2015-2016学年度第一学期期末八年级数学试题(含答案)
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2015-2016学年度人教版八年级上学期数学期末试卷及答案(2套)
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
新人教版2015~2016 学年度八年级上学期期末数学试题(含答案)
新人教版2015~2016 学年度八年级上学期期末 数学试题(含答案)2016.1.24一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个..符合题意.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列标志是轴对称图形的是A B C D2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为A .62.510⨯B .60.2510-⨯C .62510-⨯D .62.510-⨯ 3.使分式23x -有意义的x 的取值范围是 A .3x ≠ B .3x > C .3x < D .3x = 4.下列计算中,正确的是A .238()a a =B .842a a a ÷=C .325a a a +=D .235a a a ⋅= 5.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为A .2B .3C .4D .56.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关 于x 轴对称,则m n +的值是A .-1B .1C .5D .-57.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与点M ,N 重合,过角尺顶点C 作射线OC .由此作法便可得△MOC ≌△NOC ,其依据是A .SSSB .SASC .ASAD .AAS8.下列各式中,计算正确的是A .2(21)21x x x -=-B .23193x x x +=-- C .22(2)4a a +=+ D . 2(2)(3)6x x x x +-=+-9.若1a b +=,则222a b b -+的值为A .4B .3C .1D .010.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于D 点,则∠DBC 的度数是A .20°B .30°C .40°D .50° 11.若分式61a +的值为正整数,则整数a 的值有 A .3个 B .4个 C .6个 D .8个 12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边 的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为A .6B .8C .10D .12二、填空题(本题共24分,每小题3分) 13.当x = 时,分式1xx -值为0. 14.分解因式:24x y y -= .15.计算:233x y ⎛⎫-= ⎪⎝⎭.16.如果等腰三角形的两边长分别为3和7,那么它的周长为 .17.如图,DE ⊥AB ,∠A =25°,∠D =45°,则∠ACB 的度数为 .18.等式222()a b a b +=+成立的条件为 .19.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD于点E ,DE =2,BC =5,则△BCE 的面积为 .20.图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V ),网眼数(F ),边数(E )之间的关系,他采用由特殊到一般的方法进行探索,列表如下:特殊网图结点数(V ) 4 6 9 12 网眼数(F ) 1 2 4 6 边数(E )4712☆表中“☆”处应填的数字为 ;根据上述探索过程,可以猜想V ,F , E 之间满足的等量关系为 ;如图2,若网眼形状为六边形,则V ,F , E 之间满足的等量关系为 .图1 图2三、解答题(本题共16分,每小题4分)21.计算:114(π3)32-⎛⎫---+- ⎪⎝⎭.22.如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =DB .求证:AB= ED .23.计算:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭.24.解方程:3111x x x -=-+.四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.已知3x y -=,求2[()()()]2x y x y x y x -++-÷的值.26.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.AMB五、解答题(本题共11分,第28题5分,第29题6分)28.如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为121462048⨯-⨯=,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为____________.(2)若将正整数依次填入k列的长方形数表中(3k≥),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为__________________(直接写出结果).图1 图2图329.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.图1 图2 (1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为_________________ ______________________________(直接写出结果).答 案一、选择题(本题共36分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDADACABCBBC二、填空题(本题共24分,每小题3分)13.0x =; 14.(2)(2)y x x +-; 15.269x y; 16.17; 17.110°;18.0ab =; 19.5; 20.17,1V F E +-=,1V F E +-=. 三、解答题(本题共16分,每小题4分) 21.解:原式=2-----------------------------------------------------------------------3分 =2.-------------------------------------------------------------------------4分 22.证明:∵AC ∥BD ,∴∠C =∠EBD . ---------------------------------------------------------1分在△ABC 和△EDB 中,,,,AC EB C EBD BC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EDB . ----------------------------------------------------------------------3分∴AB =ED . --------------------------------------------------------------------4分 23.解:原式=2342(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎣⎦--------------------------------------------1分=2(34)2(1)(1)(1)(1)2x x x x x x +-+-⋅+-+-----------------------------------------------2分=22(1)(1)(1)2x x x x x +-⋅+-+--------------------------------------------------3分=11x x -+.---------------------------------------------------------------------4分 24.解:方程两边乘以(1)(1)x x +-,得(1)(1)(1)3(1)x x x x x +-+-=-. ------------------------------------------1分解得2x =.----------------------------------------------------------3分检验:当2x =时,(1)(1)0x x +-≠.所以, 原分式方程的解为2x =. ---------------------------------4分四、解答题(本题共13分,第25题4分,第26题5分,第27题4分)25.解:原式=2222(2)2x xy y x y x -++-÷ -------------------------------------1分 =2(22)2x xy x -÷ -------------------------------------------2分=x y -. -------------------------------------------------------3分当3x y -=时,原式=x y -=3. -------------------------------------------4分26.解:设普通快车的平均行驶速度为x 千米/时,则高铁列车的平均行驶速度为1.5x 千米/时.----1分 根据题意得18018011.53x x -=. -------------------------------------3分 解得 180x =. ----------------------------------------------4分 经检验,180x =是所列分式方程的解,且符合题意.∴1.5 1.5180270x =⨯=.答:高铁列车的平均行驶速度为270千米/时. -----------------------------5分27.解:(1)(注:不写结论不扣分)ME DC B A-------------------------------1分(2)BD =DE-------------------------------------------------------------2分证明:∵BD 平分∠ABC ,∴∠1=12∠ABC . ∵AB =AC , ∴∠ABC =∠4. ∴∠1=12∠4. ∵CE =CD , ∴∠2=∠3.∵∠4=∠2+∠3, ∴∠3=12∠4.∴∠1=∠3. ∴BD =DE . ---------------------------------------------------------4分五、解答题(本题共11分,第28题5分,第29题6分) 28.