抽样分布习题及答案

合集下载

抽样分布习题及答案

抽样分布习题及答案

抽样分布习题及答案抽样分布习题及答案抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本后,样本统计量的分布情况。

在实际应用中,我们经常需要利用抽样分布来进行统计推断,因此对于抽样分布的理解和掌握是十分必要的。

本文将介绍一些常见的抽样分布习题,并提供相应的答案。

1. 问题:某公司有1000名员工,其中400人是女性。

现从中随机抽取100人,求抽取样本中女性人数的抽样分布。

解答:在这个问题中,我们可以将女性的出现看作是一个二项分布的实验,成功的概率为0.4。

因此,抽取样本中女性人数的抽样分布是一个二项分布。

根据二项分布的性质,我们可以计算出不同女性人数的概率。

2. 问题:某电商平台有1000个用户,他们的购买金额服从均值为100元,标准差为20元的正态分布。

现从中随机抽取50个用户,求抽取样本的平均购买金额的抽样分布。

解答:在这个问题中,样本的平均购买金额的抽样分布是一个服从均值为100元,标准差为20/√50元的正态分布。

根据正态分布的性质,我们可以计算出不同平均购买金额的概率。

3. 问题:某城市的居民年收入服从均值为50000元,标准差为10000元的正态分布。

现从中随机抽取200个居民,求抽取样本的平均年收入的抽样分布。

解答:在这个问题中,样本的平均年收入的抽样分布是一个服从均值为50000元,标准差为10000/√200元的正态分布。

根据正态分布的性质,我们可以计算出不同平均年收入的概率。

4. 问题:某医院每天接诊的患者数服从均值为50人,标准差为10人的泊松分布。

现从中随机抽取30天,求抽取样本的平均每天接诊的患者数的抽样分布。

解答:在这个问题中,样本的平均每天接诊的患者数的抽样分布是一个服从均值为50人,标准差为10/√30人的正态分布。

根据正态分布的性质,我们可以计算出不同平均每天接诊的患者数的概率。

通过以上几个习题的解答,我们可以看到不同问题中抽样分布的情况是不同的,需要根据具体的问题来确定抽样分布的类型和参数。

数理统计习题集-抽样分布

数理统计习题集-抽样分布

k
β(c + 1, 82 − c) p
知 F (c, p) 为 p 的减函数, 故应有 p = 0.9. 因此, 等价于求
c
cmin = min c F (c, 1) =
82 0.9k0.182−k ⩾ 0.95, p ∈ [0, 1] k
k=0
借计算器求得 cmin = 78.

题 11. 设某电子元件的寿命 ( 单位: 小时 ) 服从参数 λ = 0.0015 的指数分布 E(λ), 测试 6 个元件后问:
(1) 求样本的分布.
n
(2) 求 Xi 的分布律.
i=1
3
(3) 指出下列样本的函数中哪些是统计量,哪些不是统计量,为什么?
T1 = X1 + · · · + X5)/5; T2 = X5 − E[X1]
T3 = X5 − p;
T4 = max(X1, · · · , X5).
(4) 如果一个样本观测值为 (0, 1, 0, 1, 1),写出其样本均值、样本方差和经验分布函数.
ABCDEFHJKLMPRSTW 3 1 3 2 2 1 17 2 6 5 2 21 1 1
(2) 汇总统计量如下
最小值 1/4 分位点 中位数 平均值 3/4 分位点 最大值 方差 标准差
29.10
41.67 47.70 47.66
52.33 78.10 101.49 10.07
(3) 频数直方图如下图所示 ♢
解 样本均值
1
m
1m
X
=
n1
+···
+ nm
(xini)
i=1
=
n
(xini)
i=1

抽样分布习题

抽样分布习题

抽样分布习题1.抽样分布是指( C )A 一个样本各观测值的分布B 总体中各观测值的分布C 样本统计量的分布D 样本数量的分布2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( A )。

A μ B x C 2σ D n 2σ3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( D )。

A μ B x C 2σ D n 2σ4.从一个均值μ=10,标准差σ=0.6的总体中随机选取容量为n=36的样本。

假定该总体并不是很偏的,则样本均值x 小于9.9的近似概率为( A )。

A 0.1587B 0.1268C 0.2735D 0.63245.假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( B )A 服从非正态分布B 近似正态分布C 服从均匀分布D 服从2χ分布6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( C )A 保持不变 B 增加 C 减小D 无法确定7. 总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分布为( B )。

A 50,8B 50,1C 50,4D 8,88.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( B )。

A 正态分布,均值为250元,标准差为40元B 正态分布,均值为2500元,标准差为40元C 右偏分布,均值为2500元,标准差为400元D 正态分布,均值为2500元,标准差为400元9. 某班学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布是( A )A 正态分布,均值为22,标准差为0.445B 分布形状未知,均值为22,标准差为4.45C 正态分布,均值为22,标准差为4.45D 分布形状未知,均值为22,标准差为0.44510.在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟,如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从( A )A 正态分布,均值为12分钟,标准差为0.3分钟B 正态分布,均值为12分钟,标准差为3分钟C 左偏分布,均值为12分钟,标准差为3分钟D 左偏分布,均值为12分钟,标准差为0.3分钟11. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检查,则样本均值( D )A 抽样分布的标准差为4小时B 抽样分布近似等于总体分布C 抽样分布的中位数为60小时D 抽样分布近似等同于正态分布,均值为60小时12.假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

