENT
ST1 DB
100 DUP(?)
STACK ENDS
CODE SEGMENT
;代码段
MAIN PROC
FAR
ASSUME CS:CODE, DS:DATA, SS:STACK
START: MOV
MOV PUSH MOV PUSH MOV MOV
MOV
MOV INT KEY: MOV INT CMP JE CMP JE CMP JE CMP JE CMP JE CMP JE CMP JE CMP JE RET ZERO: MOV MOV INT RET ONE: MOV MOV INT RET TWO: MOV MOV INT RET THREE: MOV MOV INT RET FOUR: MOV MOV INT RET FIVE: MOV MOV INT RET SIX: MOV MOV INT RET SEVEN: MOV MOV INT RET MAIN ENDP CODE ENDS END
等组成,EU 从 BIU 的指令队列获得指令并执行; 总线接口部件(BIU):由段寄存器、指令指针、地址形成
逻辑、总线控制逻辑和指令队列等组成,负责从内 存中取指令和取操作数。 2.2 寄存器结构 段寄存器:CS、DS、ES、SS, 通用寄存器:AX、BX、CX、DX, 堆栈指针 SP、基址指针 BP、指令指针 IP,标志寄存器 FLAGS CF:最高位有进位为‘1’;PF:低 8 位偶数个 1 AF:低 4 向高 4 有进位;ZF:全零为 1 SF:结果最高位为 1 时等于 1;OF:产生溢出,OF=1 “对准存放”:从存储器偶地址开始存放字数据的存放方式 简答: 1. 什么叫寻址方式?8086 有哪些寻址方式? 答:寻址操作数有效地址的方式叫寻址方式。 8086 的寻址方式有:立即寻址、寄存器寻址、直接寻址、寄存 器间接寻址、基址寻址和变址寻址、基址变址寻址。 2.何为中断?中断矢量是什么?中断方式的实现一般需要 经历哪些过程? 答:所谓中断是指某事件的发生引起 CPU 暂停当前程序的 运行,转入对所发生事件的处理,处理结束又回到原程序 被打断处接着执行这样一个过程。 中断矢量是中断处理子程序的入口地址,每个中断类型对 应一个中断向量。 中断方式的实现一般需要经历下述过程:
运算器: 主要进行算数和逻辑运算 控制器:控制从存储器取指令,送指令寄存器,再送 指令译码器,根据指令的功能产生一系列时序信号控制各 部件动作。 输入设备: 从外部获取信息的装置 输出设备:将计算机运算结果转换为人们或设备能识 别的形式。
5.微机的三总线是什么? 答:它们是地址总线、数据总线、控制总线。 6.8086 CPU 启动时对 RESET 要求?8086/8088 CPU 复位时有何操作? 答:复位信号维高电平有效。8086/8088 要求复位信 号至少维持 4 个时钟周期的高电平才有效。复位信 号来到后,CPU 便结束当前操作,并对处理器标志 寄存器,IP,DS,SS,ES 及指令队列清零,而将 cs 设置 为 FFFFH,当复位信号变成地电平时,CPU 从 FFFF0H 开始执行程序 7.中断向量是是什么?堆栈指针的作用是是什么? 什么是堆栈? 答:中断向量是中断处理子程序的入口地址,每个 中断类型对应一个中断向量。堆栈指针的作用是指 示栈顶指针的地址,堆栈指以先进后出方式工作的 一块存储区域,用于保存断点地址、PSW 等重要信 息。 8..累加器暂时的是什么?ALU 能完成什么运算? 答:累加器的同容是 ALU 每次运行结果的暂存储器。 在 CPU 中起着存放中间结果的作用。ALU 称为算术 逻辑部件,它能完成算术运算的加减法及逻辑运算 的“与”、“或”、“比较”等运算功能。 9.8086 CPU EU、BIU 的功能是什么? 答:EU(执行部件)的功能是负责指令的执行,将 指令译码并利用内部的寄存器和 ALU 对数据进行所 需的处理 BIU(总线接口部件)的功能是负责与存 储器、I/O 端口传送数据。 10.CPU 响应可屏蔽中断的条件? 答:CPU 承认 INTR 中断请求,必须满足以下 4 个 条件: 1)一条指令执行结束。CPU 在一条指令执行的最后 一个时钟周期对请求进行检测,当满足我们要叙述 的 4 个条件时,本指令结束,即可响应。 2)CPU 处于开中断状态。只有在 CPU 的 IF=1,即 处于开中断时,CPU 才有可能响应可屏蔽中断请求。 3)没有发生复位(RESET),保持(HOLD)和非 屏蔽中断请求(NMI)。在复位或保持时,CPU 不工 作,不可能响应中断请求;而 NMI 的优先级比 INTR 高,CPU 响应 NMI 而不响应 INTR。 4)开中断指令(STI)、中断返回指令(IRET)执行 完,还需要执行一条指令才能响应 INTR 请求。另外, 一些前缀指令,如 LOCK、REP 等,将它们后面的 指令看作一个总体,直到这种指令执行完,方可响 应 INTR 请求。 11.8086 CPU 的地址加法器的作用是什么? 