(1)24; -------------------------------------------------------------------------------------1分(2)21k -;---------------------------------------------------------------------------2分 证明:设十字星中心的数为x ,则十字星左右两数分别为1x -,1x +,上下两数分别为x k -,x k +(3k ≥).十字差为(1)(1)()()x x x k x k -+--+ -----------------------------------3分=222(1)()x x k ---=2221x x k --+=21k -. -------------------------------------------------4分∴这个定值为21k -.4321ME DCB A(3)976. --------------------------------------------------------------------5分 29.(1)解:如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′.∵AB =AC ,∠BAC =90°, ∴∠ABC =45°. ∵∠DBC =30°,∴∠ABD =∠ABC -∠DBC =15°.∵AB =AB ,∠AB D ′=∠ABD , B D ′=BD , ∴△ABD ≌△ABD ′.∴∠ABD =∠ABD ′=15°,∠ADB =∠AD ′B . ∴∠D ′BC =∠ABD ′+∠ABC =60°. ∵BD =BD ′,BD =BC , ∴BD ′=BC . ∴△D ′BC 是等边三角形. ----------------------------------------------1分∴D ′B =D ′C ,∠BD ′C =60°. ∵AB AC =,AD AD ''=, ∴△AD ′B ≌△AD ′C . ∴∠AD ′B =∠AD ′C .∴∠ AD ′B =12∠BD ′C =30°.∴∠ADB=30°. -------------------------------------------------------------2分 (2)解:第一种情况:当60120α︒︒<≤时如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′. ∵AB =AC , ∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠ABC -∠DBC =902αβ︒--.同(1)可证△ABD ≌△ABD ′. ∴∠ABD =∠ABD ′=902αβ︒--,BD =BD ′,∠ADB =∠AD ′B .∴∠D ′BC =∠ABD ′+∠ABC =9090180()22ααβαβ︒--+︒-=︒-+.∵120αβ+=︒,∴∠D ′BC =60°.以下同(1)可求得∠ADB =30°. -----------------------------------------3分第二种情况:当060α︒︒<<时,D 'DCBA如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′. ∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°. ∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠DBC -∠ABC =902αβ-︒-(). 同(1)可证△ABD ≌△ABD ′.∴∠ABD =∠ABD ′=902αβ-︒-(),BD =BD ′,∠ADB =∠AD ′B . ∴∠D ′BC =∠ABC -∠ABD ′=90[(90)]=180()22ααβαβ︒---︒-︒-+.∵120αβ+=︒,∴∠D ′BC =60°.∵BD =BD ′,BD =BC , ∴BD ′=BC .∴△D ′BC 是等边三角形.∴D ′B =D ′C ,∠BD ′C =60°. 同(1)可证△AD ′B ≌△AD ′C . ∴∠AD ′B =∠AD ′C .∵∠AD ′B +∠AD ′C +∠BD ′C =360°, ∴2∠ AD ′B +60°=360°. ∴∠ AD ′B =150°.∴∠ADB =150°. ---------------------------------------------4分(3)0180α︒︒<<,60β=︒或120180α︒︒<<,120αβ-=︒. ------------------------------6分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
2015-2016学年八年级上学期期末考试数学试题及答案
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2015-2016学年度第一学期八年级数学期末考试试卷及答案
2015-2016第一学期八年级数学期末试题一、选择题(每小题4分,共40分)1、若分式11-2+x x 的值为零,则x 的值为( ) A. 1 B. -1 C. ±1 D. 02、下列运算正确的是( )A. x 4²x 3 =x 12B.(x 3)4 =x 7C. x 4÷x 3=x(x ≠0)D. x 4+x 4=x 83、已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A. 4cmB. 5cmC. 6cmD.13cm4、如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A.75°B.60°C.45°D.30(4题) (6题) (10题)5、若等腰三角形的一个内角为50°,则另两个角的度数为( )A.65°、65° B 、65°、65°或50°、80°C.50°、80° D 、50°、50°6、如图,MP 、NQ 分别垂直平分AB 、AC 且BC =6cm ,则△APQ 的周长为( )cmA.12B.6C.8D.无法确定7、下列运算中正确的是( )A .236X =X XB .1--=y+x y +x C .b a b +a =b a b +ab +a --22222 D . yx =+y +x 11 8、已知正n 边形的一个内角为135°,则边数n 的值是( )A.6B.7C.8D.109、将多项式x 3-xy 2分解因式,结果正确的是( )A.•x (x 2-y 2)B.x (•x -y )2C.x (x +y )2D.x (x+y )(x -y )10、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =50°,则∠BDF 度数是( )A.80°B.70°C.60°D.不确定二、填空题(每小题3分,共18分)11、如图,在△ABC 中,∠C 是直角,AD 平分∠BAC ,交BC 于点D 。
2015~2016学年第一学期期末试卷初二数学附答案
2015〜2016学年第一学期期末试卷初二数学2016.1(考试时间:100分钟满分:100分)—.选择题(本大题共10小题,每题3分,共30分.)1 .16的算术平方根是2 .下列图形中是轴对称图形的有4.以下列各组数为三角形的边长,能构成直角三角形的是6 .若等腰三角形中有两边长分别为2和5,则这个三角.形的周长为7 .一次函数y=-2x+l 的图象与y 轴的交点坐标是10 .在平面直角坐标系中,点P 在由直线y=-x+3,直线y=4和直线x=l 所围成的区域内或其边A.4B.-4C.±4D.±2B.2个C.3个 3.把19547精确到「位的近似数是 A.195X103B.1.95X104C.2.0X104D.4个(D.1.9X104A.2、3、4B. 5、5、6C. 2、业小D."小、小5.平面直角坐标系中点(2,-5)所在的象限是A.第一象限B.第二象限C.第三象限(D.第四象限A.9B.12C.7或9D.9或128.AA.(-2,0) 1、B-(T,0)C.(0,2)D. (0,1)如图,点E 、F 在AC 上,AD=BC,DF=BE,要使△ADFgACBE,A.AD/7BCB.DF/7BEC.ZD=ZBD.ZA=ZC如图,在△ABC 中,NC=90°,AC=2,点D 在BC 上,NADC=2NB,AD=小,则BC 的长为()A,小一1B.、/5+1 C.小一1D.小+1A.1个 D还需要添加一个条件是界上,点Q在x轴上,若点R的坐标为(2,2),则QP+QR的最小值为()B.4+2D.4二.填空题(本大题共8小题,每题2分,共16分.)11.一衣的绝对值是.12.平面直角坐标系中,点A(0,-1)与点B(3,3)之间的距离是.13.如果等腰三角形的一个外角是100。
,那么它的顶角的度数为.14.若一次函数y=2x+b(b为常数)的图象经过点(b,9),则b=.15.如图,在△ABC中,AC=4an,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.16.如图,ZXABC中,D是BC上一点,AC=AD=DB,ZBAC=102°,则NADC=度.17.如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B顺时针旋转90。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
2015-2016 学年度第一学期末测试一、选择题:1. 如下书写的四个汉字,是轴对称图形的有()个。
A.1 B2 C.3 D.42. 与3-2 相等的是()A. 19B.19C.9D.-913. 当分式有意义时,x 的取值范围是()x 2A.x <2B.x >2C.x ≠2D.x ≥ 24. 下列长度的各种线段,可以组成三角形的是()A.1 ,2,3B.1 ,5,5C.3 ,3,6D.4 ,5,65. 下列式子一定成立的是()A. 2 33a 2a a B.2 a a3 6a C.23 a6a D.a6 a2 a36. 一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.97. 空气质量检测数据p m2.5 是值环境空气中,直径小于等于 2.5 微米的颗粒物,已知1 微米=0.000001 米,2.5 微米用科学记数法可表示为()米。
6 B.2.5 ×105 C.2.5 ×10-5 D.2.5 ×10A.2.5 ×10-68. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。
A.50 °B.80 °C.50 °或80°D.40 °或65°3 2 2 分解因式结果正确的是()9. 把多项式x x xA. 2x( x 1) B. 2 2 xx(x 1) C. x(x 2 ) D. x(x 1)( x 1)10. 多项式2x( x 2) 2 x 中,一定含下列哪个因式()。
A.2x+1B.x (x+1)2C.x (x2-2x )D.x (x-1 )11. 如图,在△ABC中,∠BAC=110°,MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20 °B.40 °C.50 °D.60 °12. 如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D 点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8B.1 C .1.5 D.4.213. 如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12B.10C.8D.614. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.2 B.3a+15 C .(6a+9)D.(6a+15)A.2a 5a15. 艳焕集团生产某种精密仪器,原计划20 天完成全部任务,若每天多生产 4 个,则15 天完成全部的生产任务还多生产10 个。
