4 可靠性预测和分配
可靠性总结2
![可靠性总结2](https://img.taocdn.com/s3/m/332f1ab9fc0a79563c1ec5da50e2524de518d0be.png)
1.可靠性工程的重要性主要表现在三个方面:高科技的需要,经济效益的需要,政治声誉的需要2.产品在规定的条件下和规定的时间内,完成规定功能的能力。
从设计的角度,可靠性可分为基本可靠性和任务可靠性;从应用的角度,可靠性可分为固有可靠性和使用可靠性。
基本可靠性是指产品在规定的条件下无故障的持续时间或概率。
它反映了产品对维修人力的要求。
任务可靠性是指产品在规定的任务剖面中完成规定功能的能力。
它反映了产品对任务成功性的要求.3.可靠性指标(1)可靠度R(t) 0≤R(t)<1 不可靠度(2)故障密度函数f(t)(3)λ(t)也称为产品的瞬时失效率.(4)平均寿命对于不维修产品表示为:失效前平均时间MTTF对于可维修产品表示为:平均故障间隔时间MTBF(5)有效度维修度M(t)——产品在规定条件下进行修理时, 在规定时间内完成修复的概率.平均修复时间MTTR有效度A(t):表示产品在规定条件下保持规定功能的能力。
(固有有效度)(使用有效度))MTBF——反映了可靠性的含义。
MTTR——反映维修活动的一种能力。
4.常用寿命分布函数(1)指数分布主要特点:故障率表现为一个常数,便于计算。
适合对器件处于偶然失效阶段的描述重要性质:无记忆性(2)正态分布主要特点:能同时反映出构成电子元器件产品失效分布的各种微小的独立的随机失效因素的总结果,也即能反映出产品失效模式的多样性和失效机理的复杂性.(3)威布尔分布用三个参数来描述,这三个参数分别是尺度参数α,形状参数β、位置参数γ,5.失效率曲线早期失效期的特点是失效发生在产品使用的初期,失效率较高,随工作时间的延长而迅速下降。
造成早期失效的原因大多属生产型缺陷,由产品本身存在的缺陷所致.通过可靠性设计、加强生产过程的质量控制可减少这一时期的失效。
偶然失效期的特点是失效率很低且很稳定,近似为常数,器件失效往往带有偶然性。
这一时期是使用的最佳阶段。
耗损失效期的特点是失效率明显上升,多由于老化、磨损、疲劳等原因并不是任何一批器件均明显地表现出以上三个失效阶段。
第六章 系统可靠性设计-可靠性预测
![第六章 系统可靠性设计-可靠性预测](https://img.taocdn.com/s3/m/8bc976e381c758f5f61f6720.png)
据。
– 为可靠性分配奠定基础。
可靠性预计的主要价值在于作为设计手段,为设 计决策提供依据。
要求预计工作具有及时性,即在决策点之
前做出预计,提供有用的信息,否则这项工作
会失去意义。
为了达到预计的及时性,在设计的不同阶 段及系统的不同层次上可采用不同的预计方法 ,由粗到细,随着研制工作的深入而不断细化 。
级展开。
2. 典型系统可靠性模型
典型可靠性模型分类
典型可靠性模型 非储备模型 有储备模型
工作储备模型 并联模型 表决模型 桥联模型
非工作储备模型
串联模型
旁联模型
典型可靠性模型
串联模型 并联模型
混联模型
表决模型 非工作贮备模型(旁联模型) 桥联模型
1)串联系统模型
组成系统的所有单元中任一单元的故障都会导致 整个系统故障的称为串联系统。就是该系统中各分 系统的失效是相互独立的,而且如果其中任何一个 分系统发生故障,都会导致整个系统失效,如同链 条的任何一个环节断裂,整个链条就会失效一样。