抽样分布习题 答案

抽样分布习题 答案

抽样分布习题答案抽样分布习题答案随着统计学的发展,抽样分布成为了统计推断的重要基础。

在统计学中,我们经常需要从总体中抽取一部分样本,然后通过对样本的分析来推断总体的特征。

而抽样分布则是描述样本统计量的分布情况的概率分布。

在这篇文章中,我们将回答一些关于抽样分布的习题,帮助读者更好地理解和应用这一概念。

1. 假设某个总体的均值为μ,标准差为σ,从该总体中抽取样本容量为n的简单随机样本。

则样本均值的抽样分布的均值为多少?标准差为多少?答案:样本均值的抽样分布的均值为总体均值μ,标准差为总体标准差σ除以样本容量n的平方根,即σ/√n。

这意味着随着样本容量的增加,样本均值的抽样分布的标准差将减小,从而更加接近总体均值。

2. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本均值。

当n足够大时,样本均值的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本均值的抽样分布将近似服从正态分布。

这是由于中心极限定理的适用,即当样本容量足够大时,样本均值的抽样分布将趋于正态分布,无论总体的分布形态如何。

3. 假设某个总体服从正态分布,均值为μ,标准差为σ。

从该总体中抽取样本容量为n的简单随机样本,计算样本标准差。

当n足够大时,样本标准差的抽样分布将近似服从什么分布?答案:当样本容量n足够大时,样本标准差的抽样分布将近似服从正态分布。

这是由于当样本容量足够大时,样本标准差的抽样分布可以通过中心极限定理近似为正态分布。

4. 假设某个总体的比例为p,从该总体中抽取样本容量为n的简单随机样本,计算样本比例。

样本比例的抽样分布的均值和标准差分别为多少?答案:样本比例的抽样分布的均值为总体比例p,标准差为√(p(1-p)/n)。

这意味着当样本容量足够大时,样本比例的抽样分布将近似服从正态分布,均值为总体比例p,标准差为√(p(1-p)/n)。

通过以上习题的解答,我们可以看到抽样分布在统计推断中的重要性。

习题六样本及抽样分布解答

习题六样本及抽样分布解答

样本及抽样分布一、填空题1.设来自总体X的一个样本观察值为:...................... 则样本均值二 ____________ ,样本方差二 2.716,;2.在总体X~N(5,16)中随机地抽取一个容量为36的样本,则均值戸落在4与6之间的概率=_;3.设某厂生产的灯泡的使用寿命X-NQOOO'b1)(单位:小时),抽取一容量为9 的样本,得到 1 = 940,$ = 100,则 <940)= __________________________________ ;4.设乂人…儿为总体X~N(0,0.5,)的一个样本,则P(工X:〉4) = _;1=15.设X1,X2,...,X6为总体X - 7V(0,1)的一个样本,且cY服从F分布,这里,y =(x1 + x2+XJ+(X4 + X5 + X6)2,则 c = 1/3 ;6.设随机变量X,Y相互独立,均服从N(0,3‘)分布且X P X2,...,X9与K,E,…必分别是来自总体X』的简单随机样本,则统计量U=, + “乜服从参数为_9牌+…+玲」的t 分布。

7.设乂泌尽儿是取自X〜N(0,2‘)正态总体的简单随机样本且Y = 6r(X,-2X2)2 +Z?(3X3-4XJ2,,则a = _f b = _______________ 时,统计量 Y服从才分布,其自由度为2 ;8.设总体X服从正态分布X~N(0,2'),而X-X?,…,X“是来自总体的简单随机X~V2 . . V2样本,则随机变量y= 化十… 利服从F 分布,参数为 10,5 ;2(X] + ...+ Xd)9.设随机变量X〜则Y〜F(n, 1);10. 设随机变量X ~F(S)且P(|X|>A) = 0.3, A 为常数,则P(X>— 1 «11若岳,…,乙是取自正态总体"(〃,□)的一个样本,则§ =服从 _____________« £12样本(X 】,…,X”)的函数/(X|,…,X”)称为 ______________ ,其中/(X”…,X”)不含未知参数。

统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

统计学课后答案(第3版)第6章抽样分布与参数估计习题答案

第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。

4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。

抽样与抽样分布(试题及答案)

抽样与抽样分布(试题及答案)

第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

)1.抽样推断的主要目的是( )。

A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。

2.抽样调查中,无法消除的误差是( )。

A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。

3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。

A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。

因为,故。

4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。

据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。

在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。

A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。

5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。

表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。

抽样分布习题及答案

抽样分布习题及答案

抽样分布习题及答案1. 题目:从一个容器中随机取出30个样本,每个样本的体积服从正态分布,均值为150,标准差为10。

计算样本均值的抽样分布的标准差。

解答:我们知道,样本均值的抽样分布的标准差(也称为标准误差)可以通过总体标准差除以样本容量的平方根来计算。

标准误差 = 总体标准差/ √样本容量在本题中,总体标准差为10,样本容量为30,代入公式可得:标准误差= 10 / √30 ≈ 1.83因此,样本均值的抽样分布的标准差约为1.83。

