高中物理奥林匹克竞赛专题--5.刚体力学基础习题(有答案)

合集下载

《刚体力学基础习题》课件

《刚体力学基础习题》课件

03 刚体的转动惯量
CHAPTER
转动惯量的定义与计算
转动惯量的定义
转动惯量是描述刚体转动惯性大小的物理量,其大小与刚体的质量分布和转轴的 位置有关。
转动惯量的计算
对于给定的刚体,可以通过积分计算其转动惯量,对于规则刚体,也可以通过公 式直接计算。
刚体的动量矩
动量矩的定义
动量矩是描述刚体转动动量的物理量 ,其大小等于刚体的动量与转动轴到 质心距离的乘积。
转动惯量与动量矩习题解析
转动惯量
01
描述物体转动惯性大小的物理量,与物体的质量分布和旋转轴
的位置有关。
动量矩
02
描述物体转动动量大小的物理量,等于物体质量与速度矢量的
乘积。
动量矩守恒
03
在没有外力矩作用的情况下,物体的动量矩保持不变。
谢谢
THANKS
04 刚体的动力学应用
CHAPTER
刚体的平动与转动
刚体的平动
刚体在空间中沿某一确定直线作等距离的移动,这种运动称为刚体的平动。
刚体的转动
刚体绕某一定点转动,这种运动称为刚体的转动。
刚体的定点运动
01
刚体的定点运动是指刚体绕通过 某一定点的转轴转动,其上任意 一点都绕该转轴作圆周运动。
02
刚体的定点运动可以分为定轴转 动、定平面转动和定点转动三种 类型。
转动动力学方程
T=Iβ(其中T为扭矩,I为转动惯量,β为角加速度)
复合运动动力学方程
需要将平动和转动动力学方程联立求解。
02 刚体转动的基本定理
CHAPTER
角动量定理
总结词
描述刚体转动时,力矩与角动量变化 量之间的关系。
详细描述

高中物理奥林匹克竞赛专题--刚体角动量 角动量守恒定律以及进动(29张ppt)

高中物理奥林匹克竞赛专题--刚体角动量 角动量守恒定律以及进动(29张ppt)

例2 A、B两圆盘绕各自的中心轴转动,角速度分别为
:A=50rad.s-1, B=200rad.s-1。已知A 圆盘半径
RA=0.2m, 质量mA=2kg, B 圆盘的半径RB=0.1m,
质量mB=4kg. 试求两圆盘对心衔接后的角速度 .
解:以两圆盘为系统,尽管在衔接过 程中有重力、轴对圆盘支持力及轴向
u=50m/s远大于飞船的速率v(= r) ,所以此 角动量近似地等于dm ru。在整个喷气过程
中喷出废气的总的角动量Lg应为
Lg= 0 mdm rumru
定轴转动刚体的角动量守恒定律
当宇宙飞船停止旋转时,其角动量为零。系统这时 的总角动量L1就是全部排出的废气的总角动量,即 为
L1Lg=mru
刚体角动量和角动量守恒定律
1. 定轴转动刚体的角动量定理
刚体定轴转动定理:
Mz
d J
dt
由几个物体组成的系统,如果它们对同一给定
轴的角动量分别为 、J11 、…J2,2
则该系统对该轴的角动量为:
Lz Jii
i1,2,
i
对于该系统还有 M Zdd LtZd dt i Jii
定轴转动刚体的角动量定理
在外力矩作用下,从 t0 t ,
E1 2JA2 A1 2JBB 21 2JAJB2
1.3 2140J
定轴转动刚体的角动量守恒定律
例题4-13 恒星晚期在一定条件下,会发生超新星 爆发,这时星体中有大量物质喷入星际空间,同时 星的内核却向内坍缩,成为体积很小的中子星。中 子星是一种异常致密的星体,一汤匙中子星物体就 有几亿吨质量!设某恒星绕自转轴每45天转一周, 它 的 内 核 半 径 R0 约 为 2107m , 坍 缩 成 半 径 R 仅 为 6103m的中子星。试求中子星的角速度。坍缩前后 的星体内核均看作是匀质圆球。

