碳纳米管
碳纳米管定义
碳纳米管定义
碳纳米管是一种由碳原子构成的纳米材料,具有管状结构。
它的直径通常在纳米尺度(纳米级别为1100纳米)范围内,
长度可以从纳米到微米级别。
碳纳米管的结构可以分为单壁碳
纳米管和多壁碳纳米管两种。
单壁碳纳米管由一个原子薄的石墨单层卷曲而成,形成一个
管状结构。
单壁碳纳米管的墙壁由碳原子构成,以六边形的芳
香环排列。
其典型特点是具有高强度、高导电性、高热导率和
良好的力学性能。
多壁碳纳米管由多个同心圆层组成,每个层均由碳原子六边
形结构构成,层与层之间的间距一般为0.34纳米。
多壁碳纳米管具有类似于单壁碳纳米管的特性,但其力学性能和导电性能
相对较差。
碳纳米管具有独特的物理和化学性质,广泛应用于材料科学、电子学、能源储存和传感器等领域。
由于其独特的结构和性能,碳纳米管在电子器件中可以用作纳米导线、场发射器件、纳米
传感器等。
此外,碳纳米管还被研究用于制备高性能锂离子电池、超级电容器和光催化材料等。
相信随着科学技术的不断发展,碳纳米管将在更多领域发挥重要作用。
碳纳米管简介
3)激光蒸发法. 这种方法是制备单壁纳米碳管的一种有效 方法。用高能CO2激光或Nd/YAG激光蒸发掺 有Fe、Co、Ni或其他合金的碳靶制备单壁纳 米碳管。用这种CO2激光蒸发法,在室温下 就可以得到单壁碳纳米管。
缺点: 单壁碳纳米管的纯度较低、易粘 结。
5.碳纳米管的独特性质
1)力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍 ,密度却只有钢的1/6,至少比常规石墨纤维高一 个数量级。它是最强的纤维,在强度与重量之比 方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相 同,所以具有很好的电学性能。理论预测 其导电性能取决于其管径和管壁的螺旋角。 当CNTs(碳纳米管 )的管径大于6mm时, 导电性能下降;当管径小于6mm时,CNTs 可以被看成具有良好导电性能的一维量子 导线。
3) 热学性能 一维管具有非常大的长径比,因而大量热是 沿着长度方向传递的,通过合适的取向, 这种管子可以合成高各向异性材料。虽然 在管轴平行方向的热交换性能很高,但在 其垂直方向的热交换性能较低。适当排列 碳纳米管可得到非常高的各向异性热传导 材料。
4) 储氢性能 1997年,A. C. Dillon对单壁碳纳米管 (SWNT)的储氢性能做了研究,SWNT在0℃时 ,储氢量达到了5%。 DeLuchi指出:一辆燃料机车行驶500km,消耗 约31kg的氢气,以现有的油箱来推算,需 要氢气储存的重量和体积能量密度达到65% 和62kg/m3。 这两个结果大大增加了人们对碳纳米管储氢 应用前景的希望。
3.碳纳米管的分类
1)按形态分
普通封口型
变径型
洋葱型
海胆型
竹节型
2)按手性分
扶手椅型
锯齿型
碳纳米管
3.热学性能
由于碳管具有非常大的长径比,因而大量热是沿着长 度方向传递的,通过合适的取向,这种管子可以合成高各 向异性材料。 即在管轴平行方向的热交换性能很高,但在其垂直方 向的热交换性能较低。适当排列碳纳米管可得到非常高的 各向异性热传导材料。
四、碳纳米管的制备
CNTs的制备方法有多种,主要有电弧法,激光 蒸发法,化学气象沉积法等方法。这些方法分别在 不同的实验条件下可以得到MWNT和SWNT。
基本原理: 电弧室充惰性气体保护, 两石墨棒电极靠近,拉起 电弧,再拉开,以保持电 弧稳定。放电过程中阳极 温度相对阴极较高,所以 阳极石墨棒不断被消耗, 同时在石墨阴极上沉积出 含有碳纳米管的产物。 理想的工艺条件:氦气为载气,气压 60—50Pa,电 流60A~100A,电压19V~25 V,电极间距1 mm~4mm, 产率50%。Iijima等生产出了半径约1 nm的单层碳管。
五、纳米管结构的表征:
扫描隧道显微镜 X射线衍射
电子显微镜
拉曼光谱
1.电子显微术
利用不同的电子显微术,可以非常详细地研究碳 纳米管结构,确定其生长机制,反过来又可以帮助人 们改进碳管的生长过程,或者去修饰他们的结构。 利用扫描电子显微镜(SEM)可以获得单壁碳纳 米管管束的图像。透射电子显微镜(TEM)对于碳纳 米管结构的研究更为有用。TEM是一种强有力的技术, 可以确定碳纳米管管壁的层数,还可以准确测量管径 和确定碳管结构中的缺陷。
饭岛澄男 S.Iijima
将这些针状产物在高分辨电子显微镜下观察, 发现该针状物是直径为4~30纳米,长约1微米,由 2个到50个同心管构成,相邻同心管之间平均距离 为0.34纳米。