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)
2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
2015-2016学年八年级(上)期末数学试卷含答案解析
2015-2016学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,6,9 B.5,6,11 C.5,6,10 D.1,4,73.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.若分式的值为零,则()A.x=﹣2 B.x=1 C.x=2 D.x=﹣15.下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6÷a2=a3D.(﹣ab)2=a2b26.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形7.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或158.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为()A.3 B.4 C.5 D.69.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C.D.10.在平面直角坐标系中,已知点A(1,2),B(4,5),C(5,2),如果存在点E,使△ACE和△ACB全等,则符合题意的点共有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.医学研究发现一种新病毒的直径约为0.000 043毫米,则这个数用科学记数法表示为.12.如图,在△ABC中,D是AB延长线上一点,∠A=40°,∠C=60°,则∠CBD= .13.计算:÷4x2y= .14.如图,E、C、F、C四点在一条直线上,EB=FC,∠A=∠D,再添一个条件就能证明△ABC≌△DEF,这个条件可以是(只写一个即可).15.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A= .16.如果(x+p)(x+q)=x2+mx+2(p,q为整数),则m= .三、解答题(共5小题,满分52分)17.(1)分解因式:a3b﹣ab3(2)解方程: +1=.18.先化简,再求值:(x﹣4)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.19.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)20.如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC分别相交于E、F.若已知AB=9,AC=7,BC=8,求△AEF的周长.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.四.综合测试22.如果x﹣y=4,xy=2,求下列多项式的值:(1)x2+y2(2)2x(x2+3y2)﹣6x2(x+y)+4x3.23.已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.24.如图,在平面直角坐标系中,点A的纵坐标为2,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上.(1)求点B关于直线MN的对称点B1的横坐标;(2)求证:AB+BO=AB1.25.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.2015-2016学年广东省广州市天河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列长度的三条线段,能组成三角形的是()A.3,6,9 B.5,6,11 C.5,6,10 D.1,4,7【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+6=9,不能组成三角形;B中,5+6=11,不能组成三角形;C中,5+6>10,能够组成三角形;D中,1+4=5<7,不能组成三角形.故选C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.【解答】解:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知:点P(﹣1,2)关于y轴对称的点的坐标是(1,2).故选A.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若分式的值为零,则()A.x=﹣2 B.x=1 C.x=2 D.x=﹣1【考点】分式的值为零的条件.【分析】分式值为零的条件是分子等于零且分母不等于零,从而得到x+1=0,x﹣2≠0.【解答】解:∵分式的值为零,∴x+1=0且x﹣2≠0.解得:x=﹣1.故选:D.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.5.下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6÷a2=a3D.(﹣ab)2=a2b2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂乘法、同底数幂除法、积的乘方的运算法则,计算后利用排除法求解.【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、应为a•a3=a4,故本选项错误;C、应为a6÷a2=a4,故本选项错误;D、(﹣ab)2=a2b2,正确.故选D.【点评】本题考查同底数幂的乘法,同底数幂的除法,积的乘方的性质,熟练掌握运算性质是解题的关键,本题还需注意不是同类项不能合并.6.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【专题】应用题.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选B.【点评】本题主要考查了多边形的内角和与外角和、方程的思想,关键是记住内角和的公式与外角和的特征,比较简单.7.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或15【考点】等腰三角形的性质;三角形三边关系.【专题】计算题.【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【解答】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;故选C.【点评】本题考查了等腰三角形的性质以及三角形的三边关系定理,是基础知识要熟练掌握.注意分类讨论思想的应用.8.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为()A.3 B.4 C.5 D.6【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】根据线段的垂直平分线的性质得到EB=EC=10,根据直角三角形的性质解答即可.【解答】解:∵DE是BC的垂直平分线,∴EB=EC=10,∵∠B=30°,∠EDB=90°,∴DE=EB=5,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C.D.【考点】由实际问题抽象出分式方程.【专题】计算题.【分析】此题求速度,有路程,所以要根据时间来列等量关系.因为他们同时到达目的地,所以此题等量关系为:慢车所用时间﹣快车所用时间=1.【解答】解:设慢车的速度为xkm/h,慢车所用时间为,快车所用时间为,可列方程:﹣=1.故选A.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,但是需要考虑怎样设未知数才能比较容易地列出方程进行解答.解题时还要注意有必要考虑是直接设未知数还是间接设未知数,然后再利用等量关系列出方程.10.在平面直角坐标系中,已知点A(1,2),B(4,5),C(5,2),如果存在点E,使△ACE和△ACB全等,则符合题意的点共有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定;坐标与图形性质.【分析】根据题意画出符合条件的所有情况,根据点A、B、C的坐标和全等三角形性质求出即可.【解答】解:如图所示:有3个点,当E在D、E、F处时,△ACE和△ACB全等,点E的坐标是:(2,5),(2,﹣1),(4,﹣1),共3个,故选C.【点评】本题考查了全等三角形性质和坐标与图形性质的应用,关键是能根据题意求出符合条件的所有情况.二、填空题(共6小题,每小题3分,满分18分)11.医学研究发现一种新病毒的直径约为0.000 043毫米,则这个数用科学记数法表示为 4.3×10﹣5.【考点】科学记数法—表示较小的数.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将0.000 043用科学记数法表示为4.3×10﹣5.故答案为:4.3×10﹣5.【点评】此题考查的是科学记数法﹣表示较小的数.关键要明确用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).12.如图,在△ABC中,D是AB延长线上一点,∠A=40°,∠C=60°,则∠CBD= 100°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.【解答】解:∵∠A=40°,∠C=60°,∴∠CBD=∠A+∠C=100°,故答案为:100°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.计算:÷4x2y= .【考点】整式的除法.【专题】计算题;推理填空题;整式.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式,据此求出÷4x2y 的值是多少即可.【解答】解:÷4x2y=.故答案为:.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.如图,E、C、F、C四点在一条直线上,EB=FC,∠A=∠D,再添一个条件就能证明△ABC≌△DEF,这个条件可以是∠ABC=∠E.(只写一个即可).【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,所以根据全等三角形的判定定理添加一组对应角相等即可.【解答】解:添加∠ABC=∠E.理由如下:∵EB=FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠ABC=∠E.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A= 80°.【考点】三角形内角和定理.【分析】首先根据BI平分∠ABC,CI平分∠ACB,推得∠IBC+∠ICB=(∠ABC+∠ACB);然后根据三角形的内角和定理,求出∠IBC、∠ICB的度数和,进而求出∠A的度数是多少即可.【解答】解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.【点评】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.16.如果(x+p)(x+q)=x2+mx+2(p,q为整数),则m= ±3 .【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则展开,即可得出p+q=m,pq=2,根据p、q为整数得出两种情况,求出m即可.【解答】解:(x+p)(x+q)=x2+mx+2,x2+(p+q)x+pq=x2+mx+2,∴p+q=m,pq=2,∵p,q为整数,∴①p=1,q=2或p=2,q=1,此时m=3;②p=﹣1,q=﹣2或p=﹣2,q=﹣1,此时m=﹣3;故答案为:±3.【点评】本题考查了多项式乘以多项式法则的应用,能求出p、q的值是解此题的关键,注意:(a+b)(m+n)=am+an+bm+bn.三、解答题(共5小题,满分52分)17.(1)分解因式:a3b﹣ab3(2)解方程: +1=.【考点】提公因式法与公式法的综合运用;解分式方程.【专题】因式分解;分式方程及应用.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);(2)去分母得:3+x﹣2=3﹣x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了提公因式法与公式法的综合运用,以及解分式方程,熟练掌握运算法则是解本题的关键.18.(10分)(2015秋•天河区期末)先化简,再求值:(x﹣4)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.【考点】整式的混合运算—化简求值.【分析】本题应对代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:(x﹣4)(x+4y)+(3x﹣4y)2,=x2+4xy﹣4x﹣16y+9x2﹣24xy+16y2=10x2﹣20xy﹣4x﹣16y+16y2,把x=2,y=﹣1代入10x2﹣20xy﹣4x﹣16y+16y2=40+40﹣8+16+16=104.【点评】本题考查了整式的化简,整式的混合运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)【考点】轴对称-最短路线问题;作图—基本作图.【分析】(1)以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于MN长为半径,画弧,在∠AOB内部相交于点C,作射线OC即为∠AOB的平分线;(2)找到点M关于OC对称点M′,过点M′作M′N⊥OA于点N,交OC于点P,则此时PM+PN的值最小.【解答】解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则M′B的长度即为PM+PN的值最小.【点评】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.20.如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC分别相交于E、F.若已知AB=9,AC=7,BC=8,求△AEF的周长.【考点】等腰三角形的判定与性质;平行线的性质.【分析】要求周长,就要先求出三角形的边长,这就要借助平行线及角平分线的性质把通过未知的转化成已知的来计算.【解答】解:∵BD是角平分线,∴∠ABD=∠CBD,∵FE∥BC,∴∠DBC=∠DBE,∴∠DBE=∠EDB,∴BE=ED,同理DF=DC,∴△AED的周长=AE+AF+EF=AB+AC=9+7=16.【点评】本题考查等腰三角形的性质平行线的性质角平分线的性质;有效的进行线段的等量代换是正确解答本题的关键.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.【考点】全等三角形的判定与性质.【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD;(2)根据全等三角形的对应边相等得到AD=CE,BE=CD,利用DE=CE﹣CD,即可解答.【解答】解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△BCE和△CAD中,,∴△BCE≌△CAD;(2)∵△BCE≌△CAD,∴AD=CE,BE=CD,∴DE=CE﹣CD=AD﹣BE=25﹣8=17(cm).【点评】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.四.综合测试22.如果x﹣y=4,xy=2,求下列多项式的值:(1)x2+y2(2)2x(x2+3y2)﹣6x2(x+y)+4x3.【考点】整式的混合运算—化简求值.【分析】(1)根据完全平方公式:(a±b)2=a2±2ab+b2,解答即可;(2)先化简后再根据完全平方公式:(a±b)2=a2±2ab+b2,解答即可.【解答】解:(1)x2+y2=(x﹣y)2+2xy=16+4=20;(2)2x(x2+3y2)﹣6x2(x+y)+4x3.=2x3+6xy2﹣6x3﹣6x2y+4x3=6xy(y﹣x)=6×2×(﹣4)=﹣48.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.23.已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.【考点】分式的化简求值;解一元二次方程-配方法.【分析】(1)先根据分式混合运算的法则把A进行化简,对B进行因式分解即可;(2)根据B=0求出x的值,代入A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣==;B=2x2+4x+2=2(x2+2x+1)=2(x+1)2;(2)∵B=0,∴2(x+1)2=0,∴x=﹣1.当x=﹣1时,A===﹣2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.(13分)(2015秋•天河区期末)如图,在平面直角坐标系中,点A的纵坐标为2,点B在x 轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上.(1)求点B关于直线MN的对称点B1的横坐标;(2)求证:AB+BO=AB1.【考点】全等三角形的判定与性质;坐标与图形变化-对称.【分析】(1)过A作AC⊥x轴于C,过B作BD⊥x轴于D,根据点A的纵坐标为1求出AO=2,OC=,BO=2=OB1,根据∠B1DO=90°和∠DOB1=30°求出OD即可;(2)根据轴对称得出线段AB1线段A1B关于直线MN对称,求出AB1=A1B,根据A1B=A1O+BO和A1O=AO 推出即可.【解答】解:(1)如图,过A作AC⊥x轴于C,过B1作BD⊥x轴于D,∵点A的纵坐标为2,∴AC=2,∵AB=AO,∠ABO=30°,∴AO=2,OC=,BO=2=OB1,∵∠B1DO=90°,∠DOB1=30°,∴B1D=,OD=B1D=3,∴点B关于直线MN的对称点B1的横坐标3;(2)∵A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1,∴线段AB1线段A1B关于直线MN对称,∴AB1=A1B,而A1B=A1O+BO,A1O=AO,∴AB1=AO+BO.【点评】本题考查了含30度角的直角三角形性质,轴对称性质,线段垂直平分线性质,勾股定理的应用,解决本题的关键是作出辅助线.25.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.【考点】全等三角形的判定与性质;坐标与图形性质;等边三角形的性质.【分析】(1)根据非负数的性子可得m、n的值;(2)连接OC,由AB=BO知∠BAO=∠BOA=45°,由△ABC,△OAD为等边三角形知∠BAC=∠OAD=∠AOD=60°、OA=OD,继而由∠BAC﹣∠OAC=∠OAD﹣∠OAC得∠DAC=∠BAO=45°,根据OB=CB=2、∠OBC=30°知∠BOC=75°,∠AOC=∠BAO﹣∠BOA=30°,∠DOC=∠AOC=30°,证△OAC≌△ODC得AC=CD,再根据∠CAD=∠CDA=45°知∠ACD=90°,从而得AC⊥CD;(3)在x轴负半轴取点M,使得OM=AG=b,连接BG,先证△BAG≌△BOM得∠OBM=∠ABG、BM=BG,结合∠FBG=45°知∠ABG+∠OBF=45°,从而得∠OBM+∠OBF=45°,∠MBF=∠GBF,再证△MBF≌△GBF 得MF=FG,即a+b=c,代入原式可得答案.【解答】解(1)由题得m=2,n=2,∴A(2,2);(2)如图1,连结OC,由(1)得AB=BO=2,∴△ABO为等腰直角三角形,∴∠BAO=∠BOA=45°,∵△ABC,△OAD为等边三角形,∴∠BAC=∠OAD=∠A OD=60°,OA=OD∴∠BAC﹣∠OAC=∠OAD﹣∠OAC即∠DAC=∠BAO=45°在△OBC中,OB=CB=2,∠OBC=30°,∴∠BOC=75°,∴∠AOC=∠BAO﹣∠BOA=30°,∴∠DOC=∠AOC=30°,在△OAC和△ODC中,∵,∴△OAC≌△ODC,∴AC=CD,∴∠CAD=∠CDA=45°,∴∠ACD=90°,∴AC⊥CD;(3)如图,在x轴负半轴取点M,使得OM=AG=b,连接BG,在△BAG 和△BOM 中,∵,∴△BAG ≌△BOM∴∠OBM=∠ABG ,BM=BG又∠FBG=45°∴∠ABG+∠OBF=45°∴∠OBM+∠OBF=45°∴∠MBF=∠GBF在△MBF 和△GBF 中,∵,∴△MBF ≌△GBF∴MF=FG∴a+b=c 代入原式=0.【点评】本题主要考查全等三角形的判定与性质、等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键。
2015~2016学年第一学期期末考试卷八年级数学试题附答案
2015~2016学年第一学期期末考试卷 八年级数学试题 2016.1注意事项:1.本卷考试时间为100分钟,满分100分.其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E 4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=c B 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶55.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( ) A . B . C .D CB A6.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-4 7.如图,在平面直角坐标系中,点P 坐标为(-4,3), 以点B (-1,0)为圆心,以BP 的长为半径画弧, 交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( ) A 、-6和-5之间 B 、-5和-4之间 C 、-4和-3之间 D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( )B.3C.4D.5二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 . 11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 .12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为__________。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年初二第一学期期末答案