第五章刚体力学参考答案

第五章刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8m图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。

设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0=Rmv-J ω 可得结论。

刚体力学基础-习题-解答

刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。

此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2。

2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。

设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。

3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ=__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。

5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。

如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。

二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。

高中物理奥林匹克竞赛——第5章-刚体的转动

高中物理奥林匹克竞赛——第5章-刚体的转动

下垂。忽略轴处摩擦,求物体m由静止下落h高度时的速度和此时
滑轮的角速度。
解:图中拉力T1和T2的大小相等,以T表示。 对定滑轮M,由转动定律,对于轴O,有
RT J 1 MR2
2
RO
对物体m,由牛顿第二定律,沿y方向,有
M
T1
mg T ma
滑轮和物体的运动学关系为
T2 a mg
a R
h
以上三式联立,可得物体下落的加速度为
角加速度——刚体上任一质元圆周运动的角加速度。
d ——角位移
dt
d
dt
d 2
dt 2
角量与线量的关系:
z
Ori
rj
mi
m j
v r
at r, an r 2
E
§5-1 刚体的运动
例题 一飞轮在时间t内转过角度=at+bt3-ct4,式中a、b、c 都是常量。求它的角加速度。
解:飞轮上某点角位置可用表示为 =at+bt3-ct4将此式 对t求导数,即得飞轮角速度的表达式为
F
dr
r
d O
力矩的功本质也是力对位移的
累积。表现为力矩对角位移的累积。
A Md 0
Ek
i
1 2
mi vi2
i
1 2
mi
ri
2
1
2
i
mi ri 2
2
1 2
I 2
Ek
1 2
I 2
转动动能是指刚体上各质点动能的总和。
E
§5-5 转动中的功和能
2.刚体定轴转动的动能定理
对任意质点系已有 Aex Ain Ek
解:(1)对过质心的轴

高中物理奥林匹克竞赛专题--刚体-习题课(共12张PPT)

高中物理奥林匹克竞赛专题--刚体-习题课(共12张PPT)

解:
设碰后棒开始转动的角速度为 , 滑块m2可视为质点, 碰撞瞬时忽略摩擦阻 力矩, 则m1、m2系统对o轴的角动量守恒, 取逆时针转动的方向为正方向, 由角动量 守恒定律, 有 碰后棒在转动过程中受到的摩擦阻力矩为
o
m1
m v1 2 v2
l
1 2 m2 v1l m2 v 2 l m1l 3
使 L 方向改变,而大小不变.
M L
自转轴将在水平面内逆时针方向(俯视)回转
质点力学、刚体力学有关公式对照表
质点的运动 速度 加速度 质量 刚体的定轴转动 角速度
d r dt
2
dr v dt dv a dt
角加速度 转动惯量

ddt
d dt

d 2 dt 2
m 力 F 运动定律 F ma 动量 p mv 角动量 L r p
动量定理
力矩
转动定律 动量 角动量
M r F
J r 2 dm
M J p mi vi
L J
dmv F dt
2 mg R 2 2 M f dM f r dr mgR 2 0 R 3
(2)求圆盘停止转动的时间有两种解法
dr r
o
R
解1 用转动定律 2 1 2 d M f mgR J mR 3 2 dt
3R dt d 4g

t
0
3R 0 dt d 4g 0
l
A
m1 1 M f gxdx m1 gl 0 l 2
1 m2 v1l m2 v 2 l m1l 2 3

高中物理奥林匹克竞赛专题--刚体力学基础(共14张PPT)

高中物理奥林匹克竞赛专题--刚体力学基础(共14张PPT)

四、角动量问题举例
例 3-5 设一质量为m的滑块在水平面(Oxy)内以初速度 u0 u0i
从原点O出发沿x轴滑动.假设滑块与水平面的摩擦力 f f i
恒定不变,试求任意时刻滑块对原点O的角动量.