以是子系统、机器、总成、部件或零件、元件等。
不可修复系统 可修复系统
系 统
两点假设:
为简化计算,认为单元的失效均为独立事件,与其
它单元无关。 为了对可修复系统进行可靠性预测或可靠性评估, 常常将可修复系统简化为不可修复系统来处理。
系统可靠性设计的目的:
1)就是使系统在满足规定的可靠性指标、完成预定
6.2 单元可靠性预测
说明
– 系统可靠性是各单元可靠性的概率综合
– 单元可靠性预计是系统可靠性预计的基础 – 直接预计系统各单元的故障率或可靠度
常用的单元可靠性预计方法:
– 相似产品法 – 评分预计法 – 应力分析法 – 故障率预计法 – 机械产品可靠性预计法
可靠性工程第三章
![可靠性工程第三章](https://img.taocdn.com/s3/m/61e1a203de80d4d8d15a4fb7.png)
100 ×10 -6/h
N 1 G Q 1 N 5 G Q 5
1100 10 1 16 5 10 1 200 20 10 1
6
6
6
300 1.5 10 1 50 110 1
(100 16 5 200 20 300 1.5 50) 10
3-9
可靠性预计的一般程序 1、明确产品的目的、用途、任务、性能参数及失效条件 2、明确产品的组成成分和各个基本元件 3、绘制可靠性框图 4、确定产品所处环境 5、确定产品的应力 6、确定产品的失效分布 7、确定产品失效率 8、建立产品可靠性模型 9、预计产品可靠性 10、编写预计报告
3-10
可靠性预计分类
3-25
0.4856544
R
( 5) U
F1 F3 F2 F4 F1 F2 F3 F1 F2 F4 F1 F3 F4 R6 R7 (1 R1 R2 R3 R4 R5 ( R1 R3 R2 R4 R1 R2 R3 R1 R2 R4 R1 R3 R4 F1 F3 F5 F1 F4 F5 F2 F3 F4 F2 F3 F5 F3 F4 F5 F1 F2 F3 F4 R1 R3 R5 R1 R4 R5 R2 R3 R4 R2 R3 R5 R3 R4 R5 R1 R2 R3 R4 F1 F2 F3 F5 F1 F2 F4 F5 F1 F3 F4 F5 F2 F3 F4 F5 F1 F2 F3 F4 F5 )) R1 R2 R3 R5 R1 R2 R 43 R5 R1 R3 R4 R5 R2 R3 R4 R5 R1 R2 R3 R4 R5
考虑所有的单元均为串联,则系统可靠性下限的一级近似 为:
( RL1) n1 n 2 i 1
可靠性管理细则
![可靠性管理细则](https://img.taocdn.com/s3/m/55a37ac3900ef12d2af90242a8956bec0975a50e.png)
可靠性管理细则1. 引言可靠性是指系统、组件或产品在给定条件下在一定时间内保持正常运行的能力。
可靠性管理是一种系统化的方法,旨在评估、优化和维护系统可靠性,从而提高系统的稳定性和可用性。
本文档将介绍可靠性管理的细则,包括可靠性评估、可靠性设计、可靠性测试和可靠性维护等方面的内容。
2. 可靠性评估可靠性评估是在系统设计阶段进行的,旨在确定系统的可靠性目标和可靠性指标。
以下是可靠性评估的具体步骤:2.1 系统功能分析通过对系统功能的分析,确定系统的功能需求和功能要求。
这些功能需求和功能要求将作为评估系统可靠性的依据。
2.2 故障模式和效果分析(FMEA)故障模式和效果分析是一种常用的评估和优化系统可靠性的方法。
