全国硕士研究生入学统一考试数学试题及答案
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2020年全国硕士研究生入学统一考试数学二试题完整版附答案分析及详解
x (0, 0)
xy (0, 0)
(x, y)→( 0,0 )
y→0 x→0
数是
A.4 B.3 C.2 D.1
答案:B
6. 设函数 f (x) 在区间 − 2,2上可导,且 f (x) f (x) 0 ,则()
A f (−2) 1 f (−1)
B f (0) e C f (1) e2 D f (2) e3
3.
1
0
arcsin
x (1−xx)源自dx=π2
A.
4
π2
B.
8
C. π
D. π
4
8
答案: A
解析: 1 arcsin xdx = arcsin2
0 x(1− x)
x
1 0
2 =
4
.
4. f ( x) = x2 ln (1− x), n 3 时, f (n) (0) =
A. − n! n−2
答案: A
+
y(x)dx =
0
解析:由
y + 2y + y = 0
y
(0)
=0,y
(
0)
y))dy
dz
(0, )
=
(
−1)dx − dy
12.斜边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度 为 g,水密度为 ,则该平板一侧所受的水压力为
答案: 1 ega3 3
解析: a g(a − y)[ y − (− y)]dy = 1 ga3
0
3
13.设 y = y ( x) 满足 y + 2y + y = 0 ,且 y (0) =0,y(0) =1,则
2020年考研数学三真题及解析
2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2020年考研数学二真题及解析
2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2021年考研数学一真题及参考答案
全国硕士研究生入学统一考试备考资料2021年全国硕士研究生入学考试数学(一)试题及参考答案一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1、函数00,1,1)(=≠⎪⎩⎪⎨⎧-=x x xe xf x ,在0=x 处()(A)连续且取极大值;(B)连续且取极小值;(C)可导且导数等于零;(D)可导且导数不为零;2、设函数),(y x f 可微,且,ln 2),(,)1(),1(222x x x x f x x e x f x=+=+则)1,1(df ()(A)dy dx +;(B)dy dx -;(C)dy ;(D)dy -;3、设函数01sin )(2=+=x x x x f 在处的3次泰勒多项式为32cx bx ax ++,则()(A)67,0,1-===c b a ;(B)67,0,1===c b a ;(C)67,-1,1--===c b a ;(D)67,-1,1-===c b a ;4、设函数)(x f 在区间[0,1]上连续,则⎰1)(dx x f =()(A)n n k f nk n 21212(lim1∑=∞→-;(B)nn k f nk n 1)212(lim1∑=∞→-;(C)nn k f nk n 1)21(lim21∑=∞→-;(D)nn k f nk n 2)2(lim21∑=∞→;5、二次型2132********)()()(),,(x x x x x x x x x f --+++=的正惯性指数与负惯性指数依次为()(A)2,0;(B)1,1;(C)2,1;(D)1,2;6、已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=213,121,101321ααα,已知2211331221,1--,-ββαββαβαβl l k ===,若321,,βββ两两相交,则21,l l 依次为()(A)21,25;(B)21,25-;(C)21,-25;(D)21,-25-;7、设A ,B 为n 阶实矩阵,下列不成立的是()(A))(2A O O Ar T A r A =⎪⎪⎭⎫ ⎝⎛(B))(2A O AB A r T A r =⎪⎪⎭⎫⎝⎛(C))(2A O BA A r T A r A =⎪⎪⎭⎫⎝⎛(D))(2A BAO Ar T A r =⎪⎪⎭⎫⎝⎛8、设A ,B 为随机事件,且1)(0<<B P ,下列命题中不成立的是()(A))()(),()(A P B A P A P B A P ==-则若(B))()(),()(--->>A P B A P A P B A P 则若(C))()(),()(A P B A P B A P B A P >>-则若(D))()(),()(B P A P B A A P B A A P >⋃>⋃-则若9、设),,(),,,(),,,(2211n n Y X Y X Y X 为来自总体);,;,(222121ρσσu u N 的简单随机样本,令--∧=-=--===-=∑∑Y X Y n Y X n X u u ni i n i i θθ,1,1,1121,则()(A)nD 2221)(σσθθθ+=∧∧的无偏估计,是(B)nD 2221)(σσθθθ+=∧∧的无偏估计,不是(C)nD 2122212-)(σρσσσθθθ+=∧∧的无偏估计,是(D)nD 2122212-)(σρσσσθθθ+=∧∧的无偏估计,不是10、设1621,X X X 是来自总体)4,(μN 的简单随机样本,考虑假设检验问题,)(,10:,10:10x H H Φ>≤μμ表示标准正态分布函数,若该检验问题的拒绝域为⎭⎬⎫⎩⎨⎧≥=-11X W ,其中∑=-=161161i i X X ,其中11.5=μ,该检验犯第二类错误的概率为()(A)(0.5)-1Φ(B)(1)-1Φ(C)(1.5)-1Φ(D)(2)-1Φ二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11、⎰+∞++0222x x dx=。
1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准
1990 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题:(本题满分15分,每小题3分)(1)过点)1,2,1(-M 且与直线⎪⎩⎪⎨⎧-=-=+-=1432t z t y t x 垂直的平面方程是 x -3y -z +4=0 .(2)设a 为非零常数,则a xx e a x a x 2)(lim =-+∞→.(3)设函数11,0,1)(>≤⎩⎨⎧=x x x f , 则)]([x f f = ___1___. (4)积分dy e dx xy ⎰⎰-2022的值等于4(1)/2e --.(5)已知向量组 1α=(1,2,3,4),2α=(2,3,4,5),3α=(3,4,5,6),4α=(4,5,6,7),则该向量组的秩是2二、选择题:(本题满分15分,每小题3分) (1)设()f x 是连续函数,且⎰-=x e xdt t f x F )()(则)(x F '等于(A)(A ))()(x f e f e x x ----(B) )()(x f e f e x x +---(C))()(x f e f e x x ---(D) )()(x f e f e x x +--(2)已知函数()f x 具有任意阶导数,且[]2)()(x f x f =', 则当n 为大于2的正整数时,()f x 的n 阶导数)()(x fn 是(A)(A) 1)]([!+n x f n (B) 1)]([+n x f n (C) nx f 2)]([ (D) nx f n 2)]([!(3)设α为常数,则级数]1)sin([12nn na n -∑∞=(C )(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与α的取值有关.(4)已知()f x 在0x =的某个邻域内连续 ,且(0)0f =,2cos 1)(lim0=-→xx f x 则在点0x =处()f x (D)(A)不可导(B)可导,且0)0(≠'f (C)取得极大值(D)取得极小值(5)已知1β和2β是非齐次线性方程组AX = b 的两个不同的解,21,αα是对应导出组AX = 0基础解系,21,k k 为任意常数,则方程组AX = b 的通解(一般解)必是(B)(A) 2)(2121211ββααα-+++k k (B) 2)(2121211ββααα++-+k k (C) 2)(2121211ββββα-+++k k (D) 2)(2121211ββββα++-+k k 三、(本题满分15分,每小题5分)(1)求dx x x ⎰-+102)2()1ln(.解:11200ln(1)1ln(1)(2)2x dx x d x x +=+--⎛⎛⎜⎜⎠⎠110011ln(1)2(1)(2)x dx x x x =+--+-⎛⎜⎠……2分 101111ln 2()ln 232(1)3dx x x =-+=-+⎰.……5分 (2)设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的二阶偏导数,求yx z∂∂∂2.解:2cos z f fy x x u v ∂∂∂=+∂∂∂.……2分 2222222(2sin cos )sin cos cos z f f f fx y x y x x x x y u u v v v∂∂∂∂∂=-+-++∂∂∂∂∂∂∂. ……5分 (3) 求微分方程x e y y y 244-=+'+''的通解(一般解).解:特征方程为2440r r ++=的根为1,22r =-.对应齐次方程的通解为212()x Y C C x e -=+,其中12,C C 为任意常数. ……2分 设原方程的特解为*2()x y x Ax e 2-=,代入原方程得12A =.……4分 因此,原方程的通解为2*2212()()2xx x y x Y y C C x ee --=+=++. ……5分四、(本题满分6分) 求幂级数∑∞=+0)12(n nxn 的收敛域, 并求其和函数.解:因为123limlim 121n n n n a n a n ρ+→∞→∞+===+,所以11R ρ==.显然幂级数(21)nn n x∞=+∑在1x =±时发散,故此幂级数的收敛域为(1,1)-.……2分又0()(21)2nnnn n n S x n x nx x ∞∞∞====+=+∑∑∑012()1n n x x x∞='=+-∑……5分 2221111(1)1(1)x xx x x x +=+=-<<---.……6分五、(本题满分8分) 求曲面积分I=⎰⎰+sdxdy yzdzdx .2其中S 是球面4222=++z y x外侧在0≥z 的部分解:令2214x y S z ⎧+≤=⎨=⎩,其法向量与z 轴的负向相同. 设1S S 和所围成的区域为Ω,则由奥-高公式有12S I yzdzdx dxdy zdxdydz Ω++=⎰⎰⎰⎰⎰. ……2分而221140,228S S x y yzdzdx dxdy dxdy π+≤==-=-⎰⎰⎰⎰⎰⎰.……4分2222cos sin 4zdxdydz d d r r dr ππθϕϕϕπΩ=⋅=⎰⎰⎰⎰⎰⎰.……7分 所以12I π=.……8分六、(本题满分8分)设不恒为常数的函数)(x f 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =. 证明:在(,)a b 内至少存在一点ξ, 使0)(>'ξf .证:因()()()f a f b f x =且不恒为常数,故至少存在一点(,)c a b ∈,使得()()()f c f a f b ≠=.于是()()()()f c f a f c f a ><或.……2分现设()()f c f a >,则在[,]a c 上因()f x 满足拉格朗日定理的条件,故至少存在一点(,)(,)a c a b ξ∈⊂,使得1()[()()]0f f c f a c a ξ'=->-. ……6分对于()()f c f a <情形,类似地可证得此结果.……7分七、(本题满分8分) 设四阶矩阵=B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000110001100011,=C ⎪⎪⎪⎪⎪⎭⎫⎝⎛2000120031204312且矩阵A 满足关系式E C B C E A =''--)(1, 其中E 为四阶单位矩阵, 1-C 表示C 的逆矩阵,C '表示C 的转置矩阵, 将上述关系化简并求矩阵A .解:因11()[()]()A E C B C A C E C B A C B --''''-=-=-,故()A C B E '-=……2分因此 1[()]A C B -'=-11000210032104321-⎛⎫⎪⎪= ⎪⎪⎝⎭……4分1000210012100121⎛⎫⎪-⎪= ⎪-⎪-⎝⎭……6分八、(本题满分8分)求一个正交变换化二次型32312123222184444x x x x x x x x x f -+-++=成标准形.解:二次型的矩阵122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ……1分由2122||244(9)244λλλλλλ---=---=----A E ,A 的特征值为1230,9λλλ===.