单壁碳纳米管
多壁碳纳米管
进一步实验研究表明,这些纳米量级的微小管状结构是由碳 原子六边形网格按照一定方式排列而形成,或者可以将其想象成 是由一个六边形碳原子形成的平面卷成的中空管体,而在这些管 体的两端可能是由富勒烯形成帽子。这就是多壁纳米碳管。 在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的 纳米碳管,即单壁碳纳米管产物。
碳纳米管吸附原理
碳纳米管吸附原理
碳纳米管是一种由碳原子构成的纳米尺寸的管状结构。
碳纳米管具有高强度、高导电性和高导热性等特点,因此被广泛应用于吸附材料的研究领域。
碳纳米管的吸附原理主要有以下几个方面:
1. 表面积效应:碳纳米管具有非常高的比表面积,可以提供大量的吸附活性位点,使其有更高的吸附能力。
这是因为纳米管具有纳米级的空隙和通道,更多的活性位点可以与吸附分子发生相互作用。
2. π-π堆积效应:碳纳米管的构造使其具有良好的π电子体系,可以与含有芳香环结构的吸附分子发生π-π堆积作用。
这种堆
积作用可以增强吸附分子与碳纳米管之间的相互作用力,从而提高吸附效果。
3. 范德华力:碳纳米管表面上存在范德华力,这种力可以从长距离上吸引吸附分子,并将其紧密地吸附在管表面上。
范德华力是一种弱作用力,但由于碳纳米管具有大量的吸附位点,因此可以累积起来,形成较强的吸附效果。
4. 其他作用力:除了上述几种作用力之外,碳纳米管的表面还可能存在静电作用力、氢键作用力等其他吸附相互作用。
这些作用力都可以对吸附分子发挥一定的吸引力,增强吸附效果。
总的来说,碳纳米管的吸附原理是多种相互作用力的综合效应。
通过利用碳纳米管的高比表面积和特殊结构,可以实现对各种不同物质的高效吸附。
这种吸附特性使碳纳米管在环境污染治理、能源储存和分离等领域具有重要的应用前景。
碳纳米管相对分子质量
碳纳米管相对分子质量
碳纳米管(Carbon Nanotube,CNT)是一种具有特殊结构的一维量子材料,由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约0.34nm,直径一般为2~20 nm。
每个碳原子采取sp2杂化,相互之间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架。
相对分子质量是化学物质相对一个分子质量的量,与碳纳米管相关的质量单位有“道尔顿”(Da),用于表示碳纳米管的相对分子质量。
总之,相对分子质量与碳纳米管本身的结构、化学键和物理性质有关,具体数值可能会因制备方法、纯度、规格等因素而有所不同。
碳纳米管简介
加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15
碳纳米管
碳纳米管概述碳纳米管是一种由石墨碳原子结晶而成的无缝、中空的管状纳米碳材料,可以看作是由石墨烯层卷起来的直径只有几纳米的微型管体,管的一端或两端由富勒烯半球封帽而成。
根据碳纳米管中碳原子层数不同,将碳纳米管分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种。
单壁碳纳米管由单层石墨卷成,管径为1-6Na,具有很高的长径比,是结构完美的单分子材料。
多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成,层间距均为0.34Na。
主要性能1、优异的力学性能由于碳纳米管的结构与高分子材料的结构相似,但碳纳米管的结构更稳定,且具有超高的长径比,所以,碳纳米管具有超高的抗拉强度、良好的柔韧性和弹性。
碳纳米管的抗拉强度是钢的100倍,弹性模量是钢的5倍,而密度只有钢的1/6。
碳纳米管在被压扁后撤去压力,可以象弹簧一样立即恢复原状。
2、良好的导电性能由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能,且随着碳纳米管管径的减少表现出更好的导电性能,最高可以达到金属铜的电导率的一万倍。
据称,当管径小于6Na时,碳纳米管可看成是一根量子导线;当管径小于0.7Na时,碳纳米管在低温条件下具有超导性能。
3、良好的传热性能由于碳纳米管具有超高的长径比,沿其长度方向具有很高的热交换性能,而沿其径向方向热交换性能较低,所以,利用碳纳米管可以合成各向异性的热传导材料。
此外,碳纳米管具有较高的热导率,只要在其它材料中掺入少量碳纳米管,就可以大大提高复合材料的热导率。
4、优异的光学性能碳纳米管具有光学偏振性、光学各向异性、电致发光性及对红外辐射异常敏感等性能。