通过对系统故障的模式和效果进行分析,可以确定系统可能出现的故障模式,评估故障对系统性能的影响,并采取相应的措施进行优化。
2.3 可靠性分配可靠性分配是将系统的可靠性要求分配给各个子系统或组件的过程。
通过合理的可靠性分配,可以确保系统的整体可靠性达到预期目标。
3. 可靠性设计可靠性设计是在系统设计阶段考虑可靠性要求的一系列活动。
以下是可靠性设计的主要内容:3.1 设计规范制定详细的设计规范,包括系统架构、功能要求、性能要求、接口要求等。
设计规范应明确地描述系统的可靠性要求,以便设计人员在设计过程中充分考虑可靠性因素。
3.2 可靠性预测和评估通过可靠性预测和评估方法,对系统的可靠性进行定量的评估。
这可以帮助设计人员发现并解决系统中存在的潜在可靠性问题,从而提高系统的可靠性。
3.3 容错设计容错设计是一种设计技术,通过增加系统的冗余和错误检测机制来提高系统的可靠性。
容错设计可以有效地防止单点故障,并提高系统的容错能力。
3.4 可维护性设计可维护性设计是在设计阶段考虑到系统维护需求的一系列活动。
通过合理的设计,可以降低系统的维护难度,提高系统的可维护性,从而保证系统可靠性的持续性。
4. 可靠性测试可靠性测试是在系统开发完成后的一项重要活动,旨在验证系统的可靠性并发现潜在的问题。
设备管理问答题答案
![设备管理问答题答案](https://img.taocdn.com/s3/m/e432c5af3b3567ec112d8a6e.png)
1-1、现代设备的特征是什么?1。
日益大型化和超小型化;2。
运行高速化;3。
功能高级化;4。
自动化和复杂化; 5.节能消耗和环保1-2、设备管理的发展过程分哪几个阶段?1.事后维修阶段;2.设备预防维修管理阶段;3。
设备系统管理阶段;4.设备综合管理阶段1-3、具有我国特色的计划预修制度其主要特点有哪几个方面?1.设备管理由低水平向制度化、标准化、系列化和程序化发展2。
由设备定期大小维修、按期按时检修,向预知检修、按需检修发展3。
由不讲究经济效益的纯维修型管理,向修、管、用并重,追求设备一生最佳效益的综合型管理发展。
4.由单一固定型维修方式,向多种维修方式、集中检修和联合检修发展5.由单纯行政管理向运用经济手段管理发展6.维修技术向新工艺、新材料、新工具和新技术发展1-4、设备管理的意义是什么?答案:1。
关系到产品的产量和质量;2。
关系到产品的成本;3。
关系到安全生产和环境保护;4。
关系到企业生产资金的合理利用1-5、设备的综合效率是指什么?是指设备完好率、主要设备可开动率、主要设备大修理实现率、主要设备利用率、主要设备有效利用率、设备维修费用率和库存各种资金周转期等七项技术经济指标的综合指标,只有综合效益才能反映设备的管理水平。
1-6、设备一生管理哪几个方面的要注意结合?1.制造与使用相结合;2。
修理与改造、更新相结合;3。
群众管理与企业技术队伍管理相结合;4。
技术管理与经济管理相结合;5.日常维护与计划检修相结合.1-7、设备寿命周期理论的内容是什么?1。
设备寿命周期的技术理论;2。
设备寿命周期的经济理论;3.设备寿命周期的管理理论。
2—1、设备规划时,企业决策者应如何选择所需的设备方案?企业决策者应从两方面选择所需的设备方案:一是设备实物形态的性能和结构方案,或称技术方案;二是设备固定资金运动形态的投资方案,或称经济方案,并使两方面相互协调。
2-2、设备规划的一般过程是什么?调查研究,方案罗列,方案评比及优化,方案的决策和实施,以及在试验中继续修改和完善方案2-3、叙述6种复利法的实际应用形式?1.一次支付复利终值;2 一次支付复利现值;3等值系列复利终值;4等额系列基金存储;5。