2. 题目:某电视台进行了一项调查,随机抽取了500名观众,其中有380人表示喜欢该电视节目。

根据该样本数据,计算其样本比例的抽样分布的标准差。

解答:样本比例的抽样分布的标准差可以通过以下公式计算:标准误差= √((样本比例 × (1 - 样本比例)) / 样本容量)在本题中,样本比例为380/500 = 0.76,样本容量为500,代入公式可得:标准误差= √((0.76 × (1 - 0.76)) / 500) ≈ 0.018因此,样本比例的抽样分布的标准差约为0.018。

3. 题目:某商品的包装袋上注明每袋重量服从正态分布,均值为500克,标准差为10克。

为了确定该注明是否准确,随机抽取了100袋该商品,计算抽取样本的平均重量的抽样分布的标准差。

解答:抽取样本的平均重量的抽样分布的标准差可以通过总体标准差除以样本容量的平方根来计算。

标准误差 = 总体标准差/ √样本容量在本题中,总体标准差为10克,样本容量为100,代入公式可得:标准误差= 10 / √100 = 1因此,抽取样本的平均重量的抽样分布的标准差为1克。

4. 题目:某超市进行了一次促销活动,随机抽取了50个顾客进行调查,得知他们购买的平均金额为200元,标准差为50元。

计算该样本的平均金额的抽样分布的标准差。

解答:样本的平均金额的抽样分布的标准差可以通过总体标准差除以样本容量的平方根来计算。

抽样分布练习题

抽样分布练习题

抽样分布练习题统计学中,抽样分布是指从总体中抽取样本并计算样本统计量的分布。

在实际应用中,抽样分布是非常重要的,因为它可以帮助我们了解样本统计量与总体参数之间的关系。

以下是一些关于抽样分布的练习题,通过解答这些问题,可以更好地理解抽样分布的概念和应用。

练习题1:某工厂生产的零件长度服从正态分布,均值为50毫米,标准差为5毫米。

从该工厂中随机抽取一批零件,样本容量为16。

计算样本均值的抽样分布的均值和标准差。

解答:样本均值的抽样分布的均值等于总体均值,即μ=50毫米。

而样本均值的抽样分布的标准差等于总体标准差除以样本容量的平方根,即σ/√n=5/√16=1.25毫米。

练习题2:从某地区学生的身高总体中,抽取一批样本进行调查,样本容量为100,样本均值为165厘米,样本标准差为8厘米。

利用样本数据,计算总体均值的抽样分布的标准差,并给出一个95%的置信区间。

解答:总体均值的抽样分布的标准差等于样本标准差除以样本容量的平方根,即8/√100=0.8厘米。

95%的置信区间可以通过样本均值加减抽样误差,其中抽样误差等于1.96倍的标准差,即1.96*0.8=1.57厘米。

因此,95%的置信区间为165±1.57,即(163.43, 166.57)厘米。

练习题3:某市场调查公司对一批商品的售价进行调查,从总体中抽取了100个样本,样本均值为120元,样本标准差为15元。

计算总体均值的抽样分布的标准差,并判断在95%置信水平下,总体均值的取值范围。

解答:总体均值的抽样分布的标准差等于样本标准差除以样本容量的平方根,即15/√100=1.5元。

在95%置信水平下,抽样误差为1.96倍的标准差,即1.96*1.5=2.94元。

因此,总体均值在95%置信水平下的取值范围为120±2.94,即(117.06, 122.94)元。

练习题4:某医院对一个新药物的疗效进行测试,从总体中抽取了50个样本,样本均值为4.2,样本标准差为0.5。

抽样分布 作业答案

抽样分布 作业答案

抽样分布作业答案说明:本作业中的简单随机抽样均为重复抽样。

1.从均值为200、标准差为50的总体中,抽取n=100的简单随机样本,用样本均值⎺x 估计总体均值。

(1)x 的数学期望是多少?(2)x 的标准差是多少?(3)x 的抽样分布是什么?(4)样本方差的抽样分布是什么?解:n=100>30,该样本为大样本。

样本均值服从正态分布。

(1)()200E x µ==(2)2225025100xn σσ===得:5x σ=(3)x 服从正态分布N(200,25)(4)样本方差的抽样分布为:222(1)~(1)n s n χσ−−n=100,22500σ=则:220.0396~(99)s χ2.假定总体共有1000个单位,均值µ=32,标准差σ=5。

从中抽取一个容量为30的简单随机样本用于获得总体信息。

(1)x 的数学期望是多少?(2)x 的标准差是多少?解:n=30,该样本为大样本。

样本均值服从正态分布。

(1)()32E x µ==(2)22255306xn σσ===得:0.913x σ=3.从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