……3分对于120λλ==,122122244000244000λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A E ,从而可取特征向量1011P ⎛⎫ ⎪= ⎪ ⎪⎝⎭及与1P 正交的另一特征向量2411P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. ……5分 对于39λ=,822245254099245000λ----⎛⎫⎛⎫ ⎪ ⎪-=---→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A E ,取特征向量3122P ⎛⎫⎪=- ⎪ ⎪⎝⎭. ……6分将上述相互正交的特征向量单位化,得1231032,,323ξξξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===- ⎪ ⎪⎪ ⎪⎝⎭, ……7分故在正交变换1122331032323x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎭下,二次型239f y =. ……8分九、(本题满分8分)质点P 沿着以A,B 为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力→F 作用 (见图),→F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且于y 轴正向的夹角小于2π.求变力→F 对质点P 所作的功.解:按题意,变力y x =-+F i j .……3分圆弧AB的参数方程是23443x y θππθθ⎧=⎪-≤≤⎨=⎪⎩.……5分 变力F 所作的功ABW ydx xdy =-+⎰434)sin )cos ]d ππθθθθθ-=⎰()21π=-……8分十、填空题:(本题满分6分,每小题2分)(1)已知随机变量X 的概率密度函数f (x )=x e -21, +∞<<∞-x ,则X 的概率分布函数()F x =1212010xx e x ex -⎧<⎨-≥⎩.(2)设随机事件A ,B 及其事件A B 的概率分别为6.0,3.0,4.0和,若_B 表示B 的对立事件,那么积事件B A 的概率3.0)B A (P =(3)已知离散型随机变量X 服从参数为2的泊松分布,则随机变量32Z X =-的数学期望()E Z = 4 .十一、(本题满分6分)设二维变量(X ,Y )在区域 x y x D <<<,10:内服从均匀分布,求关于X 的边缘概率密度函数及随机变量 Z =2X +1的方差D (Z ).解:(,)X Y 的联合概率密度函数是1,01,||,(,)0,x y x f x y <<<⎧=⎨⎩其它,因此关于X 的边缘概率密度函数是2,01()(,)0,X x x f x f x y dy +∞-∞<<⎧==⎨⎩⎰其它. ……2分22D(Z)(21)4[()(())]D X E X E X =+=-()22X X 4()()x f x dx xf x dx +∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰……4分()21132001424224299x dx x dx ⎡⎤⎛⎫=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰.……6分数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题满分15分,每小题5分)【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1)【 同数学一 第四、(1)题 】(2)求微分方程0)ln (ln =-+dx x y xdy x 满足条件1==ex y的特解.解:将原方程化为11,(1)ln y y x x x x'+=≠.……1分 由公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰……3分 得2ln ln 111ln ln 2dx dx x x x xy e e dx C x C x x -⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭. ……4分 又由|1x e y ==,可解出12C =,所以方程的特解是11ln 2ln y x x ⎛⎫=+ ⎪⎝⎭.……6分(3)过点(1,0)P 作抛物线2-=x y 的切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积.解:设所作切线与抛物线相切于点0(x .因00|x x y =='==,故此切线的方程为)y x x =-.……1分又因该切线过点(1,0)P ,所以有03x =. 从而切线的方程为1(1)2y x =-. ……3分 因此,所求旋转体的体积332121(1)(2)4V x dx x dxππ=---⎰⎰……5分 6π=.……6分五、(本题满分8分)【 同数学一第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分8分)【 同数学一 第九题】数 学(试卷三)一、填空题:(本题满分15分,每小题3分)(1)曲线⎩⎨⎧==ty t x 33sin cos 上对应于6π=t 点处的法线方程是13-=x y .(2)设x e y x tg 1sin 1⋅=,则='y 1tan 221111(sec sin cos )x e x x x x-⋅+.(3)=-⎰11dx x x15/4(4)下列两个积分的大小关系是:dx e dxe x x ⎰⎰----->121233.(5)【 同数学一 第一、(3) 题 】二、选择题:(本题满分15分,每小题3分)(1)已知0)1(lim 2=--+∞→b ax x x x ,其中,a b 常数,则(C)(A)1,1a b ==(B)1,1a b =-=(C)1,1a b ==-(D)1,1a b =-=-(2)设函数)(x f 在),(+∞-∞上连续,则⎰])([dx x f d 等于(B)(A))(x f (B)dxx f )((C)cx f +)((D)dxx f )('(3)【 同数学一 第二、(3) 题 】(4)【 同数学一 第二、(4) 题 】(5)设⎪⎩⎪⎨⎧=≠=0),0(0,)()(x f x x x f x F ,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 (B )(A)连续点 (B) 第一类间断点 (C) 第二类间断点(D)连续点或间断点不能由此确定三、(本题满分15分,每小题3分) (1)已知9)(lim =-+∞→xx ax a x ,求常数a . 解:因2(1)lim()lim (1)x x a x x xa x a x e ax a x→∞→∞++==--……3分 故29a e =,ln 3a =.……5分(2)求由2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .解:对方程两边求微分2()ln()()dx dydy dx dx dy x y x y x y--=--+--, ……3分故2ln(),3ln()2x y xdy dx dy dx x y x y +-==+--或.……5分 (3)求曲线)0(112>+=x xy 的拐点. 解:22223231,2(1)(1)x x y y x x -'''=-=++. ……2分 令0y ''=,解得x =.因在x =的左右邻近"y 变号,故x =是拐点的横坐标.所以曲线的拐点是3)4.……5分 (4)计算 ⎰-dx x x2)1(ln . 解:原式1ln 1xd x =-⎰ln 11(1)x dxxx x =---⎰……2分 10ln 11()11x dxx x x =-+--⎰……4分 ln |1|ln 1x x C x x-=++-.……5分 (5)见【 数学二 第四(2)题 】四、(本题满分9分)在椭圆12222=+by a x 的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小(其中0,0a b >>).解:设00(,)P x y 为所求之点,则此点处的切线方程为00221xx yya b+=. ……2分令0x =,得该切线在y 轴上的截距20b y .令0y =,得该切线在x 轴上的截距2a x . ……4分于是所围图形的面积为2200011,(0,)24a b S ab x a x y π=⋅-∈.……6分 求S的最小值时,不妨设00A x y ==22b A a '=. ……7分令0A '=,解得在(0,)a 内唯一驻点0x =……8分由A '在0x =右侧为负,得知0x =A 的极大点,即S 的极小点.所以0x =S 为最小,此时0y =,即为所求之点.……9分 五、(本题满分9分)证明:当0x >时,有不等式 21π>+x arctgx . 解:考虑函数1()arctan ,02f x x x x π=+->.……2分 有2211()0,01f x x x x '=-<>+. ……4分 所以()f x 在(0,)+∞上是单调减少的.……5分 又lim ()0x f x →+∞=……7分知当10,()arctan 02x f x x x π>=+->时. ……8分 即1arctan 2x x π+>. ……9分六、(本题满分9分)设dt t t x f x⎰+=11ln )(, 其中0,x >求 1()().f x f x+解:111ln ()1xt f dt xt =+⎰. 令1t y =,得11ln ()(1)x y f dy x y y =+⎰. ……3分 于是111ln ln ()()(1)(1)x x t t f x f dt dt x t t t +=+++⎰⎰111()ln (1)(1)x tdtt t t =+++⎰……5分 1111()ln 11x tdt t t t =+-++⎰……7分 21ln 1ln 2x t dt x t ==⎰. ……9分七、(本题满分9分)【 同数学二 第四、(3)题 】 八、(本题满分9分)求微分方程ax e y y y =+'+''44之通解,其中a 为实数.解:特征方程为2440r r ++=,特征根为1,22r =-.对应齐次方程的通解为212()x y C C x e -=+ .……2分 当2a ≠-时,设非齐次方程的特解为*()ax y x Ae =, ……3分代入原方程,可得21(2)A a =+,*21()(2)axy x e a =+. 当2a =-时,设非齐次方程的特解为*21()xy x A x e 2-=.代入原方程,得12A =,*21()2x y x x e 2-=.……8分故通解为212222121()2(2)()()()22x axx C C x e e a a y x x y x C C x e a --⎧++≠-⎪+⎪=⎨⎪=++=⎪⎩,当,当.……9分数 学(试卷四)一、填空题:(本题满分15分,每小题3分) (1)极限n →∞=2(2)设函数()f x 有连续的导函数,0)0(=f 且b f =')0(,若函数00,sin )()(=≠⎪⎩⎪⎨⎧+=x x A xx a x f x F 在0x =处连续,则常数A = a + b .(3)曲线2y x =与直线2y x =+所围成的平面图形的面积为 4.5 .(4)若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足条件04321=+++a a a a (5)一射手对同一目标独立的进行四次射击,若至少命中一次的概率为8180,则射手的命中率为2/3二、选择题:(本题满分15分,每小题3分) (1)设函数x e tgx x x f sin )(⋅⋅=,则)(x f 是 (B )(A )偶函数(B)无界函数(C)周期函数(D)单调函数(2)设函数()f x 对任意x 均满足等式(1)()f x a f x +=, 且有b f =')0(,其中,a b 为非零常数,则 (D)(A )()f x 在1x =处不可导(B )()f x 在1x =处可导,且a f =')1((C )()f x 在1x =处可导,且 f (1)b '= (D )()f x 在1x =处可导,且 f (1)ab '=. (3)向量组s ααα,,21⋅⋅⋅⋅线性无关的充分条件是(A)s ααα,,21⋅⋅⋅⋅均不为零向量(B) s ααα,,21⋅⋅⋅⋅中任意两个向量的分量不成比例(C) s ααα,,21⋅⋅⋅⋅中任意一个向量均不能由其余1s -个向量线形表示 (D) s ααα,,21⋅⋅⋅⋅中有一部分向量线形无关(4)设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是(A)(A)P (A+B )= P (A )(B)P(AB )=P(A )(C)P (A B )= P (B )(D)P (B -A )=P (B )-P (A )(5)设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 (C )(A )X =Y(B ){}0P X Y ==(C ){}P X Y ==21(D ){}1P X Y ==三、(本题满分20分,每小题5分) (1)求函数()I x =dt t t t xe ⎰+-12ln 2在区间[2,e e ]上的最大值.解:由222ln ln ()0,[,]21(1)x x I x x e e x x x '==>∈-+-, ……1分可知()I x 在2[,]e e 上单调增加,故222ln max ()(1)e e x e e t I x dt t ≤≤==-⎛⎜⎠21ln 1e e tdt --⎛⎜⎠22ln 1111e e e e t dt t t t =-+⋅--⎛⎜⎠……3分 22121ln11e e t e e t -=-+--11ln ln(1)11e e e e e e+=+=+-++. ……5分(2)计算2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.