可靠性预测和分配详解
![可靠性预测和分配详解](https://img.taocdn.com/s3/m/30a4b19c51e2524de518964bcf84b9d529ea2c51.png)
可靠性预测和分配详解什么是可靠性预测和分配可靠性预测和分配是在工程领域中广泛应用的方法,用于评估和预测产品或设备在特定条件下的可靠性,以及将可靠性信息分配到不同组件或系统上。
可靠性预测和分配在新产品的设计和开发阶段尤为重要,因为它可以帮助制定测试和维修计划,减少设备停机时间,提高效率和降低成本。
可靠性预测可靠性预测是一种根据过去的测试数据或经验数据预测产品或设备在未来运行中的表现的方法。
可靠性预测通常包括以下步骤:• 收集数据–从过去的测试和运行中收集到与产品或设备有关的数据。
• 数据清洗和分析–通过统计分析、可靠性建模和其他数学方法,确定与产品或设备有关的因素,并对数据进行清洗和分析。
• 建立模型–根据已分析的数据,建立数学模型来预测产品或设备的可靠性。
• 预测可靠性–利用建立的数学模型,预测产品或设备在特定条件下的可靠性。
可靠性预测的关键是正确收集和分析数据,并建立准确的数学模型。
如果数据不准确或模型不充分,预测的可靠性也会不准确。
可靠性分配可靠性分配是一种将可靠性信息分配到不同组件或系统上的方法,以确定每个组件或系统的贡献和重要性。
可靠性分配通常包括以下步骤:• 确定可靠性需求–确定整个系统或特定组件的可靠性需求。
• 确定组件或系统结构–确定系统的组成结构和组件之间的关系。
• 确定贡献和重要性–根据组件或系统的结构和可靠性需求,确定每个组件或系统的贡献和重要性。
• 分配可靠性–通过数学方法将整个系统可靠性分配到各组件或系统上,以确定每个组件或系统的可靠性目标。
可靠性分配的关键是准确地确定贡献和重要性,以及如何将可靠性分配到不同的组件或系统上。
如果贡献和重要性不准确,或者分配不合理,最终的可靠性可能会受到影响。
可靠性预测和分配的应用可靠性预测和分配在工程领域中有广泛的应用,包括以下方面:• 产品设计和开发–可靠性预测和分配可以帮助制定测试和维修计划,减少设备停机时间,提高生产力和降低成本。
• 维修和保养–可靠性预测和分配可以帮助制定维修计划,准确预测系统或组件的故障率,以及优化维修时间和成本。
(优选)第三节可靠性分配
![(优选)第三节可靠性分配](https://img.taocdn.com/s3/m/9ab4c48610661ed9ac51f34e.png)
Ri (ti ) eiti 1 iti
部件Ai重要度为i
则系统分配给Ai的可靠度 Ri* (ti ) Ri*(ti ) eiiti 1 iiti ,t 1,2,, m
注意: Ri* (ti ) eiiti
1、等同分配法:按部件个数等分(权重相
等)系统可靠度的方法。
串联系统 若系统由n个部件串联组成,可靠度相同, 系统规定的可靠度为 R,第 I个部件的可靠 度为Ri.
R1
R2
R3
……
Rn
n
由R= Ri 得 i1
Ri n R
并联系统
n
RLL1
R 1 1 Ri (t) i1
RLL2
分配到各元件得可靠度为
LL
1
Ri 1 1 Rn
LRLn
优点:简单,快捷,方便;
缺点:未考虑元件已有的预计值(及再分配问题);未考
虑各单元的重要度,复杂程度;
适用条件:元件可靠度、复杂程度大致相同预计值
串并联分配?