初二数学期末学业水平质量检测参考答案一、选择题:(每题只有一个正确答案,共10道小题,每小题2分,共20分)1. C,2. D,3.A,4. D,5. C ,6.B,7. D,8. A,9.D, 10. C二、填空题:(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题4分,共20分)11.2; 12.2)(3a b -; 13.360º; 14.③;15.1或3;16.三边分别相等的两个三角形全等,全等三角形对应角相等;3 .三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题6分,第27小题8分,共60分)17.23423)7(2102⨯+-+--⎪⎭⎫ ⎝⎛-π 解:原式=323214+-+-………………………………..(4分)=35+ ………………………………..(5分)18.计算:()()()3232322-+-- 解:原式=323622+-+-………………………………..(4分) =626-………………………………..(5分)19.计算:21422++-m m 解:原式=)2)(2(2)2)(2(2-+-+-+m m m m m …………………………..(2分) =)2)(2(22-+-+m m m ………………………………..(4分) =)2)(2(-+m m m ………………………………..(5分)20.解方程:116112=---+x x x 解: 1)1)(1(611=-++-+x x x x ………………………………..(1分) )1)(1(6)1(2-+=++x x x ……..(2分)161222-=+++x x x ………………………………..(3分)82-=x4-=x ………………………………..(4分)检验:把4-=x 带入最简公分母)1)(1(-+x x 中,最简公分母值不为零.∴4-=x 是原方程的解. ………………………………..(5分)21.已知:0232=-+x x ,求代数式)225(4232---÷--x x x x x 的值. 解:原式=)2425()2(232----÷--x x x x x x………………………………..(1分) =2)3)(3()2(23--+÷--x x x x x x ………………………………..(2分) =)3)(3(2)2(23x x x x x x -+-⋅-- =)3(21x x +………………………………..(3分) =)3(212x x + ………………………………..(4分) 0232=-+x x∴232=+x x原式=41 ………………………………..(5分)22.解: 第一个盒子摸出白球的可能性为531061==p ………………..(2分) 第二个盒子摸出白球的可能性为211262==p ………………..(3分) 21p p >………………..(4分)∴第一个盒子摸出白球的可能性大. ………………..(5分)23. 证明: DE BC //E ACB ∠=∠∴………………..(1分)在△ABC 和△DCE 中⎪⎩⎪⎨⎧=∠=∠=CD BC E ACB DE AC ∴△ABC ≅△DCE (SAS )………………..(4分) ∴ AB =CD ………………..(5分)24.解:设新购买的纯电动汽车每行驶1千米所需电费为x 元, 根据题意得:27108= ………………..(3分)25.(1)Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形………………..(2分)B(2)证明: Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形∴AC 垂直平分B B '………………………………..(3分)∴'AB AB =,'21BB BC =︒=∠30BAC∴︒=∠60B ∴△'ABB 为等边三角形………………………………..(5分) ∴'BB AB = '21BB BC =∴AB BC 21=………………………………..(6分)26.(1)l 即为所求作的直线………………………………..(2分)(2)①︒45≤ABC ∠<︒90………………………………..(3分)②图形在(1)的基础上完成………………………………..(4分) 证明: 线段AB 的垂直平分线为l∴ AB CD ⊥BE AE ⊥ ∴︒=∠=∠90BDC AEB∴︒=∠+∠=∠+∠90B BCD B BAE∴BCD BAE ∠=∠………………………………..(6分)27.(1)①……………………………..(1分)②垂直,相等.……………………………..(3分)(2)①……………………………..(4分)图2 图3②如图2成立,如图3不成立.证明: EF CD ⊥∴ ︒=∠90DCF︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠………………………………..(6分)CF CD AC BC ==,∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..(8分)A A。
2015-2016学年八年级上学期期末考试数学试题带答案
2015学年度第一学期期末初二质量调研 数 学 试 卷(2016.1)(时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1.化简:()=>0182x x . 2.方程022=-x x 的根是 . 3.函数2-=x y 的定义域是 .4.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是 .5.在实数范围内分解因式:1322--x x = . 6.如果函数()12+=x x f ,那么()3f = .7.已知关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,那么k 的取值范围是 .8.正比例函数x a y )12(-=的图像经过第二、四象限,那么a 的取值范围是 . 9.已知点),(11y x A 和点),(22y x B 在反比例函数xky =的图像上,如果当210x x <<,可得1y >2y ,那么0______k .(填“>”、“=”、“<”)10.经过定点A 且半径为2cm 的圆的圆心的轨迹是 . 11.请写出“等腰三角形的两个底角相等”的逆命题: . 12.如图1,在△ABC 中,︒=∠90C ,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离等于 .13.如果点A 的坐标为(3-,1),点B 的坐标为(1,4),那么线段AB 的长等于____________.学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图114.在Rt △ABC 中,︒=∠90C ,将这个三角形折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,如果AC BN 2=,那么=∠B 度. 二、选择题(本大题共有4题,每题3分,满分12分)15.下列方程中,是一元二次方程的是 ……………………………………………………( ) (A )y x 342=; (B )15)1(2-=+x x x ; (C )6532-=-x x ; (D )01312=-+x x. 16.已知等腰三角形的周长等于20,那么底边长y 与腰长x 的函数解析式和定义域分别是…( )(A )x y 220-=)200(<<x ; (B )x y 220-=)100(<<x ; (C )x y 220-=)105(<<x ; (D )220xy -=)105(<<x . 17.下列问题中,两个变量成正比例的是………………………………………………… ( ) (A )圆的面积S 与它的半径r ; (B )正方形的周长C 与它的边长a ;(C )三角形面积一定时,它的底边a 和底边上的高h ;(D )路程不变时,匀速通过全程所需要的时间t 与运动的速度v .18.如图2,在△ABC 中,AB=AC ,∠A =120°,如果D 是BC 的中点,DE ⊥AB ,垂足是E ,那么 AE ︰BE 的值等于………………………………………………………………… ( ) (A )31; (B )33; (C )41; (D )51.三、(本大题共有7题,满分60分) 19.(本题满分7分)计算:)7581()3165.0(---.图220.(本题满分7分)用配方法解方程:01632=-+x x .21.(本题满分7分)已知21y y y +=,并且1y 与x 成正比例,2y 与x -2成反比例. 当1=x 时,1-=y ; 当3=x 时,5=y .求y 关于x 的函数解析式.……………………密○………………………………………封○…………………………………○线………………………………………………22.(本题满分8分)已知:如图3,在△ABC 中,45ACB ∠=︒,AD 是边BC 上的高,G 是AD 上一点,联结CG ,点E 、F 分别是AB 、CG 的中点,且DE DF =.求证:△ABD ≌△CGD .23.(本题满分8分)已知:如图4,在△ABC 中,∠ACB =90°, AD 为△ABC 的外角平分线,交BC 的 延长线于点D ,且∠B=2∠D . 求证:AB+AC=CD .图 3DCBA图424.(本题满分11分)如图5,在平面直角坐标系xOy 中,已知直线x y 3=与反比例函数)0(≠=k xky 的图像交于点A ,且点A 的横坐标为1,点B 是x 轴正半轴上一点,且AB ⊥OA . (1)求反比例函数的解析式; (2)求点B 的坐标;(3)先在AOB ∠的内部求作点P ,使点P 到AOB ∠的两边OA 、OB 的距离相等,且PA PB =;再写出点P 的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P )学校_____________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图525.(本题满分12分)如图6,在△ABC 中,D 是AB 的中点,E 是边AC 上一动点,联结DE ,过点D 作DF ⊥DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DF DG =,联结EF 、AG ,已知10=AB ,6=BC ,8=AC . (1)求证: AG AC ⊥;(2)设x AE =,y CF =,求y 与x 的函数解析式,并写出定义域; (3)当△BDF 是以BF 为腰的等腰三角形时,求AE 的长.GFEDCBA 图62015学年度第一学期期末初二质量调研数学试卷参考答案一、填空题(本大题共14题,每题2分,满分28分) 1.x 23; 2.21,021==x x ; 3.x ≥2; 4.20%; 5.)4173)(4173(2--+-x x ; 6.13-; 7.41<k 且0≠k ;8.a <21; 9.