解:原式2302yy y edy xdx+∞-=⎰⎰……2分 20111()249y y y e dy +∞-=-⎰……3分 205572144y ye dy +∞-==⎰.……5分(3)求级数的∑∞=-12)3(n nn x 收敛域. 解:21n a n=,121(1)n a n +=+,212lim lim 1(1)n n n n a n a n +→∞→∞==+, ……2分 因此当131x -<-<,即24x <<级数收敛. ……3分当2x =时,得交错级数211(1)n n n ∞=-∑;当4x =时,得级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].……5分(4)求微分方程x e x x y y sin )(ln cos -=+'的通解解:cos cos sin (ln )xdxxdx x y e x e e dx C --⎰⎰=⋅⋅+⎰……3分 sin (ln )x e xdx C -=+⎰……4分 sin (ln )x e x x x C -=-+.……5分四、(本题满分9分)某公司可通过电台和报纸两种方式做销售某种商品广告,根据统计资料,销售收入R (万 元)与电台广告费用1x (万元) 及报纸广告费用2x (万元) 之间的关系有如下经验公式:222121211028321415x x x x x x R ---++=. (1)在广告费用不限的情况下, 求最优广告策略;(2)若提供的广告费用为1.5 万元, 求相应的最优广告策略.解:(1) 利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210x x x x x x =++---……1分 由12121248130,820310x x x x x x ππ∂∂=--+==--+=∂∂……2分 解得10.75x =(万元),2 1.25x =(万元). 因利润函数12(,)x x ππ=在(0.75,1.25)处的二阶偏导数为:2222211224,8,20A B C x x x x πππ∂∂∂==-==-==-∂∂∂∂. ……3分 故有26480160,40B AC A -=-=-<=-<,……4分 所以函数12(,)x x ππ=在(0.75,1.25)处达到极大值,亦即最大值.……5分(2)若广告费用为1.5万元,则只需求利润12(,)x x ππ=在12 1.5x x +=时的条件极值.拉格朗日函数为221212121212(,,)1513318210( 1.5)L x x x x x x x x x x λλ=++---++-……7分令120,0,0L L L x x λ∂∂∂===∂∂∂,有121212481308203101.50x x x x x x λλ--++=⎧⎪--++=⎨⎪+-=⎩……8分由此可得10x =,2 1.5x =,即将广告费1.5万元全部用于报纸广告,可使利润最大.……9分五、(本题满分6分)设)(x f 在闭区间[0,c]上连续,其导数)(x f '在开区间(0,)c 内存在且单调减少.(0)0f =,试应用拉格郎日中值定理证明不等式()()()f a b f a f b +≤+,其中常 数,a b 满足条件c b a b a ≤+≤≤≤0.证:当0a =时,(0)0f =有()()()()f a b f b f a f b +==+. ……1分当0a >时,在[0,]a 和[,]b a b +上分别应用拉格朗日定理,有()11()(0)()(),0,0f a f f a f a a aξξ-'==∈-;……3分 ()22()()()()(),,()f a b f b f a b f b f b a b a b b aξξ+-+-'==∈++-.……4分 显然120a b a b c ξξ<<≤<<+≤. 因()f x '在[0,]c 上单调减少,故21()()f f ξξ''≤.从而有()()()f a b f b f a a a+-≤.……5分 故由0a >,有()()()f a b f a f b +≤+. ……6分六、(本题满分8分)已知线性方程组 1234512345234512345323022654332x x x x x ax x x x x x x x x bx x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩(1)问,a b 为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时, 求出方程组的全部解.解:(1) 考虑方程组的增广矩阵1111111111321130012263012260000035433120000022a aa A bb a a ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭……2分当30b a -=且220a -=,即13a b ==且时,方程组的系数矩阵与增广矩阵之秩相等,故1,3a b ==时,方程组有解.……3分(2)当1,3a b ==时,有11111101152012263012263000000000000000000000000a a A ----⎛⎫⎛⎫⎪⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因此,原方程组的同解方程组为13452345522263x x x x x x x x ---=-⎧⎨+++=⎩,故导出组的基础解系为123115226,,100010001v v v ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ……6分(3)令3450x x x ===,得原方程组的特解23000u -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,于是原方程组的全部解为1231234521153226010000100001x x u x c c c x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,c c c 为任意常数.……8分 七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0=kA ,试证明矩阵E A -可逆,并写出 其逆矩阵的表达式(E 为n 阶单位阵).解:由0kA =及1k k E A E A A E A --+++=-()() ,得1k E A E A A E--+++=()() ……3分 可知E A -可逆,且有11()k E A E A A ---=+++ .……5分八、(本题满分6)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值,21,x x 是分别属于1λ和2λ的特征向量,试证明:21x x +不是A 的特征向量.解:因11122212,,Ax x Ax x λλλλ==≠,故12121122()A x x Ax Ax x x λλ+=+=+……2分 设21x x +是A 的特征向量,则1212()()A x x x x λ+=+,即112212()x x x x λλλ+=+, 于是有1122()()0x x λλλλ-+-=.……4分由于12,x x 属于不同的特征值,所以12,x x 线性无关,故有120,0λλλλ-=-=,即12λλ=, 这与假设矛盾,因此21x x +不是A 的特征向量.……6分九、(本题满分4分)从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率:=1A { 三个数字中不含0和5 } ;=2A { 三个数字中含0但不含5 }解:3813107()15C P A C ==……2分 33982310214()15C C P A C -==. ……4分十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:⎩⎨⎧≥≥+--=+---它其00,01),()(5.05.05.0y x e e e y x F y x y x .(1)问X 和Y 是否独立?(2)求两个部件的寿命都超过100小时的概率α.解 X 的分布函数1()F x 和Y 的分布函数2()F y 分别为:0.511,0;()(,)0,0x e x F x F x x -⎧-≥=+∞=⎨<⎩若若,0.521,0;()(,)0,0y e y F y F y y -⎧-≥=+∞=⎨<⎩若若……2分 显然12(,)()()F x y F x F y =,故X 和Y 独立,……3分 于是{0.1,0.1}{0.1}{0.1}P X Y P X P Y α=>>=>⋅>……4分 0.050.050.112[1(0.1)][1(0.1)]F F e e e ---=-⋅-=⋅=.……5分十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3 %,试求考生的外语成绩在60分至84分之间的概率.[附表] (表中)(x Φ是标准正态分布函数)解:设X 为考生的外语成绩,由题设知2~(,)X N μσ,其中72μ=. ……1分由条件知{96}0.023P X ≥=,即9672{}0.023X P μσσ--≥=,亦即24()0.977σΦ=,由()x Φ的数值表,可见242σ=.因此12σ=.这样2~(72,12)X N .……4分所求概率为60728472{6084}{}{11}1212X X P X P P μμσσ----≤≤=≤≤=-≤≤(1)(1)2(1)120.84110.682=Φ-Φ-=Φ-=⨯-=.……7分数 学(试卷五)一、填空题 (本题满分15分,每小题3分) (1)【 同数学四 第一、(1) 题 】(2)【 同数学四 第一、(2) 题 】(3)【 同数学四 第一、(3) 题 】(4)【 同数学四 第一、(4) 题 】(5)已知随机变量(3,1),(2,1)X N Y N - ,且,X Y 相互独立,设随机变量27Z X Y =-+,则Z ~ N (0,5) .二、选择题 (本题满分15分,每小题3分) (1)【 同数学四 第二、(1) 题 】(2)【 同数学四 第二、(2) 题 】(3)【 同数学四 第二、(1) 题 】(4)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =(A)(A) 1-n A(B) A (C) nA(D) 1-A(5)已知随机变量X 服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n ,p 的值为 (B )(A )n = 4,p = 0.6(B )n = 6,p = 0.4(C )n = 8,p = 0.3(D )n = 24,p = 0.1三、(本题满分20分,每小题5分) (1)求极限dte t x x t x x 22)1(1lim20-∞→⎰+解:原式22222202(1)(1)limlim(12)xt x x x x x t e dt x e xex e→∞→∞++==+⎰……3分22(1)1lim (12)2x x x →∞+==+. ……5分(2)求不定积分dx x x x ⎰34sin 2cos . 解 443333cos cos cos1222sin 88sin cos sin 222x x x x x x dx dx dx x x x x ==⎰⎰⎰……2分3211sin sin sin 42282x x x x d xd --==-⎛⎛⎜⎜⎠⎠……3分 22111sin 828sin 2x x dx x-=-+⎛⎜⎜⎠……4分 21cot 428sin 2x x C x -=-+211csc cot 8242x xx C =--+.……5分 (3)设)(22y z y z x ϕ=+,其中ϕ为可微函数,求 yz∂∂.解 将原式两边同时对y 求偏导,得2112()()()z z z z z y z y y y y y yϕϕ∂∂'=+-∂∂ ……3分 解出z y ∂∂,得 ()()()()2()2()z z z z z y z zy y yy y zzyz yz y yyϕϕϕϕϕϕ''--∂==∂''--. ……5分(4)【 同数学四 第三、(2) 题 】四、(本题满分9分)【 同数学四 第四题 】五、(本题满分6分)证明不等式1ln(()x x x +≥-∞<<+∞证:记()1ln(f x x x =++()ln(ln(f x x x x '=+=.……2分 令()0f x '=,知0x =为驻点.由()0f x ''=>……4分可知0x =为极小值点,亦即最小值点.()f x 的最小值为(0)0f =,于是,对于一切(,)x ∈-∞+∞,有()0f x ≥,即1ln(()x x x +≥-∞<<+∞. ……6分六、(本题满分4分)设A 为1010⨯矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00001010000 (0010000010)10,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.解:1010000100().......................00011000A E λλλλλ---=--按第一列展开……1分101000100000100100010..............................................00010001101λλλλλλλ-------=-……2分9101010()()1010λλλ=---=-.……4分七、(本题满分5分)设方阵A 满足条件TA A E =,其中TA 是A 的转置矩阵,E 为单位阵.试证明所对应的 特征值的绝对值等于1.证:设x 是A 的实特征向量,其所对应的特征值为λ,则Ax x λ=,即T T Tx A x λ=,于是有2T T T x A Ax x x λ=,即2T Tx x x x λ=,2(1)0T x x λ-=.……3分 因为x 为实特征向量,故0Tx x >,所以得210λ-=,即||1λ=.……5分八、(本题满分8分)【 同数学四 第六题 】九、(本题满分5分)【 同数学四 第九题 分值不同 】 十、(本题满分6分)甲乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 联合概率分布.解:X Y 和都服从二项分布,参数相应为(2,0.2)和(2,0.5).因此X Y 和的概率分布分别为:0120.640.320.04X ⎛⎫⎪⎝⎭,0120.250.50.25Y ⎛⎫ ⎪⎝⎭ ……3分故由独立性,知X Y 和的联合分布为6分十一、(本题满分7分)【 同数学四第十一题 】。