5、良好的电磁性能碳纳米管的尖端具有纳米尺度的曲率, 在相对较低的电压下就能够发射大量的电子, 呈现出良好的场致发射特性。
6、其它性能碳纳米管还具有熔点高(据称是已知材料中熔点最高的)、吸附能力强、催化催催化性能、宽带微波吸收能力强等性能主要应用1、用于制备碳纳米合成材料,如高强度复合材料、导电塑料、电磁干扰屏蔽材料、隐形材料、暗室吸波材料等。
碳纳米管
碳纳米管是由单层或多层石墨片围绕同一中心轴按一定的螺旋角卷曲而成的无缝纳米级管结构,两端通常被由五元环和七元环参与形成的半球形大富勒烯分子封住,端口的结构遵循鼎足五边形定则和欧拉定理。
端帽大部分都被认为是在六方网格状的碳纳米管中掺杂着五元环或者七元环的拓扑缺陷。
每层纳米管的管壁是一个由碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形网络平面所围成的圆柱面(图1)。
CNT根据管状物的石墨片层数可以分为单壁碳纳米管(SWNTs) 和多壁碳纳米管(MWNTs)。
图1SWNT的结构示意图(1)单壁碳纳米管的结构单壁碳纳米管在概念上可被认为是卷起来的单层石墨烯,直径大小分布范围小、缺陷少,具有更高的均匀一致性,是理想的分子纤维。
SWNT的管径一般为0. 7~3. 0 nm,长度为 1~50 μm,是一种理想的纳米通道,可用作储氢材料、半导体及场发射材料等。
SWNT可看做是由单层石墨烯片卷曲成的,在石墨烯片层卷成圆柱体的过程中,边界上的悬空键随即结合,从而导致碳纳米管轴方向的随机性。
在一般的碳纳米管结构中,碳原子的六边形格子是绕成螺旋型的,碳纳米管具有一定的螺旋度,如果将SWNT的石墨烯面沿纵向展开,就呈现类似于石墨烯面的二维几何形态。
碳纳米管的结构参数都能够由( n,m) 指数来确定。
不同的( n,m) 对应不同的手性矢量、手性角、卷曲方式、直径和周长等结构参数。
根据卷起的方向矢量(n,m)不同,SWNT 大致可呈现金属性(n-m = 3k,k为整数,无能隙)或半导体性(n-m ≠ 3k,k为整数,有能隙)。
根据折起的外部形态的不同,SWNT可分为扶手椅式、锯齿式和手性式。
通常,当m=n 时,称为扶手椅型管; 当 m=0 时,称为锯齿型管; 其他则一般称为手性管。
图2 几种不同类型的单壁碳纳米管(2)多壁碳纳米管的结构MWNT是由几层到几十层石墨烯片同轴卷曲而成的无缝管状物。
其层数从2到50不等,层间距为±nm,与层间距 nm的石墨相当,且层与层之间排列无序。
碳纳米管
结构特征
结构特征
碳纳米管
碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可 形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p轨道彼此交叠在碳纳米管石墨 烯片层外形成高度离域化的大π键,碳纳米管外表面的大π键是碳纳米管与一些具有共轭性能的大分子以非共价 键复合的化学基础。
常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。a1和a2分别表示两个基矢。 (n,m)与碳纳米管的导电性能密切相关。对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这 个方向上表现出金属性,是良好的导体,否则表现为半导体。对于n=m的方向,碳纳米管表现出良好的导电性, 电导率通常可达铜的1万倍。
其他
碳纳米管还具有光学等其他良好的性能。
制备
01
电弧放电法
02
激光烧蚀法
03
固相热解法
04Байду номын сангаас
离子或激光 溅射法
06
催化裂解法
05
聚合反应合 成
电弧放电法
碳纳米管制备电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产 的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在 两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯 (C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对 产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯 度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外 该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的 能量,产物纯化也比较容易。