>; 10.以点A 为圆心,2cm 为半径的圆; 11.有两个角相等的三角形是等腰三角形(写两个“底角”相等不给分); 12.3; 13.5; 14.15二、选择题(本大题共4题,每题3分,满分12分)15.B ; 16.C ; 17.B ; 18.A .三、简答题(本大题共5题,每题7分,满分35分) 19.解:原式= )3542()3222(---················································· (4分) =35423222+-- ······················································· (1分) =3342+. ···································································· (2分) 20.解:移项,得1632=+x x . ································································· (1分) 二次项系数化为1,得3122=+x x . ················································ (1分) 配方,得131122+=++x x , 34)1(2=+x . ······························································· (2分)利用开平方法,得3321±=+x .解得 33211+-=x ,33211--=x . ··············································· (2分) 所以,原方程的根是33211+-=x ,33211--=x . ··························· (1分)21.解:由1y 与x 成正比例,可设111(0)y k x k =≠··········································· (1分) 由2y 与x -2成反比例,可设222(0)2k y k x =≠-. ································· (1分) ∵21y y y +=,∴221-+=x k x k y . ··············································· (1分) 把1=x ,1-=y 和3=x ,5=y 分别代入上式,得 ⎩⎨⎧=+-=-.53,12121k k k k ······································································ (1分)解得⎩⎨⎧==.2,121k k ··········································································· (2分)所以 y 关于x 的函数解析式是22-+=x x y . ·································· (1分)22.证明:∵AD ⊥BC ,E 是AB 的中点,∴AB DE 21=(直角三角形斜边上的中线等于斜边的一半). ··········· (2分) 同理:CG DF 21=. ······························································· (1分)∵ DF DE =,∴ CG AB =. ·················································· (1分) ∵AD ⊥BC ,︒=∠45ACB ,∴︒=∠45DAC . ·························· (1分) ∴DAC ACD ∠=∠. ································································ (1分) ∴ CD AD = . ······································································· (1分) 在Rt △ABD 和Rt △CGD 中,⎩⎨⎧==.,CG AB CD AD∴Rt △ABD ≌Rt △CGD (H .L ). ············································· (1分)23.证明:过点D 作DE ⊥AB ,垂足为点E . ················································ (1分)又∵∠ACB =90°(已知)∴DE =DC (在角的平分线上的点到这个角的两边的距离相等). ········ (2分) 在Rt △ACD 和Rt △AED 中DE =DC (已证) AD =AD (公共边)∴Rt △ACD ≌Rt △AED (H.L ). ··················································· (1分) ∴AC =AE ,∠CDA=∠EDA . ······················································· (1分) ∵∠B=2∠D (已知),∴∠B=∠BDE . ············································ (1分) ∴BE =DE . ·············································································· (1分) 又∵AB +AE =BE ,∴AB+AC=CD .········································································ (1分)24. 解:(1)由题意,设点A 的坐标为(1,m ),∵点A 在正比例函数x y 3=的图像上,∴3=m . ∴点A 的坐标为)3,1(. ········································ (1分) ∵点A 在反比例函数xky =的图像上, ∴13k=,解得3=k . ······················································ (1分) ∴反比例函数的解析式为xy 3=. ············································· (1分) (2)过点A 作AC ⊥OB ,垂足为点C ,可得1=OC ,3=AC .∵AC ⊥OB ,∴∠90=ACO °.由勾股定理,得2=AO . ······················································· (1分) ∴AO OC 21=. ∴∠30=OAC °.∴∠60=AOC °.∵AB ⊥OA ,∴∠90=OAB °.∴∠30=ABO °. ································································ (1分) ∴OA OB 2=.∴4=OB . ·········································································· (1分) ∴点B 的坐标是)0,4(. ··························································· (1分) 【说明】其他方法相应给分.(3)作图略. ··············································································· (2分) 点P的坐标是3(. ····························································· (2分) 25.(1)证明:∵6=BC ,8=AC ,∴100643622=+=+AC BC .∵1002=AB , ∴222AB AC BC =+.∴△ABC 是直角三角形,且∠ACB =90°(勾股定理的逆定理). ·· (1分)∵D 是AB 的中点,∴BD AD =.在△ADG 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF DG BDF ADG BD AD∴△ADG ≌△BDF (S.A.S ).∴B GAB ∠=∠. ································································· (1分) ∵︒=∠90ACB ,∴︒=∠+∠90B CAB (直角三角形的两个锐角互余). ················· (1分) ∴︒=∠+∠90GAB CAB .∴︒=∠90EAG . ···························· (1分) 即:AG AC ⊥.(2)联结EG .∵x AE =,8=AC ,∴x EC -=8.∵︒=∠90ACB ,由勾股定理,得222)8(y x EF +-=. ···································· (1分) ∵△ADG ≌△BDF ,∴BF AG =.∵y CF =,6=BC ,∴y BF AG -==6.∵︒=∠90EAG ,由勾股定理,得222)6(y x EG -+=. ···································· (1分)∵DF DG =,DF ⊥DE ,∴EG EF =.∴22)8(y x +-22)6(y x -+=. ············································· (1分) ∴374-=x y ,定义域:74<x <254. ································· (1+1分) (3)1°当DB BF =时,56=-y ,∴1=y .∴3741-=x .∴25=x .即25=AE . ····································· (1分) 2°当FB DF =时,联结DC ,过点D 作FB DH ⊥,垂足为点H . 可得y FB DF -==6.∵︒=∠90ACB ,D 是AB 的中点,∴5==DB DC .∵FB DH ⊥,6=BC ,∴3==HB CH .∴y FH -=3.∵FB DH ⊥,由勾股定理,得4=DH .在Rt △DHF 中,可得222)3(4)6(y y -+=-.解得611=y . ··································································· (1分) ∴374611-=x .解得825=x ,即825=AE . ··············································· (1分) 综上所述,AE 的长度是25,825.。
2015—2016新人教版八年级数学(上)期末试卷及答案