1978-2019年全国硕士研究生入学统一考试(数学一)真题及部分答案
历年考研数学一真题1987-20191987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值. (2)由曲线ln y x=与两直线e 1y x=+-及y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+2z t =+及121111x y z +++==都平行且过原点的平面方程为_____________.(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)L xy y dx x x dy -+-⎰= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分) (1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值 (D)()f x 的导数不存在 (2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s (D)依赖于s ,不依赖于t (3)设常数0,k >则级数21(1)n n k n n∞=+-∑(A)发散 (B)绝对收敛 (C)条件收敛 (D)散敛性与k 的取值有关 (4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于(A)a (B)1a(C)1n a - (D)na六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为221(),xx f x-+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域.(3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________. (3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x∆同阶的无穷小(C)比x ∆低阶的无穷小 (D)比x ∆高阶的无穷小 (2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处(A)取得极大值 (B)取得极小值(C)某邻域内单调增加 (D)某邻域内单调减少 (3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处(A)条件收敛 (B)绝对收敛(C)发散 (D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤ααα线性无关的充要条件是(A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα(B)12,,,s ααα中任意两个向量均线性无关(C)12,,,s ααα中存在一个向量不能用其余向量线性表示(D)12,,,s ααα中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg yx=+其中函数f 、g 具有二阶连续导数,求222.u u x y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y (2)求一个满足1-=PAP B的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分) 设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________. (2)设()f x 是连续函数,且10()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1sin y x x=(A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线 (D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是(A)(1,1,2)- (B)(1,1,2)-(C)(1,1,2) (D)(1,1,2)-- (3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y ++ (B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +--- (D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中12()sin ,1,2,3,,n b f x n xdx n π==⎰则1()2S -等于(A)12- (B)14-(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分) (1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y∂∂∂ (2)设曲线积分2()c xy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分)将函数1()arctan 1x f x x+=-展为x 的幂级数.五、(本题满分7分)设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln exx π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+= 123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式. 八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件AB的概率()P AB =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()x x x a x a→∞+-=_____________.(3)设函数()f x =111x x ≤>,则[()]f f x =_____________.(4)积分2220e y x dx dy -⎰⎰的值等于_____________. (5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xx F x f t dt -=⎰则()F x '等于(A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+(C)e (e )()x x f f x ---(D)e (e )()x x f f x --+ (2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x +(C)2[()]n f x(D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n∞=∑ (A)绝对收敛 (B)条件收敛(C)发散 (D)收敛性与a 的取值有关 (4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x (A)不可导 (B)可导,且(0)0f '≠(C)取得极大值 (D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设 21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=-(A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线 (2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)eln 2x+(D)2eln 2x+(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7 (C)8 (D)9 (4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰ (B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰ (D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E(C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分) (1)求20lim ).x π+→(2)设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220yz x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分) 设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分) 已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π处收敛于_____________. (4)微分方程tan cos y y x x'+=的通解为y=_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i i a b i n ≠≠=则矩阵A的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2 (B)等于0 (C)为∞ (D)不存在但不为∞(2)级数1(1)(1cos )(n n a n∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条 (B)只有2条(C)至少有3条 (D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为 (A)0 (B)1(C)2 (D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212- (B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分) (1)求x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂ (3)设()f x = 21exx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分) 设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分) 在变力F yzizxj xyk=++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β (1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)x F x dt x =->⎰的单调减少区间为_____________.