碳纳米管介绍
碳纳米管介绍碳纳米管是由碳原子构成的纳米尺度管状结构,具有很多独特的物理和化学性质。
它们在材料科学、纳米技术和电子学等领域具有广泛的应用前景。
碳纳米管的发现可以追溯到1991年,由日本科学家秋刀鱼之丞等人首次合成出来。
碳纳米管的结构可以分为单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)两种。
单壁碳纳米管由一个或多个碳原子层卷曲而成,形成一个空心的圆柱体结构;而多壁碳纳米管则是由多个碳层套在一起形成的。
碳纳米管的直径通常在纳米级别,而长度可以达到数十微米。
由于其独特的形态和结构,碳纳米管具有很多优异的性质。
首先,碳纳米管具有很高的强度和刚度,可以承受很大的拉伸和压缩力。
其次,碳纳米管具有优异的导电性和热导性,是一种理想的导电材料。
此外,碳纳米管还具有很高的化学稳定性和抗腐蚀性,可以在极端环境下使用。
碳纳米管的应用领域非常广泛。
在材料科学领域,碳纳米管可以用来制备高性能的复合材料,如碳纳米管增强的聚合物复合材料,具有很高的强度和刚度。
在纳米技术领域,碳纳米管可以用来制备纳米电子器件,如碳纳米管场效应晶体管(Carbon Nanotube Field-Effect Transistor,CNTFET),具有很高的电子迁移率和开关速度。
此外,碳纳米管还可以用来制备纳米传感器、纳米催化剂等纳米器件。
碳纳米管还具有很多其他的特殊性质。
由于其纳米尺度的特点,碳纳米管表现出量子效应和量子限制效应,具有优异的量子输运性质。
此外,碳纳米管还具有光学性质、磁性质和声学性质等多种性质,可以用于制备光学器件、磁性材料和声学材料等。
虽然碳纳米管具有很多优异的性质和应用潜力,但是其在实际应用中还面临一些挑战。
首先,碳纳米管的制备方法比较复杂,需要控制碳原子的生长和组装过程。
其次,碳纳米管的制备成本较高,限制了其大规模应用。
碳纳米管 用途
碳纳米管用途
碳纳米管具有独特的结构和性质,因此在许多领域有着广泛的应用,其中包括:
1. 电子学和纳米电子器件:碳纳米管可以用作高性能的晶体管、场发射显示器和纳米电子存储设备的构建材料。
2. 电池和超级电容器:碳纳米管可以用作电池和超级电容器的电极材料,提供高能量密度和高功率密度。
3. 水处理和膜分离:碳纳米管的高渗透性和选择性使其成为一种用于水处理和膜分离的材料,用于去除重金属、离子和有机污染物。
4. 催化剂:碳纳米管被用作催化剂的基底材料,用于催化化学反应,如氢气生成和二氧化碳转化。
5. 生物医学应用:碳纳米管可以用于生物传感器、生物成像、生物分析和药物传递等生物医学应用。
6. 纳米复合材料:碳纳米管可以与其他材料结合形成纳米复合材料,如碳纳米管增强的聚合物、金属基复合材料等,提高材料的力学性能和导电性能。
总体而言,碳纳米管的应用潜力非常广泛,涵盖了电子学、材料科学、能源、环境、生物医学等多个领域。
纳米碳管 碳纳米管
纳米碳管碳纳米管
纳米碳管,也称为碳纳米管,是一种由碳原子构成的纳米结构
材料。
它们通常具有纳米级直径和微米级长度,呈现出管状结构。
碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。
首先,让我们从结构和性质的角度来看待碳纳米管。
碳纳米管
的结构可以是单层(SWCNTs)或多层(MWCNTs)的碳原子排列而成
的管状结构。
它们通常具有优异的力学性能,如高强度、高导电性
和高导热性,这使得碳纳米管在材料科学和纳米技术领域具有重要
应用价值。
其次,从制备方法的角度来看,碳纳米管可以通过电弧放电法、化学气相沉积法、化学气相沉积法等多种方法制备。
每种方法都有
其独特的优点和局限性,因此在选择制备方法时需要综合考虑所需
的纯度、产率和成本等因素。
再者,从应用领域的角度来看,碳纳米管具有广泛的应用前景。
在材料科学领域,碳纳米管可以用于制备高性能复合材料、导电纳
米材料和传感器等;在生物医学领域,碳纳米管可以用于药物输送、
生物成像和组织工程等方面;在电子学领域,碳纳米管可以用于制备柔性电子器件和纳米电子器件等。
最后,从环境和安全的角度来看,碳纳米管的环境影响和安全性也备受关注。
由于其纳米级尺寸和特殊的化学性质,碳纳米管可能对环境和人体健康造成潜在风险,因此在碳纳米管的生产和应用过程中需要加强对其环境影响和安全性的评估和管理。
综上所述,碳纳米管作为一种重要的纳米结构材料,在结构和性质、制备方法、应用领域和环境安全等方面都具有重要意义和挑战。