等同分配法结束
二、可靠性分配的方法
2、阿林斯分配法 (比例分配法、相对失效率法) 分配前提:已知元件的失效率,进行分配 分配原则:分配给每个部件的失效率正比于预
(优选)第三节可靠性分配
第三节 可靠性分配
一、前言
定义:将系统规定的可靠性指标合理地分配给组 成系统的各部件;
目的:
落实系统可靠性指标; 落实对各部件(或分系统)合理地可靠性要求; 通过分配,暴露系统的薄弱环节,为改进设计提供依
据。 促使设计者全面考虑,以期获得合理设计。
特点:反复进行,直至满意。
可靠性知识总结
![可靠性知识总结](https://img.taocdn.com/s3/m/c280c2c66137ee06eff9188a.png)
第一章可靠性概述1.1 可靠性的内涵1.1.1 产品可靠性的定义可靠性的定义:指产品在规定条件下和规定时间内,完成规定功能的能力。
产品可靠性定义的三个要素是:“规定条件”、“规定时间”和“规定功能”。
“规定条件”指产品使用时的环境条件和工作条件。
“规定时间”指产品规定了的任务时间。
“规定功能”指产品规定了的必须具备的功能及其技术指标。
1.1.2 可靠性与质量的关系现代质量观念认为,质量包含了系统的性能特性、专门特性、经济性、时间性、适应性等方面。
是系统满足使用要求的特性总和。
(如下图所示[1])图性能特性、专门特性及其权衡随着现代工程系统的复杂化,系统的专门特性显得更加重要。
1.1.3 可靠性与系统工程的关系1.2 可靠性基本概念1.2.1 故障的定义与分类(1)有关的几个定义故障——产品不能完成规定的功能或存在不能年规定要求工作的状态。
[2]失效——产品丧失规定的功能。
[2]缺陷——产品的质量特性不满足预期的使用要求,随时间(或工作)过程可能发展成各类故障。
[2]故障模式——故障的表现形式。
[1]故障机理——引起故障的物理、化学变化等内在原因。
[1](2)故障的分类按故障的规律分:偶然故障与渐变故障。
偶然故障是由于偶然因素引起的,只能通过概率统计的方法来预测。
渐变故障是通过事前的检测或监测可以预测到的故障,是由于产品的规定性能随使用时间的增加而逐渐衰退引起的,对电子产品又叫漂移故障。
按故障的后果分:致命性故障与非致命性故障。
按故障的统计特性分:独立故障与从属故障。
不是由另一产品故障引起的故障称为独立故障,反之称为从属故障。
按关联、非关联分:关联故障与非关联故障。
与产品本身有关联。
预期在规定的使用条件下可能发生的任何故障叫关联故障,在解释试验结果或计算可靠性特性值时必须计入;与产品本身无关,预期在使用条件下不可能发生的任何故障叫非关联故障,在解释试验结果或计算可靠性特征量时不应计入。
按责任、非责任分:责任故障与非责任故障。
系统可靠性设计总结
![系统可靠性设计总结](https://img.taocdn.com/s3/m/b6a5f53530b765ce0508763231126edb6e1a7651.png)
上下限法用于系统很复杂的情况,甚至由于考虑单元并不独立等原因不易建立可靠性预计的数学模型,就可用本方法预计得到相当准确的预计值。对不太复杂的系统使用上下限法能比精确的数学模型法较快地求得预计值。本方法在绘得可靠性逻辑框图后,先考虑最简化的情况,再逐步复杂化,逐次算得系统可靠度的上限和下限,并在这上下限间取系统可靠度的预计值。
蒙特卡洛模拟法的概念和求解方法
二、蒙特卡洛模拟法求解步骤: 3)根据概率模型的特点和随机变量的分布特性,设计和选取合适的抽样方法,并对每个随机变量进行抽样(包括直接抽样、分层抽样、相关抽样、重要抽样等)。 4)按照所建立的模型进行仿真试验、计算,求出问题的随机解。 5)统计分析模拟试验结果,给出问题的概率解以及解的精度估计。
5)(冷)储备系统可靠性
冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。
若各单元的失效率相同,
则储备系统的可靠度:
当n=2时:
注意:
1)并联系统和表决系统为工作冗余,即热储备;而储备系统为非工作冗余,叫冷储备。 2)应用——飞机起落架收放系统: 液压、气压、机械应急释放装置 3)平均寿命:(n=2) 并联系.2数学模型法
2.3上下限法
2.1设计初期的 概率预计法
1)设计初期的概略预计法
设计初期的预计,虽然没有足够的数据,但对可靠性研究、方案的比较等均起着重要的作用,缺乏数据的情况可以用相类似产品的数据,或由一批有经验人员按该产品复杂程度与已知可靠性的产品类比评分给定。对于同类产品,有时利用经验公式的所谓快速预计法。这些经验公式是统计与可靠性有关的主要设计参数及性能参数,通过回归分析得出的其基本模型.