t=0时, u0 u0i 质点受力 f f i
滑块任意时刻t的速度
u
u0
ft m
Lrprm v
圆周运动的质点、定轴转动刚体的角动量
Lm2 rJ
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
2 角动量定理(对定轴转动刚体)
t
L
t0M dtL 0dLLL 0JJ0
3 角动量守恒定律 若系统所受合外力矩为零,则系统 角动量保持不变.
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
第三章 刚体力学基础
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
一、角动量
1.
质点的角动量
质量为 m的质点以速度
v
z
在 O 的空位间矢运为动,r,某质时点刻相相对对于原原点
L
点的角动量:
O
Lrprm v x r
解 碰撞过程质点和刚体的系统动量、
O
能量皆不守恒。但是系统的对O轴合外
力矩为零,角动量守恒。有
mlu0mluJ
M
J 1 Ml2
3
u l
解以上三式,得 3m2u0
v0
(3m M )l
l mv
上页 下页 返回 帮助
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
质点以角速度 作半径为 r的圆运动,

【预赛自招】2021年高中物理竞赛习题专题:刚体动力学(含答案)

【预赛自招】2021年高中物理竞赛习题专题:刚体动力学(含答案)

高中物理竞赛习题专题:刚体动力学1.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是()(A)角速度从小到大,角加速度不变(B)角速度从小到大,角加速度从小到大(C)角速度从小到大,角加速度从大到小(D)角速度不变,角加速度为零2.假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的()(A)角动量守恒,动能守恒(B)角动量守恒,机械能守恒(C)角动量不守恒,机械能守恒(D)角动量不守恒,动量也不守恒(E)角动量守恒,动量也守恒3.水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动惯量JAA′=1.93×10-47 kg·m2,对BB′轴转动惯量JBB′=1.14×10-47kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D和夹角θ.假设各原子都可当质点处理.4.用落体观察法测定飞轮的转动惯量,是将半径为R的飞轮支承在O点上,然后在绕过飞轮的绳子的一端挂一质量为m的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).5.质量为m1和m2的两物体A、B分别悬挂在图(a)所示的组合轮两端.设两轮的半径分别为R和r,两轮的转动惯量分别为J1和J2,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.6.如图所示,一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C为一常量.若转动部分对其轴的转动惯量为J,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?7.如图所示,一长为2l的细棒AB,其质量不计,它的两端牢固地联结着质量各为m的小球,棒的中点O焊接在竖直轴z上,并且棒与z轴夹角成α角.若棒在外力作用下绕z轴(正向为竖直向上)以角直速度ω=ω0(1-e-t)转动,其中ω0为常量.求(1)棒与两球构成的系统在时刻t对z轴的角动量;(2)在t=0时系统所受外力对z轴的合外力矩.8.在光滑的水平面上有一木杆,其质量m1=1.0kg,长l=40cm,可绕通过其中点并与之垂直的轴转动.一质量为m2=10g的子弹,以v=2.0×102m·s-1的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.9.半径分别为r1、r2的两个薄伞形轮,它们各自对通过盘心且垂直盘面转轴的转动惯量为J1和J2.开始时轮Ⅰ以角速度ω0转动,问与轮Ⅱ成正交啮合后(如图所示),两轮的角速度分别为多大?10.一质量为1.12kg,长为1.0m的均匀细棒,支点在棒的上端点,开始时棒自由悬挂.以100N的力打击它的下端点,打击时间为0.02s.(1)若打击前棒是静止的,求打击时其角动量的变化;(2)棒的最大偏转角.(3)打击瞬间O点杆收到的作用力。