(2)2232120x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为1(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小(C)高阶无穷小 (D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰ (B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos xL f t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x--(B)e e 2x x--(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1 (B)6t =时P的秩必为2(C)6t ≠时P 的秩必为1 (D)6t ≠时P的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sin cos ).x x x x→∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.ba ab >七、(本题满分8分) 已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分) 设随机变量X的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件(3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________. (4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件 (3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =-(C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设 2221cos()cos()tx t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdyx y z +++⎰⎰其中S是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分) 设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且()lim0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=AA 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分) 设随机变量X和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+(1)求Z 的数学期望EZ 和DZ 方差. (2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx ⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R=_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设有直线:L321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上(C)垂直于π (D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件 (4)设(1)ln(1n n u =-则级数 (A)1n n u ∞=∑与21nn u ∞=∑都收敛 (B)1n n u ∞=∑与21nn u ∞=∑都发散(C)1n n u ∞=∑收敛,而21nn u ∞=∑发散 (D)1n n u ∞=∑收敛,而21nn u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B (D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求110()().x dx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)L xydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分) 假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥= 则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x- 00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设2lim()8,x x x a x a →∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________. (4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0(C)1 (D)2 (2)设()f x 具有二阶连续导数,且()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值 (C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >=且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a nλ∞=-∑(A)绝对收敛 (B)条件收敛(C)发散 (D)散敛性与λ有关 (4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b - (B)12341234a a a a b b b b +(C)12123434()()a a b b a a b b -- (D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +===试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分) 设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y轴上的截距等于01(),x f t dt x⎰求()f x 的一般表达式.。
2023年全国硕士研究生招生考试《数学一》真题试卷【完整版】(文末含答案解析)
2023年全国硕士研究生招生考试《数学一》真题试卷【完整版】一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选选项前的字母填在答题卡指定位置。
1.曲线1ln 1y x e x ⎛⎫=+⎪-⎝⎭的渐近线方程为( )。
A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e2.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。
A .a <0,b >0 B .a >0,b >0 C .a =0,b >0 D .a =0,b <03.设函数y =f (x )由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( )。
A .f (x )连续,f′(0)不存在B .f′(0)存在,f′(x )在x =0处不连续C .f′(x )连续,f′′(0)不存在D .f′′(0)存在,f′′(x )在x =0处不连续4.已知a n <b n (n =1,2,...),若级数1nn a∞=∑与1nn b∞=∑均收敛,则“级数1nn a∞=∑绝对收敛”是“1nn b∞=∑绝对收敛”的( )。
A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知n 阶矩阵A ,B ,C 满足ABC =0,E 为n 阶单位矩阵,记矩阵0A BC E ⎛⎫ ⎪⎝⎭,0AB C E ⎛⎫ ⎪⎝⎭,0E AB AB ⎛⎫ ⎪⎝⎭的秩分别为γ1,γ2,γ3,则( )。
A .γ1≤γ2≤γ3 B .γ1≤γ3≤γ2 C .γ3≤γ1≤γ2 D .γ2≤γ1≤γ36.下列矩阵中不能相似于对角矩阵的是( )。
A .11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭B .1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭C .11020002a ⎛⎫ ⎪ ⎪ ⎪⎝⎭D .11022002a ⎛⎫ ⎪ ⎪ ⎪⎝⎭7.已知向量121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ,若γ既可由α1,α2线性表示,也可由与β1,β2线性表示,则γ=( )。
2022年研究生考试数学二试题及解析
2022全国硕士研究生入学统一考试(数学二)试题解析一、选择题:1~10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,(),()x x αβ是非零无穷小,给出以下四个命题,其中所有正确的是( ) ①若()()x x αβ:,则22()()x x αβ:②若22()()x x αβ:,则()()x x αβ: ③若()()x x αβ:,则()()(())x x o x αβα-=④若()()(())x x o x αβα-=,则()()x x αβ:(A )①②(B )①④ (C )①③④(D )②③④【答案】C【解析】当0x →时,()()x x αβ:,则222000()()()lim 1,lim lim 1()()()x x x x x x x x x αααβββ→→→⎡⎤===⎢⎥⎣⎦,则: 0()()lim0()x x x x αβα→-=,所以()()(())x x o x αβα-=,故①③正确;当0x →时,22()()x x αβ:,则220()lim 1()x x x αβ→=,则0()lim1()x x x αβ→=±,当0()lim 1()x x x αβ→=-时, ()x α与()x β不是等价无穷小,所以②不正确;当()()(())x x o x αβα-=时,000()()()limlim lim 1()()(())()x x x x x x x x o x x αααβααα→→→===-,④正确.(2)22ydy =⎰⎰( )(A )6(B )13(C )3(D )23【答案】D【解析】方法:交换积分次序原式222320112(1)233xdx x ===+=⎰⎰⎰ (3)设函数()f x 在0x x =处有2阶导数,则( ) (A )当()f x 在0x 的某邻域内单调增加时,0'()0f x > (B )当0'()0f x >时,()f x 在0x 的某邻域内单调增加 (C )当()f x 在0x 的某邻域内是凹函数时,0''()0f x > (D )当0''()0f x >时,()f x 在0x 的某邻域内是凹函数 【答案】B【解析】因为函数()f x 在0x x =处有2阶导数,则:000'()'()''()limx x f x f x f x x x →-=-存在00lim '()'()x x f x f x →⇒=;当0'()0f x >时,由极限的局部保号性得:0,δ∃>当0(,)x U x δ∈,有'()0f x >,即0,δ∃>当0(,)x U x δ∈,有'()0f x >,故()f x 在0x 的某邻域内单调增加.(4)设函数()f t 连续,令0(,)()()x yF x y x y t f t -=--⎰,则( )(A )2222,F F F Fx y x y ∂∂∂∂==∂∂∂∂(B )2222,F F F Fx y x y ∂∂∂∂==-∂∂∂∂(C )2222,F F F F x y x y∂∂∂∂=-=∂∂∂∂ (D )2222,F F F F x y x y∂∂∂∂=-=-∂∂∂∂【答案】C【解析】原式0()()()x yx yx y f t dt tf t dt --=--⎰⎰则:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt x--∂=+-----=∂⎰⎰,22()Ff x y x∂=-∂ 同理:00()()()()()()x y x y Ff t dt x y f x y x y f x y f t dt y--∂=----+--=-∂⎰⎰22()Ff x y y∂=-∂ 综上所述:2222,F F F Fx y x y∂∂∂∂=-=∂∂∂∂. (5)设p 为常数,若反常积分110(1)p pInxdx x x --⎰收敛,则p 的取值范围( )(A )(1,1)- (B )(1,2)- (C )(,1)-∞(D )(,2)-∞【答案】A【解析】当1p =时,11100(1)p p InxInx dx dx x x x-=-⎰⎰发散,排除B 和D ; 当1p =-时,111122000(1)(1)(1)(1)p p InxxInx t In t dx dx dt x x x t ---==--⎰⎰⎰, 2(1)(1)lim 1x t In t t t+→--⋅=-,发散,排除C (6)设有数列{}n x ,22n x ππ-≤≤,则( )(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在 (B )若limsin(cos )n n x →∞存在,则lim n n x →∞存在 (C )若lim cos(sin )n n x →∞存在,则lim sin n n x →∞存在,但lim n n x →∞不一定存在 (D )若limsin(cos )n n x →∞存在,则lim cos n n x →∞存在,但lim n n x →∞不一定存在 【答案】D 【解析】在区间, 22ππ⎡⎤-⎢⎥⎣⎦上,若lim sin(cos )n n x a →∞=,但是lim n n x →∞例如arccos(arcsin ), arccos(arcsin ),n a n x a n ⎧=⎨-⎩为奇数为偶数满足前面的条件但lim n n x →∞不存在.不一定存在,(7)已知1102(1cos )x I dx x =+⎰,120ln(1)1cos x I dx x+=+⎰,13021sin xI dx x =+⎰,则( ) (A )123I I I << (B )213I I I << (C )132I I I <<(D )321I I I <<【答案】A【解析】令()ln(1)2x h x x =+-,11()012h x x '=->+,()0, 1x ∈,于是()h x 单调递增,又由(0)0h =可知()ln(1)02xh x x =+->,其中()0, 1x ∈,故ln(1)2(1cos )1cos x x x x +<++,故12I I <. 当()0, 1x ∈时,,则,故23I I <. (8)设A 为3阶矩阵,100010000⎡⎤⎢⎥Λ=-⎢⎥⎢⎥⎣⎦,则A 特征值为1,1,0-的充分必要条件是( )(A )存在可逆矩阵,P Q ,使得A P Q =Λ (B )存在可逆矩阵P ,使得1A P P -=Λ (C )存在正交矩阵Q ,使得1A Q Q -=Λ (D )存在可逆矩阵P ,使得T A P P =Λ 【答案】(B )【解析】若(B )成立,则矩阵A Λ与相似,特征值相等,可推出A 特征值为1,1,0- 若A 特征值为1,1,0-,则矩阵A 可以相似对角化,矩阵A Λ与相似,所以(B )为充要条件。