机械优化设计试卷期末考试及答案
![机械优化设计试卷期末考试及答案](https://img.taocdn.com/s3/m/b7d8ef3476a20029bc642d45.png)
第一、填空题1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。
2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。
3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。
4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。
5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。
6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。
7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession矩阵为 。
(2.)函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵为2442-⎡⎤⎢⎥-⎣⎦8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。
9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠度最低 的那个单元的可靠度还低。
10.与电子产品相比,机械产品的失效主要是 耗损型失效 。
11. 机械可靠性设计 揭示了概率设计的本质。
12. 二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定。
13.对数正态分布常用于零件的 寿命疲劳强度 等情况。
14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。
15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 。
16. 模型求解 两方面的内容。
17.无约束优化问题的关键是 确定搜索方向 。
18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。
19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据范围涵盖了均值左右 3σ 的区间。
可靠性分解法
![可靠性分解法](https://img.taocdn.com/s3/m/7bd462da28ea81c758f57865.png)
系统可靠性分解法可靠性预测分配和方法预测和分配的关系:可靠性分配以前,事先需进行可靠性预测,可靠性预测过程则与可靠性分配相反,它是自下而上进行的。
预测是为了分配,而分配过程中也会有预测。
因此,可靠性分配是一个有预测→分配→再预测→再分配的反复过程,是一个不断进化的过程。
方法 :可靠性分解的方法很多,有等可靠度等分法、相对失效率法与相对失效概率法、AGREE 分配法、拉格朗日乘子法、动态规划法一.等分法将系统需要达到的可靠度水平,相等地分配到各子系统,这种分配方法称为等可靠度分配法,也称均衡分配法。
按照系统结构和复杂程度,可分为串联系统可靠度等分、并联系统可靠度等分、串并联系统可靠度等分等。
等分中不考虑成本、失效率、安全性等实际情况,以统一标准分配可靠度。
1.1串联系统可靠度等分对串联系统的可靠度来说,一般取决于系统中最薄弱的子系统的可靠度。
因此,其余分系统的可靠度取值再高也意义不大。
出于这种考虑,各子系统应取相同的可靠度进行分配。
对于串联系统,为使系统达到规定的可靠度水平Rs ,各子系统也应具有相当的可靠性水平,其关系式为:当系统的可靠度为s R ,而各分配单元的可靠度为i R 时因此单元的可靠度i R 为1.2并联系统可靠度等分当系统的可靠度指标要求很高(例如Rs>0.99)而选用已有的单元又不能满足要求时,则可选用n 个相同单元的并联系统,这时单元的可靠度远远大于系统的可靠度。
式中 Fs ——系统要求的不可靠度;Fi ——第i 个单元分配到的不可靠度; Rs ——系统要求的可靠度; n ——并联单元数。
()),...,2,1(111n i R F F n ns s i =-==ii F R R -==10nini i s R R R ==∏=11/ 1,2,,ni s R R i n==()1.3串并联系统可靠度等分先将串并联系统化简为“等效串联系统”和“等效单元”,再给同级等效单元分配以相同的可靠度。
可靠性预计——精选推荐