高中物理奥林匹克竞赛专题——刚体

高中物理奥林匹克竞赛专题——刚体

(FrMz)
Md z

A


M d z
——力矩的功(单位:J)
0

2.力矩的功会产生什么样的效果呢?
0M zd 0Izd dd t 0Izd ddt
下面来看
1 2
I
z

Iz d
0
12Iz2 12Iz02
2 表示什么意思?
轮轴无摩擦
T2 = m2 ( g – a ) m2 g
轻绳不伸长
轮绳不打滑
如果考虑有转动摩擦力矩 Mr ,则 转动式为
(以后各例同) ( T2 – T1 ) R – Mr= I 再联立求解。
合外力矩 应由各分力矩进行合成 。 在定轴转动中,可先设一个正轴向(或绕向),若分力 矩与此向相同则为正,反之为复。
转轴通过端点与棒垂直
m
L
I=
1 3
mL2
匀质矩形薄板
转轴通过中 心垂直板面
I=
m 12
(a 2 + b 2 )
匀质细圆环
转轴通过中 心垂直环面
I=mR2
匀质细圆环
转轴沿着 环的直径
I=
m R2 2
匀质厚圆筒
转轴沿几何轴
I
=
m 2
(R12 +
R2 2
)
匀质圆柱体
转轴通过中心 垂直于几何轴
I=
m 4
R2+
T1 a
m1 g
mA、RA T2
m1
a m2 g
A T3 T1
mB、RB
m2
T3
B
T2
T 1m 1gm 1a m 2gT 2m 2a
T 3R AT 1R A1 2m AR 2 A A T 2R BT 3R B1 2m BR B 2 B

高中物理竞赛习题集05(刚体)

高中物理竞赛习题集05(刚体)

m1 g T1 m1a T2 m2 g cos m2 g sin m2 a 对于 m2 (T1 T2 )r I 对于滑轮 a r 1 2 由以上各式,并代入 I mr ,解得 2
对于 m1
其中心轴(竖直方向)转动,角速度 0 =21rad/s,圆环与桌面的碰撞为非弹性的(碰后不反 弹) ,且碰撞时间极短。小环与桌面间摩擦因数 =0.3,求小环停止时在桌面上所转过的圈 数。 解: f mg 作用在整个环上各点
第五章
2
刚体力学
rB 75cm ,B 以恒定角加速度
例题:如图 A 为从动轮,B 为主动轮, rA 30cm rad/s 启动, 无相对滑动, 问: 过多长时间 A 转速为 3000 转/分 解: B t vA vB B rB A vA / rA
代数,解得:t=40s 例题:椭圆细环的半长轴为 A,半短轴为 B,质量为 m(未必匀质),已知该环绕长轴的 转动惯量为 I A ,求该环绕短轴的转动惯量 I B 。 解 对椭圆建立图所示坐标轴,由正交轴定理
代入数据,解得:
a/R
a 728cm / s 2 T1 3.78 104 达因, T2 3.416 104 达因 例题:如图所示,一飞轮以 1 500 r min 的转速绕定轴做逆时针转动。制动后,飞轮
均匀地减速,经时间 t=50 s 停止转动。求: (1)角加速度 (2)从开始制动到静止,飞轮转过的转数 N (3)制动开始后 t=25 s 时飞轮的角速度
其中: M F 例题:m1=0.15kg m2=0.02kg m3=0.01kg。求加速度是多大,绳子拉力大小。 解:滑轮顺时针加速转动,具有一定的角加速度 ,受合力矩不为 0,则左边绳子拉力 小于右边绳子的拉力。

刚体习题及答案

刚体习题及答案
例1.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮 的质量为 M/4,均匀分布在其边缘上,绳子 A 端有一质量为 M的人抓住了绳端,而在绳的另 一端 B 系了一质量为 M/2 的重物,如图示。 A 设人从静止开始以相对绳匀速向上爬时,绳与 滑轮间无相对滑动,求 B 端重物上升的加速度? 解:受力分析如图示, 由题意 a人=aB=a
1 2 mvl mv l ml 3
③弹性碰撞,故动能也守恒,有:
1 1 1 1 mv 2 mv 2 ( ml 2 ) 2 2 2 2 3
④碰后杆上升过程,杆与地球系统的机械能守恒: 1 1 2 2 1 ( ml ) mgl (1 cos ) 2 3 2 3 arccos2 3 联立求解,得:
人: Mg T 2 Ma
1 1 物 : T1 - Mg = Ma 2 2
B

T2
o
T1
2 a g 7
A
Mg
B
a
轮: (T2 T1 ) R J
1 Mg 2
a R
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上 分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如 图所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的 长度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
r r
2.对薄平板刚体的正交轴定理 z J
yi xi x 典型应用:
z
mi ri