对碳纳米管进行深入研究和全面评估,有助于推动其在各个领域的应用和发展。
碳纳米管介绍
此法特点:操作简单, 工艺参数更易控制,生长温度相对较低,成本低,产量大,可规模化生产。但由于其制备的碳纳米管含有许多杂质,且碳纳米管缠绕成微米级大团,需要进一步纯化和分散处理。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能,由于是一维材料,其在径向上的导热性能优越,我们甚至可以在复合材料中掺杂微量的碳纳米管 ,使得复合材料的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无无定形碳出现。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。
3.化学气相沉积法(CVD)
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于隐形材料、电磁屏蔽材料或暗室吸波材料。
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成碳纳米管。
碳纳米管的结构特点
碳纳米管的结构特点
碳纳米管是由碳原子构成的纳米尺寸管状结构,它具有以下结构特点:
1. 单壁或多壁结构:碳纳米管可以是由一层碳原子构成的单壁结构,也可以是由多层碳原子相互包裹形成的多壁结构。
多壁碳纳米管的外壁和内壁之间有一定的间距,形成了空心结构。
2. 稀土结构:碳纳米管呈现出稀土结构,即外壁上的碳原子排列方
式与内壁上的碳原子排列方式不同。
这种稀土结构赋予碳纳米管很强的力学性质和导电性能。
3. 长径比高:碳纳米管的长度可以从几纳米到数百微米不等,而直
径通常在几纳米范围内。
因此,碳纳米管具有很高的长径比,即长度远远大于直径。
4. 结构中的石墨片层:碳纳米管的形成离不开石墨片层之间的卷曲
和相互粘合。
这些石墨片层的排列方式决定了碳纳米管的性质和特性。
5. 高比表面积:由于碳纳米管的小直径和长长度,它们具有很高的
比表面积,有利于表面反应的发生和吸附分子的储存。
6. 高强度和高导电性:碳纳米管具有非常强的力学性能,具有很高的弯曲和拉伸强度。
同时,由于碳纳米管中碳原子的排列方式,它们也具有很好的电导性能,可用于制造微电子器件和导电材料。
这些结构特点使得碳纳米管在诸多领域中具有广泛的应用潜力,如纳米电子学、纳米复合材料、传感器技术、生物医学等。
它们的独特结构和优异性能使得碳纳米管成为纳米科技领域中备受关注的研究对象。
碳纳米管粉末
碳纳米管粉末简介碳纳米管(Carbon Nanotube,简称CNT)是一种由碳原子构成的纳米材料,具有极高的强度、导电性和导热性,被广泛应用于材料科学、电子学、能源领域等。
碳纳米管粉末是由大量碳纳米管组成的粉末状物质,具有较大的比表面积和丰富的表面官能团,可用于制备复合材料、导电墨水、传感器等。
制备方法1. 化学气相沉积法(Chemical Vapor Deposition,CVD)化学气相沉积法是制备碳纳米管粉末最常用的方法之一。
该方法通过在高温下将碳源气体(如乙炔、甲烷等)与催化剂(如金属铁、镍等)反应生成碳纳米管。
反应过程中,碳源气体在催化剂表面解离生成碳原子,然后这些碳原子在催化剂的作用下重新排列形成碳纳米管。
2. 电弧放电法(Arc Discharge Method)电弧放电法是另一种常用的制备碳纳米管粉末的方法。
该方法通过在高温下将两根碳电极之间产生电弧放电,使电极表面的碳原子蒸发并在冷却的金属衬底上沉积形成碳纳米管。
这种方法制备的碳纳米管粉末通常含有较多的杂质,需要经过后续的处理步骤进行纯化。
3. 水热法(Hydrothermal Method)水热法是一种简单、环境友好的制备碳纳米管粉末的方法。
该方法通过将碳源物质与溶剂在高温高压的条件下反应,使碳源物质在溶剂中形成碳纳米管。
水热法制备的碳纳米管粉末可以得到较高纯度的产物,但其制备过程较为复杂,需要控制反应条件和溶剂的选择。
特性与应用1. 特性碳纳米管粉末具有以下特性:•高比表面积:碳纳米管具有纳米级的直径和微米级的长度,因此具有较大的比表面积,有利于与其他材料进行接触和反应。
•优异的力学性能:碳纳米管具有极高的强度和刚度,是目前已知最强的纳米材料之一。
•优异的导电性和导热性:碳纳米管具有优异的电导率和热导率,可用于制备导电材料和导热材料。
•高化学稳定性:碳纳米管具有较好的化学稳定性,能够在较宽的温度和环境条件下保持稳定性。