2021考研数学一真题及答案解析
2021年全国硕士研究生入学统-考试数学-试题解析一、选择题:1-10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.处AU - YA 在AυAU #= X X --x e -Ih fttBT』t,一、、IF/x r’’飞、f’J 数的CA)连续且取极大值.CB)连续且取极小值.cc )口J导且导数为0.CD)口j导且导数不为0.【答案】CD)e' -1 . x M析】根据题设,由手limf(x)= l i m 一一=li m 一=l=f (O ),故f(x)在x=O 处连续。
Y →O x →O x r →Ox又因e x 一l .f '(O ) =〕(x )-f (0) = li m 二二=l i m 亡;二三=1,-u x →O x 故f(x)在x=O 处口J导,且导数不为0,即选项(D)为D 确j在项。
(2)设函数f(x,y)叫做,且f(x +l,e')= x (x+ 1)2 ,f(x,x 2)= 2x 2 l n x ,则df(l,I)= C (A) dx +dy.(8))dy.CD)-dy.【答案】cc)【解析】根据题设,对厅理f(x+l,e')= x(x+ 1)2两边关于变量x 求导,可得J;'(x + I ,e ')十元υ+l,e')·e'=(x+l)(3x+l ). ① 对力程f(x ,x 2)= 2x 2l n x 两边关手变量x 求导,口J得兀飞x ,x 1)+元’(x ,x 2)· 2x = 4x In x + 2x .②若将x=O 代入①式,将x=I 代入②式,则口j得r (l ,l )+ J ;(t 归兀飞1,1) + 2万(1,1)= 2。
2023考研数学三真题试卷+参考答案(超清版)
2023年全国硕士研究生入学统一考试数学(三)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)已知函数(,)ln(sin )f x y y x y =+,则()(A )(0,1)f x ∂∂不存在,(0,1)fy ∂∂存在 (B )(0,1)f x ∂∂存在,(0,1)fy ∂∂不存在(C )(0,1)f x∂∂,(0,1)f y∂∂均存在(D )(0,1)f x∂∂,(0,1)f y∂∂均不存在【答案】A(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D(3)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C (4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A(5)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A )****A B B A O B A ⎛⎫−⎪⎝⎭(B )****B A A B O A B ⎛⎫−⎪⎝⎭(C )****B A B A OA B ⎛⎫−⎪⎝⎭(D )****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B (6)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A )2212y y +(B )2212y y −(C )2221234y y y +−(D )222123y y y +−【答案】B(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A )1e(B )12(C )2e(D )1【答案】C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11mi i Y Y m ==∑,22111()1n i i S X X n ==−−∑,22211(1m i i S Y Y m ==−−∑,则( ) (A )2122(,)S F n m S (B )2122(1,1)S F n m S −− (C )21222(,)S F n m S (D )21222(1,1)S F n m S −− 【答案】D(10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A )2π(B )2π(C(D【答案】A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)211lim 2sincos x x x x x →∞⎛⎫−−= ⎪⎝⎭________ 【答案】23(12)已知函数(,)f x y 满足22(,)xdy ydx df x y x y −=+,(1,1)4f π=,则f =________【答案】3π(13)20(2)!nn x n ∞==∑_________【答案】2x xe e −+(14)设某公司在t 时刻的资产为()f t ,从0时刻到t 时刻的平均资产等于()f t t t−,假设()f t 连续且(0)0f =,则()f t =________【答案】2(1)t e t −−(15)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8(16)设随机变量X 与Y 相互独立,且(1,)X B p ,(2,)Y B p ,(0,1)p ∈,则X Y +与X Y −的相关系数为________【答案】13−三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)已知可导函数()y y x =满足2ln(1)cos 0x ae y y x y b ++−++=,且(0)0y =,(0)0y ′= (1)求,a b 的值;(2)判断0x =是否为()y x 的极值点【答案】(1)1,1a b ==− (2)0x =是()y x 的极大值点(18)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S =+(2)24V ππ=−(19)(本题满分12分)已知平面区域22{(,)(1)1}D x y x y =−+≤,计算二重积分1DI dxdy=【答案】3299π−−(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a a η′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;(21)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭(2)401310112P −⎛⎫⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭(22)(本题满分12分)设随机变量X 的概率密度为2(),(1)xx e f x x e =−∞<<+∞+,令X Y e =(1)求X 的分布函数(2)求Y 的密度函数(3)Y 的期望是否存在?【答案】(1)(),1xxe F x x e=−∞<<+∞+(2)21,0(1)()0,y y f y else ⎧>⎪+=⎨⎪⎩(3)不存在。
2019年全国硕士研究生入学统一考试数学(二)真题及解析
2019年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的1.当0→x 时,若x x tan -与k x 是同阶无穷小,则=k A.1 B.2 C.3D.42.曲线y=xsinx+2cosx (-<x <2π)的拐点是A.⎪⎭⎫⎝⎛2,2ππ B.()2,0C.()2,πD.⎪⎭⎫⎝⎛-23,23ππ 3.下列反常积分收敛的是() A.dx xe x⎰+∞-0B.dx xe x ⎰+∞-02C.dx xx⎰+∞+021arctan D.dx x x ⎰+∞+0214.c ,b ,a ,x C C y ce by y a y x -x x 则的通解为已知e )e (21++==+'+''的值为( )A.1,0,1B.1,0,2C.2,1,3D.2,1,45.已知积分区域⎭⎬⎫⎩⎨⎧≤+=2πy x |y ,x D )(,dxdy y x I D ⎰⎰+=221,dxdy y x I D⎰⎰+=222sin,(dxdy y x I D)cos 1223⎰⎰+-=,试比较321,,I I I 的大小A.123I I I <<B.321I I I <<C.312I I I <<D.132I I I <<6.设函数ƒ(x),g(x)的2阶导函数在x=a 处连续,则0)()()(lim 2=--→a x x g x f ax 是两条曲线y= ƒ(x),y= g(x)在x=a 对应的点处相切及曲率相等的A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件7.设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组0=Ax 的基础解系中只有2个向量,则r(*A )的秩是 A.0 B.1 C.2D.38.设A 是3阶实对称矩阵,E 是3阶单位矩阵,若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++B.232221y y y -+C.232221y y y --D.232221y y y ---二、填空题:9-14小题,每小题4分,共24分。
2020年全国硕士研究生入学统一考试数学二答案及解析
2020年全国硕士研究生招生考试 数学(二)试题参考答案及解析一、选择题1-8题,每小题4分,共32分。
下列每题给出的4个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. 当0x +®时,下列无穷小量中最高阶的是 ( ). (A )2(1)-⎰xt e dt (B)0ln(1+⎰x dt (C )sin 20sin ⎰xt dt (D)1cos 0-⎰【答案】(D )【解析】22320(e 1)11lim lim ,33++→→--==⎰xt x x x dte x x可知2301(e 1),0;3+-→⎰:x t dt x x5022ln(12limlim ,52++→→==⎰xx x dtxx可知5202ln(1,0;5+→⎰:xdt x xsin 22032000sin sin(sin x)cosx cos 1limlim lim ,333+++→→→⋅===⎰xx x x t dtx x x可知sin 2301sin ,0;3x t dt x x +→⎰:1cos 0500limlim lim x x x x +++-→→→===⎰可知1cos 50,0,-+→⎰:xx x对比可知1cos 0-⎰的阶数最高,故选(D ).2....第二类间断点的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】()f x 可能的间断点有1,0,1,2x x x x =-===,由于1lim ln |1|x x ?+=-?,111lim0(1)(2)x x x ee x -?¹--,可知-1lim ()x f x ®=?,则1x =-为()f x 的第二类(无穷)间断点;111lim ()lim(2)2x x x e x f x x x e-==--,又由于()f x 在0x =处无定义,可知0x =为()f x 的第一类(可去)间断点;1111ln(1)lim ,lim 0(1)(2)x x x x x e e x ++-+=+ス--,则1lim ()x f x +®=?,则1x =为()f x 的第二类(无穷)间断点;11221ln(1)lim,lim021x x xx e x x e -+=ス--,则2lim ()x f x ®=?,则2x =为()f x 的第二类(无穷)间断点.综上所述,()f x 的第二类间断点有3个,故选(C ).3.1=ò( ).(A )24p (B )28p (C )4p (D )8p【答案】(A )【解析】11002=2112002(arcsin (arcsin 4p ===ò,故选(A ).4.设2()()ln(1),...,(0)n f x x x f =-=( ).(A )!2n n --(B )!2n n -(C )(2)!n n --(D )(2)!n n -【答案】(A ).【解析】由ln(1)x -的麦克劳林公式可知242232()()()22n n n n x x x x f x x x o x x o x n n ++骣骣鼢珑鼢=----+=-++++珑鼢鼢珑桫桫L Ln x 的系数为12n --,则()!(0)2n n f n =--,故选(A ).5.关于函数...给出以下结论①(0,0)1fx ¶=¶①2(0,0)1f x y ¶=抖①(,)(0,0)lim (,)0x y f x y ®=①00limlim (,)0y x f x y =正确的个数是( )(A )4 (B )3 (C )2 (D )1 【答案】(B )【解析】(,0)f x x =可知(0,0)1fx ¶=¶,故①正确.不论0,0xy x?还是0y =时,都有(,)(0,0)lim (,)0x y f x y ®=,故①正确.lim (,)0x f x y ®=,进而00limlim (,)0yxf x y =,可知①正确,当0y =时,00(,0)(,0)(,0)lim lim 1x x x f x x f x x x xf x x x D 瓺?+D -+D -¢===D D当0,0y x 构时,00(,)(,)()(,)lim lim x x x f x x y f x y x x y xyf x y yx x D 瓺?+D -+D -¢===D D当0,0y x?时,00(,)(0,)(0,)lim limx x x f x y f y x y yf y x x D 瓺?D -D ?¢==D D 不存在,则(0,)(0,0)(0,0)limx x xy y f y f f y®ⅱ-ⅱ=不存在,故①错误,故正确的有3个,选(B )6.设函数()f x 在区间[2,2]-上可导,。