刚体力学基础自测题

刚体力学基础自测题

N
O
合力矩为
M T2 T1 R J
m1
m2
T2
滑轮的加速度方向和T2R一致,所以 T2比较大
T1
(C)右边大于左边
一木棒斜靠在墙上处于静止状态,试分析木棒受力 情况。
f2
• 分析解答:“隔离”木棒,以 木棒为研究对象,如图所示。 木棒受重力mg;地面对木棒竖 直向上的支持力N1;墙对木棒 水平向右的支持力N2;木棒B 端有向右运动趋势,B端受到地 面对它水平向左的静摩擦力f1; 木棒A端有向下运动趋势,A端 受到墙给它的竖直向上的静摩 擦力f2。
解:绕固定光滑轴自由转动说明合外力矩为0,角动量 守恒:JW 常数1 2 J Nhomakorabea ML 3
所以受热膨胀时L增长,J增加,W变小
二.填空题
(3)半径为r=1.5m的飞轮,初角速度ω0=10rad/s, 角加速度= -5rad/s2,若初始时刻角位移为零,则在 t= 时角位移再次为零,而此时边缘上点的线速 度 v= 。
A 端对墙的压力为N2=mgLtanθ/2
(2) 对本题来说,因为f2并不清楚,所以 无法由合力矩为0求出N2. 同样f2也不清楚,无法利用质心定理求出 N2.
G
8、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.

N2 N1 B
G
f1
图7
例如:一梯子斜靠在光滑的竖直墙上,下端放在粗糙的水 平地面上,如图2所示,试分析梯子的受力情况:
分析(1)地球上的物体总要受到地 球对它的竖直向下的重力G; (2)在重力作用下,梯子必和水平 面发生相互挤压,使地面发生形变, 从而对梯子产生一个垂直水平地面竖 f 直向上的弹力(即支持力)N1; (3)梯子与墙不仅接触而且有相互挤 压,所以有弹力N2产生,方向垂直于墙 而指向梯子。 (4)梯子与墙之间的接触面是光滑的,所 以无摩擦力;假设地面也是光滑的,则梯子 将沿墙向下滑动,所以梯子下端有相对向右 滑动的趋势,应受到向左的静摩擦力f。梯子 的受力示意图如图所示。

高二物理竞赛课件:刚体力学习题

高二物理竞赛课件:刚体力学习题

= + 人对地
人对盘
盘对地
人对地=
2
R
+
R/2
9
(I盘 I人 )o I盘 I人人对地
人对地=
2
R
+
o
[
1 2
mR2
m 10
(
1 2
R)2
]o
1 mR2
m ( R )2 (
2
)
2
10 2
R
R/2
解出:
o
2
21R
10
o
2
21R
(2) 欲使盘静止,可令
o
o
2
21R
0

21 2
R
o
R/2
B
oR
I o o
Io mR2
C
12
小球相对于环的速度为多少?
机械能守恒:
1 2
I o o 2
mgR
1 2
I
o
2
1 2
m
2
B
由相对运动,对小球有
o
A
oR
零势面
2 (R)2 B2
B
B表示小球在B点时相对于地面的
C
竖直分速度(即相对于环的速度)。
B
2 gR
Ioo2 R2
mR2 Io
13
2
6mo
l(3M 4m )
(2)杆在转动过程中显然机械能守恒:
1
1 [
Ml 2 m( 2l )2 ] 2 Mg
l
- mg 2l
23
3
23
Mg l cos - mg 2l cos
2
3

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)
延伸:物体系的角动量守恒
内容:若选一系统,此系统中,有质点(多个)和刚体,此系统对于某一转动轴的合力矩为零,则整个系统对该转动轴的角动量守恒。即 =恒量
例题分析
例1:一长为l,质量为M的杆,可绕支点O自由转动,另一质量为m,速度为v的子弹射入距支点为a的棒内。问子弹刚穿进棒内时,棒的角速度为多少?(设棒穿进棒的时间很短)
分析:
则a=5m/s2, =2.5mT=40N
练习:1—78答案加速度为5.79m/s2,绳子的张力分别为69.9N,和75.8N。
(4)定轴转动的功能原理
转动动能:定轴转动的刚体中,所有的质元作圆周运动的动能之和即刚体的转动动能,
力矩的功:力矩作用下,使刚体发生转动,转动过程中转动动能发生变化,则力矩对刚体做了功,即力矩的功。
定轴转动的动能定理:
合外力矩对刚体做的功等于刚体转动动能的增加量