样本均值的抽样标准差等于多少?解:n=40,该样本为大样本。

样本均值服从正态分布。

样本均值的抽样标准差为:22250.62540xn σσ===得:0.791x σ=4.从π=0.4的总体中,抽取一个容量为100的简单随机样本。

(1)P 的数学期望是多少?(2)P 的标准差是多少?(3)P 的分布是什么?解:n=100,该样本为大样本。

该样本比例的抽样分布服从正态分布。

(1)()0.4E p π==(2)()210.40.60.0024100pn ππσ−×===得:0.049p σ=(3)该样本比例的抽样分布服从正态分布N(0.4,0.0024)5.假定总体比例为π=0.55,从该总体中分别抽取容量为100、200、500和1000的样本。

习题六__样本及抽样分布解答.doc

习题六__样本及抽样分布解答.doc

样本及抽样分布一、填空题1.设来自总体 X 的一个样本观察值为:,,,,,则样本均值=,样本方差=2.7162;2.在总体X ~ N (5,16)中随机地抽取一个容量为36 的样本,则均值X 落在 4 与6之间的概率=;3.设某厂生产的灯泡的使用寿命X ~ N (1000, 2 )(单位:小时),抽取一容量为9 的样本,得到x940, s 100 ,则 P( X 940);74.设X1, X2,..., X7为总体X ~ N (0,0.52)的一个样本,则P(X i24);i 15.设X1, X2,..., X6为总体X ~ N (0,1)的一个样本,且 cY 服从 2 分布,这里,Y ( X1X 2X 3 )2( X 4X 5X 6 )2,则 c1/3 ;6.设随机变量X ,Y相互独立,均服从N (0,32)分布且X1, X2,..., X9与Y1,Y2,..., Y9分别是来自总体 X , Y 的简单随机样本,则统计量U X1...X9服从参数为9 Y12...Y92的 t分布。

7.设X1, X2, X3, X4是取自X ~ N (0, 22)正态总体的简单随机样本且Y a( X! 2 X 2 ) 2 b(3 X3 4 X 4 ) 2, ,则 a ,b 时,统计量 Y 服从 2 分布,其自由度为 2 ;8.设总体 X 服从正态分布X ~ N (0, 22) ,而X1, X2,..., X15是来自总体的简单随机样本,则随机变量 Y X12 (X)102F 分布,参数为10,5 ;...服从2( X112 X152 )9.设随机变量 X ~ t (n)( n 1),Y 1 ,则Y ~ F(n,1) ;X 21 ) 10.设随机变量X ~ F (n, n)且 P( X A) 0.3 ,A 为常数,则 P( XA11 若 1 ,, n是取自正态总体N ( , 2 )的一个样本,则 1nni 服从。

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。

其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。

调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。

(2)绘制一张条形图,反映学历分布。

2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。

2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。

(2)用茎叶图将原始数据表现出来。

2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。

男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。

轻松学统计: 抽样与抽样分布习题与答案

轻松学统计: 抽样与抽样分布习题与答案

一、单选题1、若不断重复某项调查,每次向随机抽取的100人提出同一个问题,则每次都能得到一个回答“是”的人数百分数,这若干百分数的分布称为()。

A.样本成数的抽样分布B.样本平均数的抽样分布C.总体成数的次数分布D.总体平均数的抽样分布正确答案:A2、抽样调查的主要目的是()。

A.用样本指标推算总体指标B.修正普查资料C.广泛运用数学方法D.计算和控制抽样误差正确答案:A3、分层抽样的特点是()。

A.层间差异小B.层内差异小,层间差异大C.层内差异大D.层间差异小,层内差异大正确答案:B4、某学校共有高中生2700人,一年级900人,二年级1200人,三年级600人,现采用分层抽样抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数为()。

A.45,75,15B.45,60,30C.45,45,45D.30,90,15正确答案:B5、某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上特定位置抽取一件产品进行检测,这种抽样方法是()。

A.分层抽样B.系统抽样C.简单随机抽样D.其他抽样方法正确答案:B6、中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法错误的是()。

A.该校只有360个家长持反对态度B.样本是随机抽取的400个家长C.该校约有90%的家长持反对态度D.调查方式是抽样调查正确答案:A二、判断题1、凡是总体参数θ的无偏估计量都是θ的有效估计量。