答:8086 可用 20 位地址寻址 1M 字节的内存空间, 但 8086 内部所有的寄存器都是 16 位的,所以需要由 一个附加的机构来根据 16 位寄存器提供的信息计算 出 20 位的物理地址,这个机构就是 20 位的地址加 法器。 12.如何选择 8253、8255A 控制字? 答:将地址总线中的 A1、A0 都置 1 13.8086(88) 内部中断源有哪些? 答:内部(除法除以 0、单步、断点、溢出、指令中 断) 14.中断源是什么? 答:所谓中断源即指引起中断的原因或中断请求的 来源。 15.类型号为 N 中断向量存放在逻辑地址为多少? 如何存放逻辑地址? 答:段地址=N*4+2 偏移地址=N*4 所以类型 号为 N 中断向量存放在逻辑地址为段地址:偏移地 址。每个中断类型的逻辑地址为四个字节,高两个 字节存放 CS 段地址,低两个字节存放 IP 偏移地址。 16.8088/8086 CPU 响应中断后,TF 和 IF 标志自动 置为多少? 答:IF 为 1,TF 为 0 17.8086 CPU 可以进行寄存器间接寻址的寄存器是 哪些? 答:BX、BP、SI、DI 18.在微型计算机系统中,主要的输入输出方法有哪 些? 答:在微型计算机系统中,主要的输入输出方法有 4 种:程序控制方式,中断控制方式,直接存储器存 取方式,输入/输出处理机方法。
1
19.中断处理过程应包括哪些步骤? 答:中断方式的实现一般需要经历下述过程:中断请 求→中断响应→断点保护→中断源识别→中断服务 →断点恢复→中断返回
20.CPU 何时检测 INTA 中断请求输入端? 答:CPU 在一条指令执行的最后一个时钟周期对请 求进行检测 21.IP 指令指针寄存器存放的是什么? 答:IP 为指令指针寄存器,它用来存放将要执行的 下一条指令地址的偏移量,它与段寄存器 CS 联合形 成代码段中指令的物理地址。 22.8086(88)的 NMI 何时响应中断? 答:每当 NMI 端进入一个正沿触发信号时,CPU 就 会在结束当前指令后,进入对应于中断类型号为 2 的非屏蔽中断处理程序。 23.8086CPU 共有多少地址线、数据线?,它的寻址 空间为多少字节? 8086CPU 地址线宽度为 20 条,数据线为 16 位,可寻 址范围为 1MB 24.中断向量是什么? 答:中断向量是中断处理子程序的入口地址,每个中 断类型对应一个中断向量。堆栈指针的作用是指示栈 顶指针的地址,堆栈指以先进后出方式工作的一块存 储区域,用于保存断点地址、PSW 等重要信息。 25.8O86/8088CPU 的基本总线周期分为几个时钟周 期? 答:8086/8088CPU 的基本总线周期分为 4 个时钟周 期。常将 4 个时周期分别称为 4 个状态,即 T1、T2、 T3、T4 状态,T1 发地址,T2、T3、T4 为数据的读/ 写。 26.CPU 响应可屏蔽中断时会自动将 TF、IF 怎样? 答:CPU 响应可屏蔽中断时,把标志寄存器的中断 允许标志 IF 和单步标志 TF 清零。将 IF 清零是为了 能够在中断响应过程中暂时屏蔽外部其他中断,以免 还没有完成对当前中断的响应过程而又被另一个中 断请求所打断,清除 TF 是为了避免 CPU 以单步方 式执行中断处理子程序。 27.8086 CPU 总线接口单元 BIU 的具体任务是什么? 堆栈是什么? 答:BIU 的具体任务是负责于存储器、I/O 端口传送 数据,即 BIU 管理在存储器中存取程序和数据的实 际处理过程。
1、计数初值=2ms*2MHz=4000 2、 MOV AL,36H/34H OUT 43H,AL ;方式控制字 MOV AX,4000 OUT 40H,AL MOV AL,AH OUT 40H,AL ;送计数值
分支程序设计
DATA SEGMENT
;数据段
DA1 DB
'ENTER A CHOICE(0-7)'
冯.诺依曼型: 运算器、控制器、存储器、输入设备、输出设备
基本工作原理: 存储器存储程序控制的原理 1、将事先编好的程序及运算中所需的数据,按一定的方式 输入并存储在计算机的内存中;
2. 将程序的第一条指令存放的地址送入程序计数器 PC 中,并启动运行;
3.计算机自动地逐一取出程序的一条条指令,加以分析 并执行所规定的功能。
中断方式的实现一般需要经历下述过程: 中断请求—→中断响应—→断点保护—→中断源识 别—→中断服务—→断点恢复—→中断返回
设 8253 计数/定时接口电路中,其接口地址为 40H~43H,将 2MHz 的信号源接入 CLK0,若利用通道 0 产生 2ms 的定时中断,请计算计数初值并写出 8253 初始化程序段(按二进制计数)。
中断请求—→中断响应—→断点保护—→ 中断源识别—→中断服务—→断点恢复—→中断返回 3.CPU 与外设之间数据传送的方式有哪些?试说明程序控 制传送方式。
答:CPU 与外设之间数据传送的方式有:程序控制方式、 中断方式和 DMA 方式。