例题分析:
例:一质量为M,半径为R的圆盘,盘上绕有绳子,一端挂一质量为m的物体。问物体由静止开始下落高度h时,其速度为多大呢?
又因
解得:
练习:匀质杆的质量为m,长为l,一端为光滑的支点,最初处于水平位置,释放后杆向下摆动,求杆在铅垂直位置时,其下端点的线速度v。( )
利用上述定理分析细圆环对任意切线的转动惯量:J=3mR2/2
※定轴转动定律
刚体在做定轴转动时,刚体的角加速度与刚体所受到的合外力距成正比,与刚体的转动惯量成反比。
即M=J (类比与牛二定律F=ma)
例题分析:
例2.质量为M=16kg的实心滑轮,半径R为0.15m。一根细绳绕在滑轮上,一端挂一质量为m=8kg的物体。求(1)静止开始1秒钟后,物体下降的距离。(2)绳子的张力。
分析:左右两部分对中心转轴的转动惯量是一样的,则只要算出其中一部分的转动惯量就可以了,则将左边部分分成n等份,每分的质量为m/2n,

高中物理奥林匹克竞赛专题---刚体习题(共47张PPT)

高中物理奥林匹克竞赛专题---刚体习题(共47张PPT)

0 .2

(T 2 T1 ) rdx J rd
0
0
mg x k x 2
0 .2
2
J
2
4
0
2
12 .6 故: v R 1 .26 m / s
4. 在光滑水平桌面上有个弹簧,弹簧一端固定, 另一端连接一个质量为M的滑块,如图。开始时, 滑块静止于A点,弹簧处于自然状态。现有一质 量为m的子弹以速度v射入滑块并与其一起运动 到B点,此时弹簧的长度伸长了l。求:滑块在 B点的速度大小。(19)
7、长为L的梯子斜靠在光滑的墙上高为h的地方, 梯子和地面间的静摩擦系数为m,若梯子的重量 忽略,试问人爬到离地面多高的地方,梯子就会
滑倒下来?
L
h
R
R
解:当人爬到离地面x高度处梯子刚要滑下,此
时梯子与地面间为最大静摩擦,仍处于平衡状态
(不稳定的) .
N1-f =0, N2-P =0
N1h-Px ctg=0 f=N2
(17)
能量守恒: mgh 1/ 2kh2 1/ 2mv 2 1/ 2J 2
J 1/ 2MR 2
v R
解得: v 2mgh kh2 4 1.25m / s m 1/ 2M 10
解法二:
角动量定理可得:
Mdt Jd
M dx Jd r
M d(J)
dt
M0时
i
mivi

恒量
J =恒量
i
力的功
B
WAB
Fdr
A
力矩的功
WAB
BMd
A
动能
Ek

1 mv2 2

高中物理竞赛辅导习题力学部分

高中物理竞赛辅导习题力学部分

高中物理竞赛辅导习题力学部分力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。

一、力学中常见的三种力1.重力、重心①重心的定义:++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。

②重心与质心不一定重合。

如很长的、竖直放置的杆,重心和质心不重合。

如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。

以重心为转轴,两边的重力力矩平衡(不是重力相等):(0.5-x )2G =(x +0.25)2G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5?2G +(1+0.5)2G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m.2.巴普斯定理:①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积乘平面薄板重心通过的路程。

如质量分布均匀的半圆盘的质心离圆心的距离为x ,绕直径旋转一周,2321234R x R πππ?=,得π34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度乘曲线的重心通过路程。