()正确答案:×2、概率抽样就是随机抽样,即要求按一定的概率以随机原则抽取样本,同时每个单元被抽中的概率是可以计算出来的。

()正确答案:√3、总体参数与样本统计量有不同的意义,样本统计量是样本的函数,是随机变量。

()正确答案:√4、简单随机抽样时每个总体单位都有非零的入样概率,但每个总体单位的入样概率是不同的。

高考数学真题 抽样方法与总体分布的估计

高考数学真题 抽样方法与总体分布的估计

11.4抽样方法与总体分布的估计考点一随机抽样1.(2015湖南文,2,5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案B从35人中用系统抽样方法抽取7人,则可将这35人分成7组,每组5人,从每一组中抽取1人,而成绩在[139,151]上的有4组,所以抽取4人,故选B.2.(2015北京文,4,5分)某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师 1 800青年教师 1 600合计 4 300A.90B.100C.180D.300答案C本题考查分层抽样,根据样本中的青年教师有320人,且青年教师与老年教师人数的比为1600∶900=16∶9,可以得到样本中的老年教师的人数为916×320=180,故选C.3.(2014重庆文,3,5分)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250答案A由分层抽样的特点可知703 500=n3 500+1 500,解之得n=100.4.(2014湖南文,3,5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案D在简单随机抽样、系统抽样和分层抽样中,每个个体被抽中的概率均为nN,所以p1=p2=p3,故选D. 评析随机抽样的要求是每个个体被抽中的概率相等,与具体的方法无关.5.(2014广东文,6,5分)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20答案C由系统抽样的定义知,分段间隔为1 00040=25.故答案为C.6.(2013课标Ⅰ理,3,5分)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样答案C因为男女生视力情况差异不大,而各学段学生的视力情况有较大差异,所以应按学段分层抽样,故选C.评析本题考查了分层抽样,准确理解分层抽样的意义是解题关键.7.(2013江西理,4,5分)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01答案D由题意知依次选取的编号为08,02,14,07,01,…(第2个02需剔除),所以选出来的第5个个体的编号为01,选D.8.(2013陕西理,4,5分)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11B.12C.13D.14答案B因为840∶42=20∶1,故编号在[481,720]内的人数为240÷20=12.9.(2018课标Ⅲ文,14,5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是 . 答案 分层抽样解析 本题考查抽样方法.因为不同年龄段客户对其服务的评价有较大差异,所以根据三种抽样方法的特点可知最合适的抽样方法是分层抽样.10.(2015福建文,13,4分)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 答案 25解析 男生人数为900-400=500.设应抽取男生x 人,则由45900=x500得x=25.即应抽取男生25人. 11.(2014天津理,9,5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取 名学生. 答案 60 解析420×300=60(名). 12.(2012天津理,9,5分)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取 所学校,中学中抽取 所学校. 答案 18;9解析 应从小学中抽取150150+75+25×30=18(所).应从中学中抽取75150+75+25×30=9(所).评析 本题考查分层抽样及数据处理能力.13.(2012福建文,14,4分)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是 . 答案 12解析 男女运动员人数比例为5698-56=43, 分层抽样中男女人数比例不变,则女运动员人数为 28×37=12.故应抽取女运动员人数是12.评析本题考查分层抽样方法.考查学生运算求解能力.考点二用样本估计总体1.(2017课标Ⅲ理,3,5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.()根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案A本题考查统计,数据分析.观察2014年的折线图,发现从8月至9月,以及10月开始的三个月接待游客量都是减少的,故A选项是错误的.2.(2017山东文,8,5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7答案A由茎叶图,可得甲组数据的中位数为65,从而乙组数据的中位数也是65,所以y=5.由乙组数据59,61,67,65,78,可得乙组数据的平均值为66,故甲组数据的平均值也为66,从而有56+62+65+74+70+x5=66,解得x=3.故选A.3.(2016山东理,3文3,5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.4.(2016课标Ⅲ理,4,5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案D由雷达图易知A、C正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,故B正确;由雷达图知平均最高气温超过20 ℃的月份有3个月.故选D.5.(2015课标Ⅱ理,3,5分)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案 D 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D 不正确.6.(2020课标Ⅲ文,3,5分)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A.0.01B.0.1C.1D.10答案 C 由已知条件可知样本数据x 1,x 2,…,x n 的平均数x =x 1+x 2+…+x nn,方差s 12=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=0.01,则数据10x 1,10x 2,…,10x n 的平均数为10x 1+10x 2+…+10x nn=10x .所以这组数据的方差s 22=1n [(10x 1-10x )2+(10x 2-10x )2+…+(10x n -10x )2]=100n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=100s 12=100×0.01=1,故选C.7.(2015安徽理,6,5分)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A.8B.15C.16D.32答案 C 设样本数据x 1,x 2,…,x 10的标准差为s,则s=8,可知数据2x 1-1,2x 2-1,…,2x 10-1的标准差为2s=16. 8.(2014陕西文,9,5分)某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x 和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A.x ,s 2+1002B.x +100,s 2+1002C.x ,s 2D.x +100,s 2答案 D 设增加工资后10位员工下月工资均值为x ',方差为s'2,则x '=110[(x 1+100)+(x 2+100)+…+(x 10+100)]=110(x 1+x 2+…+x 10)+100=x +100;方差s'2=110[(x 1+100-x ')2+(x 2+100-x ')2+…+(x 10+100-x ')2]=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=s 2.故选D. 9.(2011江苏,6,5分)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2= . 答案165解析 记星期一到星期五收到的信件数分别为x 1,x 2,x 3,x 4,x 5,则x =x 1+x 2+x 3+x 4+x 55=10+6+8+5+65=7.∴s 2=15[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2+(x 5-x )2]=15[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=165. 评析 本题主要考查方差的公式,考查学生的运算求解能力.公式记忆准确,运算无误是解答本题的关键,属中等难度题.10.(2018江苏,3,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .8 9 9 90 1 1答案 90解析 本题考查茎叶图、平均数.5位裁判打出的分数分别为89,89,90,91,91,则这5位裁判打出的分数的平均数为15×(89+89+90+91+91)=90.方法总结 要明确“茎”处数字是十位数字,“叶”处数字是个位数字,正确写出所有数据,再根据平均数的概念进行计算.11.(2015湖北文,14,5分)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (1)直方图中的a= ;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为 .答案(1)3(2)6 000解析(1)由频率分布直方图可知:0.1×(0.2+0.8+1.5+2.0+2.5+a)=1,解得a=3.(2)消费金额在区间[0.5,0.9]内的购物者的频率为0.1×(3.0+2.0+0.8+0.2)=0.6,所以所求购物者的人数为0.6×10 000=6 000.12.(2014江苏,文6,5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100 cm.答案24解析60×(0.015+0.025)×10=24(株).13.