2019年全国硕士研究生入学统一考试数学三试题及答案
2019年研究生统一入学考试数学(三)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.当时,若与是同阶无穷小,则=( C )A.1B.2C.3D.42.已知方程由3个不同的实根,则的取值范围为(D)A.B.C.D.3.已知微分方程的通解为,则a、b、c依次为(D)A.1,0,1B.1,0,2C.2,1,3D.2,1,44.若绝对收敛,条件收敛,则(B)A. 条件收敛B. 绝对收敛C. 条件收敛D. 发散5.设是四阶矩阵,*是的伴随矩阵,若线性方程组的基础解系只有2个向量,则*的秩是(A)A.0B.1C.2D.36.设是3阶实对称,是3阶单位矩阵,若且,则二次型的规范形为(C)A.B.C.D.7.设,为随机事件,则充分必要条件是(C)A.B.C.D.(A)8.设随机变量X和Y相互独立,且都服从正太分布 ( ,),则A.与无关,而与有关B.与有关,而与有关C.与,都有关D.与,都无关二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上。
9.10.曲线的拐点坐标为11.已知,则12.、两商品的价格分别为、,需求函数,,求商品对自身价格的需求弹性=13.,,有无穷多解,求14.为连续型随机变量,概率密度为= 为的分布函数,为的数学期望,则=三、解答题:15—23小题,共94分。
请将解答写在答题纸指定位置上。
解答应写出文字说明、证明过程或演算步骤。
15.已知= 求,并求的极值。
当时,当时,故,而在附近时,当,,单调递减;当,,单调递增;故在处取极大值。
16.已知具有二阶连续偏导数,且,求解:,,,17.已知满足微分方程,满足的特解(1)求;解:由于,则可以得出,两边同时积分得由于,代入得,故(2) ,求平面区域D绕轴旋转转成的旋转体体积。
解:由体积公式得=18.求曲线与轴之间图形的面积。
解:面积=19.设(1)证明数列{ }单调递减,且解:,所以单调递减其中的,所以(2)求。
1987年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准
1987 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1)与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-== 都平行,且过原点的平面方程是 50x y -+=(2)当x =1/ln 2-;时,函数2xy x =取得极小值.(3)由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4)设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18-.(5)已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1)设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2)设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1)设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A)发散(B)绝对收敛(C)条件收敛(D)收敛与发散与k 的值有关.(2)设)(x f 为已知连续函数,⎰=t s dx tx f t I 0)(,0,0s t >>,则I 的值(D )(A)依赖于s 和t (B)依赖于s 、t 、x(C)依赖于t 和x , 不依赖于s (D)依赖于s , 不依赖于t (3)设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A)()f x 导数存在,0)(≠'a f (B)()f x 取得极大值(C)()f x 取得极小值(D)()f x 的导数不存在.(4)设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A)a(B)a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx--⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解;○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1)在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2)三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3)已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷二)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求 2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷三)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1)设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2)曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3)积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx 解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=,且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰.因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数.设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x ex x x f x-,sin )(cos 是(D )(A )有界函数 (B )单调函数 (C )周期函数 (D )偶函数(2). 函数()sin f x x x - (D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界(D )在),(+∞-∞内无界(3)设()f x 在x a =处可导,则xx a f x a f x )()(lim 0--+→等于(B)(A ))(a f '(B ))(2a f '(C )0(D ))2(a f '(4)【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷四)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √)(3)若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4)假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0,那么矩阵A 的一切1r +阶子式都等于0( √) (5)连续型随机变量取任何给定实数值的概率都等于0( √)二、选择题(每小题2分,满分10分.)(1)下列函数在其定义域内连续的是(A)(A )()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2)若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A)()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3)下列广义积分收敛的是(C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4)设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A)必有r 个行向量线性无关(B)任意r 个行向量线性无关(C)任意r 个行向量都构成极大线性无关向量组(D)任意一个行向量都可以由其它r 个行向量线性表示(5)若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A)A 和B 互不相容(互斥)(B)AB 是不可能事件(C)AB 未必是不可能事件(D)P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1)求极限xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3)已知y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex ⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1)t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-,故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域.解:联立y x =和3x y =,可解得两曲线交点的横坐标0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1 (万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-.又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2)已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率p ;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q .解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=;(2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷五)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1)【 同数学Ⅳ 第一(1)题 】(2)【 同数学Ⅳ 第一(2)题 】(3)若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4)若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5)【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分)(1)【 同数学Ⅳ 第二(1)题 】(2)【 同数学Ⅳ 第二(2)题 】(3)【 同数学Ⅳ 第二(3)题 】(4)【 同数学Ⅳ 第二(4)题 】(5)对于任二事件A 和B ,有()P A B -=(C)(A)()()P A P B -(B)()()()P A P B P AB -+(C)()()P A P AB -(D))()()(B A P B P A P --三、计算下列各题(每小题4分,满分20分)(1)求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++===(2)【 同数学Ⅳ 第三(2)题 】(3)【 同数学Ⅳ 第三(3)题 】(4)计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5)求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1)t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性.解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题】。
2020考研数学一真题及答案解析
f
(12)设函数
x, y
xy ext2 dt
0
,则
2 f xy
1,1
.