•多功能性:碳纳米管具有丰富的表面官能团,可通过化学修饰实现不同的功能化,如引入功能基团、改变表面亲疏水性等。
碳纳米管
碳纳米管一、简介(结构和性能)碳纳米管是一种具有石墨结晶的管状纳米碳材料,分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种,直径在纳米量级,具有很高的长径比。
单壁碳纳米管由单层石墨卷成柱状无缝管而形成,是结构完美的单分子材料。
多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成。
单壁碳纳米管根据六边环螺旋方向螺旋角的不同,可以是金属型碳纳米管也可以是半导体型碳纳米管。
碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。
管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。
是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。
它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。
层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。
多壁碳纳米管的电性能和单壁碳纳米管相近。
金属型单壁碳纳米管和金属型多壁碳纳米管碳纳米管均是弹道式导体。
大电流通过不产生热量每平方厘米最大电流密度可达10安培。
碳纳米管也是优良的热传导材料。
多壁碳纳米管的热传导系数超过3000W/m.K,是很好的超导材料。
单壁碳纳米管的超导温度和直径相关,直径越小超导温度越高。
直径1.4nm时超导温度为0.55K,直径0.5nm时超导温度为 5K,直径0.4nm时超导温度为20K 。
碳纳米管还有非常好的力学性能。
小直径的单壁碳纳米管不但坚硬而且强度很高,是目前发现的唯一同时具有极高的弹性模量和抗拉强度的材料。
单壁碳纳米管的弹性模量和抗拉强度分别达到0.64TPa和 37Gpa。
多壁碳纳米管的弹性模量和抗拉强度分别达到0.45TPa和 1.7Gpa。
碳纳米管的抗拉强度可达钢的100倍同时密度只是钢的1/6。
二、碳纳米管的制备方法目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相淀积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。
生物质 碳纳米管
生物质碳纳米管
生物质碳纳米管是一种纳米材料,它是通过将生物质作为原料进行热解或气相沉积等方法制备而成的。
生物质通常包括植物残渣、木材、秸秆等有机废弃物,通过高温处理和碳化,可以得到碳材料,其中可能包括碳纳米管。
碳纳米管是一种碳原子以纳米尺寸排列成管状结构的材料。
它具有独特的电学、力学和热学性质,因此在许多领域,如纳米技术、材料科学和生物医学等方面都具有潜在的应用价值。
生物质碳纳米管可能通过可持续的、环保的方式制备,因为生物质是可再生资源,其利用不仅能够降低对传统石化资源的依赖,还能处理有机废弃物。
这使得生物质碳纳米管在绿色纳米材料研究和应用中引起了关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e) Picture of a CNT and a polymeric sponge placed in a water bath. The CNT sponge is floating on the top while the polyurethane sponge absorbed water and sank to below the surface level. f) A CNT sponge bent to arch-shape at a large-angle by finger tips. g) A 5.5cm1 cm0.18cm sponge twisted by three round turns at the ends without breaking. h) Densification of two cubic-shaped sponges into small pellets (a flat carpet and a spherical particle, respectively) and full recovery to original structure upon ethanol absorption.