2015~2016学年(下)初二年级期末调研测试数学试题注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为100分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、考试证号用毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答.题卡相应位置......上.) 1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是2.下列计算正确的是 A .2(2)-=-2 B .a 2+a 5=a 7 C .(a 2)5=a 10D .6525⨯=1253.若分式11a +有意义,则a 的取值范围是 A .a >-1 B .a ≠-1 C .a <0 D .a ≠0 4.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是 A .CB =CD B .∠BAC =∠DAC C .∠BCA =∠DCA D .∠B =∠D =90° 5.下列二次根式,不能与3合并的是 A .48 B .18 C .113D .75-6.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线 于点E .若∠E =35°,则∠BAC 的度数为A .40°B .45°C .60°D .70°A .B .C .D .(第4题)DCBA7.如图,直角坐标系中,点A (-2,2)、B (0,1)点P 在x 轴上,且△P AB 是等腰三角形,则满足条件的点P 共有A .2个B .3个C .4个D .5个8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套服装,则根据题意可得方程为 A .16040016018(120%)x x -+=+ B .16040018(120%)x x +=+ C .1604001601820%x x-+=D .40040016018(120%)x x-+=+ 9.如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD, 则BC 的长为A1 B1 C-1D+110.由于某产品的原料提价,因而厂家决定对产品进行提价,现有四种方案:方案1:第一次提价p %,第二次提价q %;方案2:第一次提价q %,第二次提价p %; 方案3:第一、二次提价均为2p q+%;方案4. 其中, p 、q 是不相等的正数,则四种方案中提价最多的为A .方案1B .方案2C .方案3D .方案4二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接 填写在答题卡相应位置.......上.) 11.有意义,x 的取值范围是 ▲ .12.计算:202-(-)= ▲ .13.分解因式:2a 2-12a +18= ▲ .14.如图,△ABC 是等边三角形,∠CBD =90º,BD =BC ,则∠1的度数是 ▲ .A B DC(第9题)A EBCD (第6题)15.若a +b =2,则a 2+4b -b 2值为 ▲ .16.在△ABC 中,AB =13,BC =10,BC 边上的中线AD =12.则AC 的长为 ▲ .17.如图,从一个大正方形中截去面积为14cm 2和24cm 2的两个小正方形,则留下部分(阴影部分)的面积为 ▲ cm 2.18.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =6,将边AC 沿CE 翻折,使点A落在AB 上的点D 处,再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处, 两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为 ▲ .三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.) 19.(本题8分)计算:(1)(1242-)-(168+); (2)4(x +1)2-(2x +5)(2x -5).20.(本题5分)先化简,再求值:22214()244a a a a a a a a+---÷--+,其中a =2-2.21.(本题6分)如图,在由边长为1的单位正方形组成的网格中,△ABC 的各顶点均在格 点上,且点A 、C 的坐标分别为(-3,0)、(-2,3). (1)画出平面直角坐标系xOy ;(2)画出格点△ABC 关于y 轴对称的△A 1B 1C 1; (3)在y 轴上画出点Q ,使△QAB 的周长最小.14cm 224cm 2(第17题)ACB1D(第14题)ABC(第18题)ACBB ′F ED22.(本题5分)如图,CA =CD ,∠1=∠2,BC =EC .求证:AB =DE .23.(本题5分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900 字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.甲、乙两人每分钟 各打多少字?24.(本题5分)如图,已知在等边△ABC 中,D 是AC 的中点,E 为BC 延长线上一点, 且CE =CD ,DM ⊥BC ,垂足为M .求证:M 是BE 的中点.25.(本题7分)设y =kx (x >0,y >0),是否存在实数k ,使得代数式+能化简为x ?若能,请求出所有满足条件的k 的 值;若不能,请说明理由.26.(本题7分)我们学习了勾股定理后,都知道“勾三、股四、弦五”.ABCDE 12AB CDEM观察:3、4、5; 5、12、13; 7、24、25; 9、40、41;…, 发现这些勾股数的勾都是奇数,且从3起就没有间断过. (1)请你根据上述的规律写出下一组勾股数;(2)若第一个数用字母n (n 为奇数,且n ≥3)表示,请写出这一组勾股数,并证明.27.(本题8分)如图1,将两个完全相同的直角三角形纸片ABC 和DEC 如图放置,其中 ∠DCE =∠ACB =90°,∠B =∠E =30°.(1)如图2,当点D 在边AB 上时,填空: ①线段DE 与AC 的位置关系是 ▲ ;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是 ▲ .(2)当点D 在图3所示的位置时,(1)中S 1与S 2的数量关系是否仍然成立,请证明 你的猜想.28.(本题8分)如图,点A (1,1),B (2,0),点C 是x 轴的负半轴上一点,连接AC , 作AD ⊥AC 交y 轴于点D . (1)求∠ABC 的度数;(2)求证:OC 2+OD 2=2AD 2;图3ABCDEACBDE图2ACBDE图1(3)若DO 平分∠ADC ,求点D 的坐标.八年级数学参考答案与评分标准(仅供参考,其它解法,参照给分)一、选择题(每小题2分,共20分)二、填空题(每小题2分,共16分)11.x ≤3 12.34- 13.2(x -3)2 14.75º15.416.1317. 18.2三、解答题(共64分)19.(1)原式= ---------------------------------------3分4分 (2)原式=4(x 2+2x +1)-(4x 2-25) ------------------------------------- 6分 =4x 2+8x +4-4x 2+25---------------------------------------- 7分 =8x +29 ---------------------------------------------------- 8分20.解:22214()244a a a a a a a a+---÷--+ =221[](2)(2)4a a aa a a a +----- --------------------------------------- 1分 =2(2)(2)(1)(2)4a a a a aa a a +----- ------------------------------------- 2分=2224(2)4a a a aa a a --+-- -------------------------------------------- 3分=24(2)4a aa a a ---=21(2)a - ----------------------------------------------------- 4分当a =2时,21(2)a -12-------------------------- 5分1)坐标系; --------------------------- 2分 2)如图 -------------------------------- 4分 3)如图Q 点; ------------------------- 6分22.证明:∵∠1=∠2 ∴∠1+∠ACE =∠2+∠ACE即∠ACB =∠DCE -------------------------------------------------------- 1分 在△ACB 与△DCE 中∴△ACB ≌△DCE (SAS ) ------------------------------------------------ 4分 ∴AB =DE -------------------------------------------------------------- 5分 23.解:设乙每分钟打x 个字,则甲每分钟打(x +5)个字.由题意得,10009005x x=+, ------------------------------------------- 2分 解得:x =45, ----------------------------------------------------- 3分 经检验:x =45是原方程的解. -------------------------------------- 4分 答:甲每人每分钟打50个字,乙每分钟打45个字. -------------------- 5分 24.证明:连结BD∵△ABC 是等边三角形,D 是AC 的中点 ∴∠1=12∠ABC 又∵CE =CD ,∴∠CDE =∠E ∴∠ACB =2∠E即∠1=∠E --------------------------------------------------------- 3分 ∴BD =BE ,又DM ⊥BC ,垂足为M∴M 是BE 的中点. -------------------------------------------------- 5分25.+=-CA =CD CA =CD∠ACB =∠DCE ABC DEM 1=2 ------------------------------------------------------- 1分若2=x,则-------------------------------------------- 3分 ∴y =9x 或y =25x . ------------------------------------------------- 6分∵y =kx (x >0,y >0),∴k =9或k =25. -------------------------------------------------- 7分 26.