(2019课标Ⅱ文,19,12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[-0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.解析本题考查了统计的基础知识、基本思想和方法,考查学生对频数分布表的理解与应用,考查样本的平均数,标准差等数字特征的计算方法,以及对现实社会中实际数据的分析处理能力.(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21. 产值负增长的企业频率为2100=0.02. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100∑i=15n i (y i-y )2=1100[2×(-0.40)2+24×(-0.20)2+53×02+14×0.202+7×0.402]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.方法总结 利用频数分布表求平均数估计值的方法:各组区间中点值乘该组频数,并求和,再除以样本容量.利用频数分布表求标准差估计值的方法:用各组区间中点值代表该组,代入标准差公式即可.14.(2018课标Ⅰ文,19,12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数13249265使用了节水龙头50天的日用水量频数分布表日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解析(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2=150×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).易错警示利用频率分布直方图求众数、中位数与平均数时,应注意区分这三者,在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.15.(2016北京文,17,13分)某市居民用水拟实行阶梯水价.每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解析(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.(3分)所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.(5分)依题意,w至少定为3.(6分)(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号12345678分组[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27]频率0.10.150.20.250.150.050.050.05(10分) 根据题意,该市居民该月的人均水费估计为:4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).(13分)思路分析第(1)问,需要计算该市居民月用水量在各区间上的频率,根据样本的频率分布直方图即可获解.第(2)问,由月用水量的频率分布直方图和w=3可计算居民该月用水费用的数据的分组与频率分布表,由此可估计该市居民该月的人均水费.评析本题考查了频率分布直方图及用样本估计总体,属中档题.16.(2015课标Ⅱ理,18,12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B地区456789(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解析(1)两地区用户满意度评分的茎叶图如下:A地区B地区4 683 5 136 46 4 26 2 4 5 5 6 8 8 6 4 37 3 3 4 6 9 9 28 6 5 18 3 2 1 7 5 5 29 1 3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件:“A 地区用户的满意度等级为非常满意”; C B1表示事件:“B 地区用户的满意度等级为不满意”; C B2表示事件:“B 地区用户的满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2. P(C)=P(C B1C A1∪C B2C A2) =P(C B1C A1)+P(C B2C A2) =P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48. 17.(2015课标Ⅱ文,18,12分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(1)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大,说明理由.解析(1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”. 由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.18.(2015广东文,17,12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解析(1)由已知得,20×(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)=1,解得x=0.007 5.(2)由题图可知,面积最大的矩形对应的月平均用电量区间为[220,240),所以月平均用电量的众数的估计值为230;因为20×(0.002+0.009 5+0.011)=0.45<0.5,20×(0.002+0.009 5+0.011+0.012 5)=0.7>0.5,所以中位数在区间[220,240)内.设中位数为m,则20×(0.002+0.009 5+0.011)+0.012 5×(m-220)=0.5,解得m=224.所以月平均用电量的中位数为224.(3)由题图知,月平均用电量为[220,240)的用户数为(240-220)×0.0125×100=25,同理可得,月平均用电量为[240,260),[260,280),[280,300]的用户数分别为15,10,5.故用分层抽样的方式抽取11户居民,月平均用电量在[220,240)的用户中应抽取11×2525+15+10+5=5(户).19.(2014课标Ⅰ文,18,12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解析(1)(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.评析本题考查绘制频率分布直方图,计算样本的数字特征,及用样本估计总体等知识,同时考查统计的思想方法.20.(2014课标Ⅱ文,19,12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门49797665332110 98877766555554443332100665520063222034567891059044812245667778901123468800113449123345011456000(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.解析(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.评析本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.21.(2014北京文,18,13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7 [12,14) 6 8 [14,16) 2 9[16,18)2 合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)解析 (1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生一周课外阅读时间少于12小时的频率是1-10100=0.9. 故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)内的有17人,频率为0.17,所以a=频率组距=0.172=0.085. 课外阅读时间落在组[8,10)内的有25人,频率为0.25,所以b=频率组距=0.252=0.125. (3)样本中的100名学生该周课外阅读时间的平均数在第4组.22.(2013课标Ⅰ文,18,12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解析 (1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y ,由观测结果可得x =120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3, y =120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6. 由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.评析 本题考查数据的平均数和茎叶图,考查数据的分析处理能力和应用意识.23.(2013安徽文,17,12分)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1、x2,估计x1-x2的值.解析(1)设甲校高三年级学生总人数为n.由题意知,30n=0.05,即n=600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=5 6.(2)设甲、乙两校样本平均数分别为x'1、x'2,根据样本茎叶图可知,30(x'1-x'2)=30x'1-30x'2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15. 因此x'1-x'2=0.5.故x1-x2的估计值为0.5分.评析本题考查随机抽样与茎叶图等统计学的基本知识,考查学生用样本估计总体的思想以及数据分析处理能力.24.(2020课标Ⅰ文,17,12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数40 20 20 20乙分厂产品等级的频数分布表等级 A B C D频数28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解析(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;。