如质量分布均匀的半圆形金属丝的质心离圆心的距离为x ,绕直径旋转一周,R x R πππ?=242,得πR x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。

(2)如图b 所示是一个均匀三角形割去一个小三角形AB 'C ',而B 'C '//BC ,且?AB 'C '的面积为原三角形面积的4 1,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。

[答案:(1) 离圆心的距离6R ;(2)离底边中点的距离92L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x .有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6R x ==5cm. 填补法:在没挖去的圆上填上一块受”重力”方向向上的圆,相当于挖去部分的重力被抵消,其重心与挖去后的重心相同,同理可得6R x =. 能量守恒法:原圆板的重力势能等于留下部分的重力势能和挖去部分的重力势能之和,可得6R x =. (2) ?AB 'C '的面积为原三角形面积的1/4,质量为原三角形质量的41,中线长度应为原三角形中线长度的21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2m r ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

解:受力分析如图ma T mg 222=- (1)ma mg T =-1 (2)βJ r T T =-)(12 (3)βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

(1) 设杆的线lm =λ,在杆上取一小质元dx dm λ=gdx dmg df μλμ==gxdx dM μλ= 考虑对称mgl gxdx M l μμλ⎰==20412 (2) 根据转动定律d M J Jdt ωβ== ⎰⎰=-tw Jd Mdt 000ω 0212141ωμml mglt -=- 所以 gl t μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

dtdv m ma T mg ==- βJ TR =βR dtdv = 整理 mg dtdv M m =+)21( gdt M m m dv t v ⎰⎰+=0021 2M m mgt v +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。

已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?解:选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重物上升的速度,系统对轴的角动量 MuR MvR R M R v u M vR M L -=+--=23)4()(42ω 根据角动量定理 dtdL M =)23(43MuR MvR dt d MgR -= 0=dt du MRa dt dv MR MgR 232343== 所以 2g a =5-5. 计算质量为m 半径为R 的均质球体绕其轴线的转动惯量。

证明:设球的半径为R ,总重量为m ,体密度343Rm πρ=, 将球体划分为许多厚度为dZ 的圆盘,则盘的体积为 dZ Z R 222)(-π22252182()2155R R J R Z dZ R mR ππρρ-=-==⎰5-6. 一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:机械能守恒22212121kx J mg =+ω 根据几何关系 22215.1)5.0(+=+x 128.3-⋅=s rad ω5-7. 如图所示,一质量为m 、半径为R 的圆盘,可绕O 轴在铅直面内转动。

若盘自静止下落,略去轴承的摩擦,求:(1)盘到虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。

解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒221ωJ mgR = 2221mR mR J +=R g 34=ω 34Rg R v c ==ω 2A v R ω== 273y F m g m R mg ω=+= 方向向上 5-8. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 31和l 32.轻杆原来静止在竖直位置。

今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。

解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω lv 230=ω 5-9. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动。

开始时,圆盘静止,一质量为m 的子弹以水平速度v 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获得的角速度;(2)经过多少时间后,圆盘停止转动。

(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩。

) 解(1)角动量守恒 ωω2221mR MR mvR += 2(2)mv m M Rω=+ (2)2022π3R M M dM dmgr gr rdr MgR R μμμπ====⎰⎰⎰ 2221()032MgR t MR mR μω⋅∆=+-,()224M m t R Mgωμ+∴∆= 由(1)已得:()22m M m Rω=+v ,代入即得32m t Mg μ∆=v5-10. 有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动。

另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。

已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示。

求碰撞后从细棒开始转动到停止转动的过程所需的时间。

(已知棒绕O 点的转动惯量2131l m J =) 碰撞时角动量守恒 22112213m v l m l m v l ω=- lm v v m 1212)(3+=ω 细棒运动起来所受到的摩擦力矩gl m gxdx l m M l 10121μμ==⎰ dtd J M ω=- ⎰-=t gl m d l m dt 01212131μω gm v v m g l t 1212)(232μμω+==5-11. 如图所示,滑轮转动惯量为2m kg 01.0⋅,半径为cm 7;物体的质量为kg 5,用一细绳与劲度系数N/m 200=k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。