(1)11,60,61----------------------------------------------------- 2分(2)这一组勾股数为n ,212n -和212n + --------------------------------- 4分∵2424222212121()244n n n n n n n --+++++==,2422121()24n n n +++=, ∴2222211()()22n n n -++=. 又∵3n ≥,且n 为奇数,∴由n ,212n -,212n +三个数组成的数是勾股数. ------------------- 7分27.(1)①平行; ------------------------------------------------------- 1分 ②S 1=S 2. ------------------------------------------------------ 3分 (2)成立. --------------------------------------------------------- 4分 理由:过A 作AF ⊥CE 交EC 延长线于点F ,过D 作DG ⊥BC 交BC 于点G . ∴∠AFC =∠DGC =90º.∵△ACB ≌△DCE ,∴AC =CD ,BC =CE . ∵∠BCA =∠DCF =90º, ∴∠ACF =∠DCG . 在△ACF 与△DCG 中∴△ACF ≌△DCG (AAS )---------------------------------------- 6分 ∴AF =DG .∵S 1=12CE ∙AF ,S 2=12BC ∙DG ,CE =BC ,AF =DG , ∴S 1=S 2. ------------------------------------------------------ 8分28.(1)作AH ⊥x 轴于H .G图3ABC DEF ∠AFC =DGC CA =CD∠ACF =∠DCG∵A (1,1), ∴OH =AH =1. ∵B (2,0) ∴BH =OH =AH =1 ∵∠AHB =90º,∴∠ABH =∠HAB =45º --------------------------------------------------- 2分 (2)连接OA , ∵AH ⊥OB ,OH =BH∴OA =AB ,∠AOB =∠ABO =45º,∠OAB =90º ∠DOA =45º ∴∠DOA =∠AOC ∵∠DAC =∠OAB =90º ∴∠DAO =∠CAB 在△DOA 与△CBA 中∴△DOA ≌△CBA (AAS ) ------------------------------------------------ 3分 ∴AC =AD ∵AD ⊥AC ∴AD 2+AC 2=DC 2∴DC 2=2AD 2在Rt △DOC 中,OC 2+OD 2=2AD 2----------------------------------------- 5分 (3)∵DO 平分∠ADC ,∠ADC =45º, ∴∠ODC =∠ADO º ∵∠AOB =∠AOD =45º ∴∠DAO =180ºº-45ºº ∴∠CAO =∠OAD -∠CAD º ∵∠AOB =∠ACO +∠CAO =45º, ∴∠ACO =∠CAO º ∴OC =OA ∵OA =AB∠DAO =∠CAB OA =AB∠DOA =∠ABC∴OC∴CB2----------------------------------------------------------- 6分由(2)可知,△DOA≌△CBA∴OD=CB+2------------------------------------------------------ 7分∴点D的坐标为(0+2)-------------------------------------------- 8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
其中,16—20每题6分, 21—23每题8分, 24题10分,25题11分)16、计算:2612850⨯-⨯17、解方程组:⎩⎨⎧-=+=-63323y x y x18、如图,点O 、A 、B 的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB 绕点O 按逆时针方向旋转90°得到△OA′ B′.请画出旋转后的△OA′ B′,并写出点A′ 和点B′ 的坐标。
(第13题图) (第14题图) ① ② (第18题图)19、已知一次函数y = -2x+2,(1)在所给的平面直角坐标系中画出它的图象; (2)根据图象回答问题:① 图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 ; ② 当x 时,y >0.20、阅读材料:如图(1),在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O . 求证:S 四边形ABCD =21AC •BD ; 证明:∵AC ⊥BD ,∴S 四边形ABCD =S △ACD +S △ACB =21AC •OD+21AC •BO= 21AC (OD+OB )=21AC •BD解答下列问题:(1)上述证明得到的结论可叙述为 ; (2)如图2 ,在梯形ABCD 中,AD ∥BC ,AB=DC ,AC ⊥BD ,且AC= 8,则S 梯形ABCD = ; (3)如图3 ,在菱形ABCD 中,AB = 5, AC= 8,则S 菱形ABCD = ;21、某校八年级一班20名女生某次体育测试成绩的平均分数是82分,具体统计如下:(1)求x 、y 的值;(2)设这20名学生本次测试成绩的众数是a ,中位数为b ,求a 与b 的值.22、我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为 等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理; (2)如图2,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AC= 4,BC=3,求CD 的长度.o(第19题图)(第20题图1)(第20题图2)(第20题图3)(第22题图1)(第22题图2)23、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2小时后血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时血液中含药量为每毫升3微克,每毫升血液中含药量y (微克),随时间x (小时)的变化如图所示.当成人按规定剂量服药后, (1)分别求出x ≤2和x ≥2时,y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?24、如图,在□ ABCD 中,点E 、F 是对角线BD 上的两点,且BE=DF .(1)求证:四边形AECF 是平行四边形.(2)如果四边形ABCD 是菱形,求证:四边形AECF 也是菱形.(3)如果四边形ABCD 是矩形,请判断四边形AECF 的形状,不必写出证明过程.25、如图1,矩形OABC 中,AB = 8,OA = 4,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F位置,折痕为DE . (1)求OD 的长;(2)请判断△OED 的形状,并说明理由;(3)如图2,以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B ′是否在直线DE 上?(第24题图) (第24题备用图)(第23题图)(第25题图1)(第25题图2)2015—2016年度第一学期期末考试八年级数学参考答案及评分标准一、选择题(每题3分,共30分)11、> 12、矩形(或菱形、正方形) 13、60 14、⎩⎨⎧==12y x 15、(2,5)或(8,5)三、解答题(16—20每题6分, 21—23每题8分, 24题10分,25题11分,共75分) 16、解: 原式=272400---------------------------- 4分(化简方法可以不同)= 20-6 = 14 ------------------------------6分 17、解: 由①-②得-3y = 9∴y =-3 ……………………………… 3分 把y =-3代入②得:3x-3 =-6 ∴ x =-1- ----------5分 ∴ 原方程组的解为⎩⎨⎧-=-=31y x -----------6分18、解:如图,△OA′ B′为旋转后所得的图形。
……………4分(画图3分,结论1分) A ′(0,3)、B ′(2,3). ……………6分(各1分) 19. 解:(1)列表:(也可以写成过点(0,2)和(1,0)画直线) (2) ① (1,0); (0,2)…………………5分② <1 …………………6分y= -2x+2o20、解: (1) 对角线互相垂直的四边形的面积等于对角线乘积的一半.…………2分(2) 32………………………………4分 (3) 24………………………………6分21、解:由题意,有⎪⎩⎪⎨⎧=⨯+++⨯+⨯=++++82202100908057016020251y x y x .……………………………2分解得⎩⎨⎧==75y x ……………………………4分(2)由(1),众数a = 90,中位数b = 80.……………………………8分 22、解:(1)∵大正方形面积为c 2,直角三角形面积为21ab ,小正方形面积为:(b -a )2, ∴ c 2 = 4×21ab+(a-b )2 = 2ab + a 2-2ab+b 2 即c 2 = a 2+b 2.…………………… 4分(2)在Rt △ABC 中,∵∠ACB=90°,∴由勾股定理,得:5343222=+=+=BC AC AB --------------------------6分∵ C D ⊥AB, ∴ S △ABC =21AC ·BC=21AB ·CD ∴ CD =512534=⨯ ------------------------------------------------------------8分 23、解:(1)当x ≤2时,设y = k 1x ,把(2,6)代入上式,得k 1=3,∴x ≤2时,y=3x ;……………………………2分 当x ≥2时,设y = k 2x+b , 把(2,6),(10,3)代入上式,得k 2=83-,b =427.∴ x ≥2时,y =83-x +427.……………………………4分(2)把y = 4代入y=3x ,得x 1= 34,把y = 4代入y =83-x +427,得x 2= 322.……………………………6分则x 2-x 1 =634322=-(小时).……………………………7分答:这个有效时间为6小时.……………………………8分24、解:(1)如图,连AC ,设AC 、BD 相交于点O 。
∵ 四边形ABCD 是平行四边形,∴ OA=OC ,OB=OD ……………………………2分 ∵ BE=FD ,∴ O B -BE = O D -DF, 即 OE=OF .∴ 四边形AECF 是平行四边形.……………………………4分 (2)∵ 四边形AECF 是菱形,∴ AC ⊥BD ,即AC ⊥EF .……………………………6分 由(1)得:四边形AECF 是平行四边形,∴ 四边形AECF 是菱形.……………………………8分(3)如果四边形ABCD 是矩形,四边形AECF 是平行四边形。