概率统计——抽样分布课后练习(附答案)

概率统计——抽样分布课后练习(附答案)

课后练习:一、单项选择:1、抽样误差是指:()A.抽样推断中各种原因引起的全部误差B.工作性误差C.系统性代表误差D.随机误差 D2、重复抽样的抽样误差()A.大于不重复抽样的抽样误差B.小于不重复抽样的抽样误差C.等于不重复抽样的抽样误差D.不一定 A3、在简单重复抽样下,若总体标准差不变,要使抽样平均误差变为原来的一半,则样本单位数必须()A.扩大为原来的2倍B.减少为原来的一半C.扩大为原来的4倍D.减少为原来的四分之一 C4、在抽样之前对每一个单位先进行编号,然后使用随机数字表抽取样本单位,这种方式是()A.等距抽样B.分层抽样C.简单随机抽样D.整群抽样 C5、一个连续性生产的工厂,为检验产品的质量,在一天中每隔1小时取5分钟的产品做全部检验,这是()A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样 C6、某工厂连续生产,为检验产品质量,在一天中每隔半小时取一件产品做检验,这是()A.简单随机抽样B.整群抽样C.机械抽样D.类型抽样 C7、为了了解某工厂职工家庭收支情况,按该厂职工名册依次每50人抽取1人,对其家庭进行调查,这种调查属于()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样 B8、抽样平均误差的实质是()A. 总体标准差B. 抽样总体的标准差C. 抽样误差的标准差D. 抽样平均数的标准差 D9、为调查某消费群体的消费习惯,将消费者按受教育层次分类后,再确定比例抽取样本,此抽样方法属于()A. 纯随机抽样B. 分层抽样C. 机械抽样D. 整群抽样 B10. 抽样调查必须遵循的基本原则是()A. 灵活性原则B. 准确性原则C. 随机原则D. 可靠性原则 C11. 抽样误差是()A. 代表性误差B. 登记性误差C. 系统性误差D. 随机误差 D12. 抽样平均误差和极限误差的关系是()A. 抽样平均误差小于极限误差B.抽样平均误差大于极限误差C. 抽样平均误差等于极限误差D. 抽样平均误差可能大于、等于或小于极限误差 D13. 在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A. 扩大为原来的4倍B. 每个大为原来的2倍C. 缩小为原来的1/4倍D. 缩小为原来的1/2倍 A14. 一般来说, 在抽样组织形式中,抽样误差较大的是()A. 简单抽样B. 分层抽样C. 整群抽样D. 等距抽样 C15. 根据抽样的资料, 一年级优秀生比重为10%, 二年级为20%,在人数相等时,优秀生比重的抽样误差()A. 一年级较大B. 二年级较大C.相同 D. 无法判断16. 根据重复抽样的资料, 甲单位工人工资方差为25,乙单位为100,乙单位人数比甲单位多3倍, 则抽样误差()A. 甲单位较大B. 无法判断C.乙单位较大 D. 相同17. 最符合随机原则地抽样组织形式是( )A. 整群抽样B. 类型抽样C. 阶段抽样D. 简单随机抽样二、判断题1、 抽样调查必须遵循的原则是灵活性原则。

抽样分布习题

抽样分布习题

抽样分布习题班级:姓名:学号:得分一、单项选择题:1. 进行抽样推断时,必须遵循的基本原则为( )(A)准确性原则(B)标准化原则(C)随机性原则(D)可靠性原则2. 关于样本平均数和总体平均数的说法,下列正确的是( )(A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值(C)两者都是随机变量(D)两者都是确定值3. 当总体内部差异比较大时,比较适用的抽样组织形式为()(A)纯随机抽样(B)整群抽样(C)分层抽样(D)简单随机抽样4. 抽样过程中,无法避免和消除的是()(A)登记误差(B)系统性误差(C)测量工具误差(D)随机误差5. 某工厂连续生产,为了检查产品质量,在24小时中每隔30分钟,取2分钟的产品进行全部检查,这种抽样方式是()(A)纯随机抽样(B)整群抽样(C)两阶段抽样(D)分层抽样6.通常所说的大样本是指样本容量()(A)大于等于30 (B)小于30 (C)大于等于10 (D)小于107.抽样误差是指()(A)在调查过程中由于观察、测量等差错所引起的误差(B)在调查中违反随机原则出现的系统误差(C)随机抽样而产生的代表性误差(D)人为原因所造成的误差8.从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将()(A)增加(B)减小(C)不变(D)无法确定9.某班级学生的年龄是右偏的,均值为20岁,标准差为4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为()(A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布(C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布10.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是()(A)简单随机抽样(B)类型抽样(C)等距抽样(D)整群抽样二、填空题1.设总体是由1,3,5,7,9五个数字组成,现从中用简单随机抽样形式(不放回)抽取3个数构成样本,那么抽样平均误差为____________..2.某公司有500人,平均工龄为10年,标准差为3年。