求:(1)当绳拉直、弹簧无伸长时使物体由静止而下落的最大距离。

(2)物体的速度达最大值时的位置及最大速率。

(1)机械能守恒。

设下落最大距离为hmgh kh =221m kmg h 49.02== (2)mgx J mv kx =++222212121ω 12222mgx kx v J m r ⎡⎤-⎢⎥=⎢⎥+⎢⎥⎣⎦若速度达最大值,0=dxdv )(245.0m kmg x ==1122222222259.80.2452000.245 1.31/0.015mgx kx v m s J m -⎡⎤⎡⎤⎢⎥-⨯⨯⨯-⨯⎢⎥===⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦5-12. 设电风扇的功率恒定不变为P ,叶片受到的空气阻力矩与叶片旋转的角速度ω成正比,比例系数的k ,并已知叶片转子的总转动惯量为J 。

(1)原来静止的电扇通电后t 秒时刻的角速度;(2)电扇稳定转动时的转速为多大?(3)电扇以稳定转速旋转时,断开电源后风叶还能继续转多少角度?解:(1)通电时根据转动定律有 dt d JM M r ω=- ωP M = ωk M r =代入两边积分 ωωωωd k P J dt t ⎰⎰-=020 )1(2t J ke k P --=ω(2)电扇稳定转动时的转速k P m =ω (3) θωωωd d J k =- ⎰⎰=-00m d d Jk ωθωθ kP k J=θ 5-13. 如图所示,物体A 放在粗糙的水平面上,与水平桌面之间的摩擦系数为μ,细绳的一端系住物体A ,另一端缠绕在半径为R 的圆柱形转轮B 上,物体与转轮的质量相同。

开始时,物体与转轮皆静止,细绳松弛,若转轮以0ω绕其转轴转动。

试问:细绳刚绷紧的瞬时,物体A 的速度多大?物体A 运动后,细绳的张力多大?解:细绳刚绷紧时系统机械能守恒2220212121mv J J +=ωω ωR v = 013v R ω= ma mg T =-μβJ TR =-3mg T μ=βR a =5-14. 质量为m 的小孩站在半径为R 、转动惯量为J 的可以自由转动的水平平台边缘上(平台可以无摩擦地绕通过中心的竖直轴转动)。

平台和小孩开始时均静止。

当小孩突然一相对地面为v 的速率沿台边缘逆时针走动时,此平台相对地面旋转的角速度ω为多少?解:此过程角动量守恒 ωJ m r v -=0JmRv =ω 5-15. 以速度0v 作匀速运动的汽车上,有一质量为m (m 较小),边长为l 的立方形货物箱,如图所示。

当汽车遇到前方障碍物急刹车停止时,货物箱绕其底面A 边翻转。

试求:(1)汽车刹车停止瞬时,货物箱翻转的角速度及角加速度;(2)此时,货物箱A 边所受的支反力。

解:(1)角动量守恒 ω20322ml l mv = l v 430=ω 根据转动定律 β2322ml l mg = lg 43=β (2)0ct 0cn cx x 45cos ma 45cos ma ma N -==思考题5-1. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量1m 和2m 的物体 (1m <2m ),如图所示.绳与轮之间无相对滑动,某时刻滑轮沿逆时针方向转动,则绳的张力多大?a m T g m 111=- (1)a m g m T 222=- (2) 插入图5-29βJ r T T =-)(21 (3)βr a = (4)联立方程可得 1T 、2T 。

12T T5-2. 一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化?答:增大5-3. 个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:(A )机械能守恒,角动量守恒;(B )机械能守恒,角动量不守恒,(C )机械能不守恒,角动量守恒;(D )机械能不守恒,角动量不守恒. 答:(C )5-4. 在边长为a 的六边形顶点上,分别固定有质量都是m 的6个质点,如图所示。

试求此系统绕下列转轴的转动惯量:(1)设转轴Ⅰ、Ⅱ在质点所在的平面内,如图a 所示;(2)设转轴Ⅲ垂直于质点所在的平面,如图b 所示。

相关文档
最新文档