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
Adv. Mater. 2010, 22, 617–621
解思深院士
中国科学院物理研究所
主要研究方向: 1.纳米碳管及其它一维纳米材料阵列体系的制备 方法研究,模板生长和可控生长机理研究; 内嵌或外包附及金属掺杂的研究。 2. 纳米碳管及其它一维纳米材料阵列体系的的结构 和谱学研究。 3.纳米碳管及其及其它一维纳米材料、阵列体系的 物性研究。 4.纳米碳管及其它一维纳米材料作为复合材料中加 强材料的应用,界面结构和性质研究。
刘忠范院士
北京大学化学与分子工程学院 (纳米化学研究中心)
研究兴趣:主要从事纳米化学和纳米结构器件研究, 近年来在碳纳米管电子学的材料与器件基础、基于 扫描探针技术的超高密度信息存储研究方面取得一 系列成果。
课题组成员:张 锦
1)低维纳米材料的可控生长和化学合成: 主要利用化学气相沉积(CVD) 技术和化学合成等手段,发展纳电子器件、分子电子器件用新材料。 2) 纳米材料与纳米结构的制备、组装、表征、性能及其应用研究
CNT应用及理论
储氢材料
➢ 人类社会发展所使用的主要能源
煤炭→石油→天然气→?
➢ 氢能特点 ➢ 目前主要的氢气存储方法
金属氢化物、液化、高压储氢及有机氢化物 储氢
➢ 碳纳米管储氢特点 ➢ 影响因素
管径、管间距、管束直径
CNT应用及理论
储氢材料
1997年,AC Dillon等报道了单壁纳米碳管的 中空管可储存和稳定氢分子,引起广泛关注,相关 的实验研究和理论计算工作也相继展开,初步结果 表明:纳米碳管是一种很有发展前途的储氢材料。 单壁纳米碳管的吸氢过程研究发现,氢以很大密度 填充到单壁纳米碳管的管体内部以及单壁纳米碳管 束之间的孔隙,因此单壁纳米碳管具有极佳的储氢 能力,据推测单壁纳米碳管的储氢量可达10%(重 量比)
它方法
03
■微波等离子化学蒸发法 ■微孔模板法 ■太阳能法
国内碳纳米管批量制备情况
深圳纳米港有限公司: 成立于2001年,是国内最早从 事碳纳米管开发和生产的高科技企业。
在国际上首次成功实现碳纳米管的连续化批量产, 年产碳纳米管可达5-10吨,成为亚洲最大的碳纳 米管生产基地,产量居世界前列(2001年数据)。
单壁碳纳米管 直径为1-6 nm
多壁碳纳米管 直径nm → μm
背景介绍
按手性分:
通常依照n ,m 的相对关系,将单 壁碳纳米管分为 achiral 和 chiral 两个基本类型。
Achiral 型又分为zigzag (锯齿
型)和armchair(扶手椅型) 两
类。当n 和m 其中之一为0 时,为
碳纳米管(CNTs)制备及其应用
Contents
目录
1 CNT背景情况介绍及其制备 2 CNT自身理论及应用 3 CNT复合材料
纳米碳管研究是富勒烯的 继续.1991年,NEC公司的 S.Iijima在高分辨电子显微 镜下观察采用电弧法制备 的富勒烯中发现了多壁纳 米碳管(MWNT),直径为430nm,长度为1um。
Fig. 2. TEM images of the MWNTs/PSPEO at lower (a) and higher (b) magnifications
CNT应用及理论
超级电器
超级电容器
双电层电容
法拉弟准电容
比表面积大(250-3000m2/g) 碳纳米管电容量可到每克15-200F,目前数千法拉的电容器已被生产 单壁碳纳米管电容量一般为180F/g,多壁碳纳米管电容量一般为102F/g 单壁碳纳米管电容器功率密度可达20KW/kg,能量密度可达7Wh/kg
CNT的基本性质:
高的机械强度和弹性。
强度≥100倍的钢,密度≤1/6倍的钢 优良的导体和半导体特性。量子限域所致 高的比表面积。 强的吸附性能。 优良的光学特性
发光强度随发射电流的增大而增强。 ……………
力学性能:
碳纳米管的抗拉强度达到50~200GPa,是钢的 100倍,密度却只有钢的1/6,至 少比常规石墨 纤维高一个数量级。它是最强的纤维,在强度 与重量之比方面,这种纤维是最理想的。
北京大学李彦教授
本课题组主要从事碳纳米管的制备、修饰、表征和应用 的研究。发展碳纳米管的可控制备方法,通过化学修饰 和复合对碳纳米管进行进一步的性能调控,同时发展相 应的表征技术以满足可控制备和修饰研究的需求,并探 索基于碳纳米管的材料在纳电子、能源及生物医学等方 面的应用。
沈阳金属所成会明教授 先进炭材料研究部
主要研究领域是先进炭材料及新型能源材料,重点 开展纳米碳管的制备方法、结构与性能、应用探索, 新型储氢材料,新型储能材料等方面的研究工作。
国家重点基础研究规划(973)项目首席科学家、 863计划新材料领域特种功能材料技术主题组专家、 国家杰出青年基金获得者;国际刊物《Carbon》主编、 《新型炭材料》主编
储氢性能:
碳纳米管的中空结构,以及较石墨(0.335nm)略 大的层间距(0.343nm),是否具有更加优良的储氢性能, 也成为科学家们关注的焦点。
1997年,A. C. Dillon对单壁碳纳米管(SWNT)的 储氢性能做了研究,SWNT在0℃时,储氢量达到了5%。
Declutch指出:一辆燃料机车行驶500km,消耗约 31kg的氢气,以现有的油箱来推算,需要氢气储存的重量 和体积能量密度达到65%和62kg/m3。
1993年发现单壁碳纳米 管(SWNT),直径0.4nm4nm,长度可达几微米
图a,b分别是多壁,单壁碳纳米管示意图,图c是碳纳米管的放大电镜图
背景介绍
碳纳米管分类:
碳纳米管按照石墨烯片的层数分类可分为:单壁碳纳米 管(SWNTs)和多壁碳纳米管(MWNTs),与多壁管相比, 单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围 小,缺陷少,具有更高的均匀一致性。
背景介绍
碳纳米管的表征
碳纳米管的原始状态:团聚状态,束状
背景介绍
碳纳米管的表征
有机DMF(N,N-二甲基甲酰胺)中超声分散后碳纳米 管的SEM(左)与TEM(右)
01
碳纳米管 的生产方 法简介
02 03
04
■石墨电弧法 ■浮动催化法(即碳氢化合物催化分解法,又称CVD法) ■激光蒸汽法 ■燃烧火焰法
南昌大学机电工程学院曾效舒教授 公司生产碳纳米管及石墨烯
清华化工系魏飞教授组
天奈公司(Cnano):技术支持-清华化工系魏飞教授组 利用纳米聚团床反应器技术,成功设计出低成本、 大批量制备碳纳米管的工艺流程,目前已形成 日产360公斤、年产120吨、纯度高达80%以上的 多壁纳米管生产能力。
注重基础研究与产业化结合
技术支持:中科院成都有机所于作龙研究小组(催 化)
中科时代纳米公司
中科时代纳米公司(中科院成都有机所)产品: 单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、 工业级多壁碳纳米管
石墨烯、碳纳米管分散液及浆料、碳纳米管填料、 碳纳米管功能母粒、碳纳米管环氧复合物
高纯度(>90wt%)单壁碳纳米管的生产能力已达到100kg/a, 多壁碳纳米管(直径:20-30nm,纯度:>95%)的生产能力已达 到30T/a。
zigzag 型;当n=m 时为armchair
型;其它所有情况都称为chiral 型( 手性管)。
Armchair (n,m)=(5,5)
Zigzag (n,m)=(9,0)
背景介绍
按形态分:
普通封口型 变径型 洋葱型
海胆型
竹节型
念珠型
纺锤型
螺旋型 其他异型
背景介绍
纳米管结构的表征:
扫描隧道显微镜 X射线衍射 孔结构及比表面积 电子衍射 拉曼光谱
力学性能:
碳纳米管力学性质
力学性能:
各种型号的CNT的价格,形状,性能
优异的化学稳定性(C-C键,无悬空键)
碳纳米管具有化学惰性,经历充放电不发生化学作 用。因此,数据保存在这样的一个存储器中可以拥 有更长的保存时间。