抽样分布和假设检验练习题(选择部分)

抽样分布和假设检验练习题(选择部分)

抽样分布和假设检验练习题(选择部分)抽样分布和假设检验练习题(选择部分)1. 从⼀个正态总体N(0,12)中随机抽取⼀个数值X,则该数值()A.P(|X|<1.96)=0.95B.P(X<1.96)=0.95C.P(|X|>1.96)=0.95D.P(X>1.96)=0.952. 下列对于⼩概率事件原理的描述,错误的是()A.⼩概率事件的临界概率是⼈为确定的B.常⽤的⼩概率事件的临界概率是0.05或0.01C.⼀个事件如果发⽣的概率很⼩的话,那么它在⼀次试验中是不应当发⽣的D.⼀个事件如果发⽣的概率很⼩的话,那么它在⼀次试验中是不会发⽣的3. 下列对于⽆效假设的叙述错误的是()A.⽆效假设是对试验总体进⾏假设B.假设检验是在⽆效假设正确的基础上进⾏的推理C.⽆效假设⼜叫做零假设,该假设⽆意义D.假设检验中,⽆效假设⼀定设定为⽆显著差异4. 关于备择假设(⼜叫对⽴假设),下列描述错误的是()A.当备择假设µA>µB时,表⽰假设检验只有右边⼀个否定区域B.当备择假设µA<µB时,表⽰假设检验只有左边边⼀个否定区域C.当备择假设µA≠µB时,表⽰假设检验在左右各有⼀个否定区域D.备择假设和⽆效假设可以互换5. 关于显著性⽔平,下列描述错误的是()A.显著性⽔平就是⼩概率原理的临界概率B.显著性⽔平等于假设检验I型错误的概率C.显著性⽔平等于假设检验中拒绝⽆效假设的概率D.显著性⽔平是固定常数,等于0.056. 假设检验中,若得出拒绝H0的结论,则下列描述错误的是()A.该结论犯I型错误的概率为αB.该结论犯II型错误的概率为βC.该结论在所⽐较的参数间具有显著差异D.假设检验中计算出的统计量落⼊了拒绝区域7. 两个样本平均数的差异显著性检验达到显著,意味着()A.两个样本的平均数相差很⼤B.接受⽆效假设C.两个样本的平均数的差数在0.05⽔平下是客观存在的D.否定备择假设8. 显著性检验中,如果显著⽔平确定为0.05,则犯第⼀类错误的概率为()A.>0.05B.=0.05C.<0.05D.>0.959. 某样本有17个观测值,进⾏该样本的平均数和总体平均数的显著性检验时,若计算的t值为8.71(已知t0.05,16=2.12 ),则()A.否定⽆效假设B.接受⽆效假设C.⽆效假设成⽴的概率⼩于0.05D.⽆法做出统计判断10. t分布是⼀组随()⽽改变的曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 抽样分布自测题
选择题
1.抽样分布是指( )
A. 一个样本各观测值的分布
B. 总体中各观测值的分布
C. 样本统计量的分布
D. 样本数量的分布
2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( )
A. μ
B. x
C. 2σ
D. n 2
σ
3. 根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( )
A. μ
B. x
C. 2σ
D.
n 2σ 4. 从均值为μ,方差为2σ的任意一个总体中抽取大小为n 的样本,则( )
A. 当n 充分大时,样本均值x 的分布近似服从正态分布
B. 只有当n<30时,样本均值x 的分布近似服从正态分布
C. 样本均值x 的分布与n 无关
D. 无论n 多大,样本均值x 的分布都是非正态分布
5. 假设总体服从均匀分布,从该总体中抽取容量为36的样本,则样本均值的抽样分布( )
A. 服从非正态分布
B. 近似正态分布
C. 服从均匀分布
D. 服从2
χ分布
6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样本均值的标准差( )
A. 保持不变
B. 增加
C.减小
D.无法确定
7. 某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。

由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( )
A. 正态分布,均值为250元,标准差为40元
B. 正态分布,均值为2500元,标准差为40元
C.右偏,均值为2500元,标准差为400元
D. 正态分布,均值为2500元,标准差为400元
8. 在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取81名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是( )
A. 正态分布,均值为12分钟,标准差为0.33分钟
B. 正态分布,均值为12分钟,标准差为3分钟
C. 左偏分布,均值为12分钟,标准差为3分钟
D. 左偏分布,均值为12分钟,标准差为0.33分钟
9. 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时,如果从中随机抽取30只灯泡进行检测,则样本均值()
A. 抽样分布的标准差为4小时
B. 抽样分布近似等同于总体分布
C. 抽样分布的中位数为64小时
D. 抽样分布近似服从正态分布,均值为60小时
10. 假设总体比例为0.64,从该总体中抽取容量为100的样本,则样本比例的标准差为()
A. 0.01
B. 0.048
C. 0.06
D.0.55
抽样分布自测答案。

相关文档
最新文档