【答案】 4e
a 0 1 1
0 a 1 1 1 1 a 0
(13)行列式 1 1 0 a
.
【答案】 a4 4a2 .
(14)已知随机变量
X
服从区间
2
,
2
上的均匀分布, Y
sin
X
,则 Cov X ,Y
.
2 【答案】 .
y2 8xy 4x2 (4x2 y2)2
,
P (4x2 y 2 ) 2y(4x y) y 2 8xy 4x2 ,
y
(4x2 y 2)2
(4x2 y 2)2
I
=
L1
4x 4x2
y y2
dx
x y 4x2 y2
dy
=
1 2
(4x
y)dx
(x
y)dy
L1
1 2
1
1
(1) dxdy
(B) n1
收敛,则
r
R
(D) r R ,则 n1 a2n x2n 收敛
(5)若矩阵 A 由初等列变换为矩阵 B ,则()
(A)存在矩阵 P ,使 PA B ;
(B)存在矩阵 P ,使 BP A ;
(C)存在矩阵 P ,使 PB A ;
(D)方程组 AX 0 与 BX =0 同解;
【答案】(B).
2020 年全国硕士研究生入学统一考试
数学(一)试题
一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求
的.请将所选项前的字母填在答.题.纸.指定位置上.
2023考研数学一真题试卷+详细答案解析
2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年全国硕士研究生入学统一考试数学(二)试题及答案一. 填空题(本题共小题,每小题分,满分分. 把答案填在题中横线上. )()设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = . 【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x =⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.()设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]). 【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。
(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)()1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解】1120111)arcsin 2dt tt π+∞-===⎰⎰⎰.()设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z z x y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解】在 232x z z e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数. 23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx z z e x e--∂=∂+,23213x zz y e -∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解】令 23(,,)20x z F x y z e y z -=+-= 则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂ 2323232322(13)13x z x zx z x zF z e e x F x e e z----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x z x z e dx dy e dz --=+- 2323(13)22x z x z e dz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x zz e x e --∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂()微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解】原方程变形为 21122dy y x dx x -=, 先求齐次方程 102dy y dx x-= 的通解:12dy dx y x=积分得 1ln ln ln 2y x c =+ y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=, 故所求通解为315y x =.【详解】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx dx x x y e x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰11ln ln 22212x x ex edx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=, 从而所求的解为315y x =.()设矩阵210120001A ⎛⎫⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵,则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值. 【详解】 2ABA BA E **=+ 2A B A B A E**⇔-=, (2)A E B A E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E A A *====-⋅---. 【详解】由1A A A *-=,得11122ABA BA E AB A A B A A AA **---=+⇒=+ 2A A B A B A⇒=+ (2)A A E B A ⇒-= 32AA EB A⇒-=21192B A A E∴==- 二. 选择题(本题共小题,每小题分,满分分. 每小题给出的四个选项中, 只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) ()把0x +→时的无穷小量2cos xt dt α=⎰, 20x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(),,.αβγ (),,.αγβ(),,.βαγ (),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】3020lim lim cos x x x t dtt dt γα++→→=⎰⎰32lim x +→= 320lim lim 02x x x x++→→===, 即o ()γα=.又 2000tan lim limxx x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(). ()设()(1)f x x x =-, 则()0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. ()0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. ()0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. ()0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点. 又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点. 所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选().()lim (1)n n→∞+等于()221ln xdx ⎰. ()212ln xdx ⎰.()212ln(1)x dx +⎰. ()221ln (1)x dx +⎰[]B【分析】将原极限变型,使其对应一函数在一区间上的积分和式。
作变换后,从四个选项中选出正确的.【详解】 lim ln (1)n n→∞+ 212lim ln (1)(1)(1)nn nn n n →∞⎡⎤=+++⎢⎥⎣⎦212l i m l n (1)l n (1)(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11l i m 2l n (1)nn i i n n→∞==+∑ 12l n (1)x d x=+⎰ 2112l n x t t d t+=⎰212l n x d x =⎰ 故选().()设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得()()f x 在(0,)δ内单调增加. ()()f x 在(,0)δ-内单调减小. ()对任意的(0,)x δ∈有()(0)f x f >.()对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质. 【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x-> 即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选().()微分方程21sin y y x x ''+=++的特解形式可设为()2(sin cos )y ax bx c x A x B x *=++++. ()2(sin cos )y x ax bx c A x B x *=++++. ()2sin y ax bx c A x *=+++.()2cos y ax bx c A x *=+++ []A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=, 特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因不是特征根, 从而其特解形式可设为21y a x b x c *=++xy对 sin ()ix m y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(s i n c o s )y x A x B x *=+ 从而 21sin y y x x ''+=++ 的特解形式可设为2(s i n c o s )y a x b x c x A x B x*=++++ ()设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xydxdy ⎰⎰等于()11()dx f xy dy -⎰⎰. ()202()dy f xy dx ⎰⎰.()2sin 200(sin cos )d f r dr πθθθθ⎰⎰.()2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D【分析】将二重积分化为累次积分的方法是:先画出积分区域的示意图,再选择直角坐标系和极坐标系,并在两种坐标系下化为累次积分.【详解】积分区域见图. 在直角坐标系下,2()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰11()dx f xy dy -=⎰⎰故应排除()、().在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选().()设A 是阶方阵, 将A 的第列与第列交换得B , 再把B 的第列加到第列得C , 则满足AQ C =的可逆矩阵Q 为()010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. ()010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.()010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. ()011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫⎪= ⎪ ⎪⎝⎭,故选().()设A ,B 为满足0AB =的任意两个非零矩阵, 则必有()A 的列向量组线性相关,B 的行向量组线性相关. ()A 的列向量组线性相关,B 的列向量组线性相关. ()A 的行向量组线性相关,B 的行向量组线性相关.()A 的行向量组线性相关,B 的列向量组线性相关.[]A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A = 0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n m n m b A b A b A b A =++++=() 由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由()知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫ ⎪+++ ⎪==⎪ ⎪ ⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选().三. 解答题(本题共小题,满分分. 解答应写出文字说明、证明过程或演算步骤. )()(本题满分分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解】 原式2cos ln 331limx x x e x +⎛⎫ ⎪⎝⎭→-=202c o s ln 3limx xx →+⎛⎫ ⎪⎝⎭= 20l n 2c o s l n 3l i m x x x →+-=()01s i n 2c o s l i m 2x x x x →⋅-+=()011s i n 1l i m22c o s 6x x x x →=-⋅=-+ 【详解】 原式2cos ln 331limx x x ex +⎛⎫ ⎪⎝⎭→-=202c o s ln 3limx xx →+⎛⎫ ⎪⎝⎭=20c o s 1ln 3lim x x x →-+=(1)20c o s 11l i m 36x x x →-==-()(本题满分分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数. (Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++. (Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-.即当12k =-时, ()f x 在0x =处可导.()(本题满分分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域. 【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x x xf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为()s i n ()s i n c o s s i n2f x x x x x π'=+-=-, 令()0f x '=, 得14x π=, 234x π=, 且344()s i n 24f t d t πππ==⎰554433443()sin sin sin 24f t dt t dt t dt πππππππ==-=⎰⎰⎰, 又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2,, 故()f x的值域是[2.()(本题满分分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系.【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰,()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t y ππ-=⎛⎫+== ⎪⎝⎭,20222()lim lim()2x x tt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰ 222l i m 222t t tt t tt e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭l i m 1t tt t t e e e e--→+∞+==- ()(本题满分分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21ln ()2xx x ϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时, 22244()()0x e e eϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加. 因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e->- 故 2224ln ln ()b a b a e ->-.【详证】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=- 21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=。