![可靠性预计——精选推荐](https://img.taocdn.com/s3/m/eabca5d06037ee06eff9aef8941ea76e58fa4a98.png)
②黑白电视机电源的可靠性预计。 (i)硅整整流桥(2CP24×4) 第一步 查 GJB/Z299B 一 98 电子设备可靠性预计手册(以下数据均来自此标准, 简称《手册》目次,查出“半导体分立器件”P.38—82。 第二步 在 P.65 查出“电压调整、电压基准及电流调整二极管。
工作失效率模型为:λ p=λ bπ Eπ θ π A 第三步 选择此器件的质量等级,并查出质量系数π θ 。 查 P.41 表 5,1,2-3,选择符合民用产品质量要求的质量等级:B2,并在 P.65 的表 5, 1,2,8-2 查出π θ =1。 第四步 根据该电源的工作环境 GF1,查 P.65 表 5.1.2.8-1,查出π E=1.7。 第五步 查 P.65 表 5,1,2,8—3,由于 2CP24 二极管用于整流,即“电压调整”,
1 π θ =1(表 5.1.12.1
(0.00017×
0.0316
属化孔
-2)
40+0.0011)=0.0079
π E=4(表 5.1.12.1
-1)
π C=1(表 5.1.12.1 -3)
9
λ sp=Σ Niλ Giπ θ i
i=1
3.1287
④元器件应力分析法 应用此法是在产品设计的后期(技术设计)阶段的可靠性预计。这时产品已有原理图、 详细工作电路图、结构图、详细的元器件清单,以及产品的使用环 境,元器件的质量等级和 工作应力已确定的条件下,才能应用。 此法以元器件的基本失效λ b 为基础,根据元器件使用环境、质量等级、工作能力、工 作方式以及对产品的制造工艺等项的不同,计算出元器件的工作失效率(使用失效率),进 而求出部件或单元的失效率,最后计算出系统(产品)的失效率。 元器件的工作失效率(使用失效率)可用下式表述:
第四章-可靠性预计与分配
![第四章-可靠性预计与分配](https://img.taocdn.com/s3/m/3d9a4734eefdc8d376ee32c5.png)
第四章 可靠性预计与分配可靠性预计与分配是可靠性设计与分析中的重要任务之一。
可靠性预计是根据历史的产品可靠性数据(检验或检修产品),系统的构成和机构特点等估计系统的可靠度。
可靠度预计是根据组成系统的元件,器件的可靠度来估计的,是一个自上而下的一种系统综合过程(元器件 组件系统)。
可靠性分配是指在可靠度预计的基础上,将通过初步论证确定了的可靠度指标合理的分配给系统的各组成部分(系统组件元器件)。
可靠度预计与分配是一种反复迭代,逐步求解的过程。
可靠度预计的目的:(1) 评价是否能够达到要求的可靠性指标(2) (方案论证阶段)通过预计,比较不同的方案的可靠性水平,为方案选择提供基础。
(3) (在设计中),通过预计,发现影响系统可靠度的主要因素,指出薄弱环节,采取设计措施,提高系统的可靠度。
(4) 为可靠性分配奠定基础。
4.1可靠性预计方法可靠度预计分为单元可靠度预计和系统可靠性预计。
1) 单元可靠性预计方法(实际上这里的单元也具有相对的概念) 系统是有许多单元组成的,系统可靠性是各单元可靠度的概念的综合。
因此,单元可靠度是系统可靠度预计的基础。
=λλGFKKF——修正系数λG——单元的基本失效率,可以从有关手册中查到2) 系统可靠性预计 i.数学模型法对于能直接给出可靠性数学模型的串联,并联,混联,表决,旁联系统,可以采用第二章介绍的有关公式进行可靠性预计,通常称为数学模型法。
ii.边值法(上下限法)主要用于不能用前述数学模型求解的复杂系统。
a) 上限法的计算(1) 只考虑系统中的串联单元R RU 10=R 2(认为并联部分可靠性很高,可靠度为1)(2) 只考虑系统中两个并联单元失效而引起系统失效的概率(认为有三个以上单元的并联系统可靠度为1)=P 1R 1R 2(F F F F F F F F F F 8764546353++++)此时,系统可靠性上限法为(修正为)P R RU U 101-=(3) 考虑系统中3个并联单元失效而引起系统失效的概率,方法同②中所述。
可靠性工程师考试核心技能概览
![可靠性工程师考试核心技能概览](https://img.taocdn.com/s3/m/032ea81e32687e21af45b307e87101f69e31fbea.png)
可靠性工程师考试核心技能概览可靠性工程师考试涉及的技能是多方面的,这些技能不仅涵盖了理论知识,还包括了实践应用、数据分析、项目管理等多个方面。
以下是一些主要的技能点:一、专业知识与理论1.可靠性工程基础:熟悉可靠性工程的基本概念、原理和方法,了解可靠性工程在产品设计、制造、使用和维护等各个阶段的应用。
2.数学与统计:掌握概率论、数理统计等基础知识,能够运用统计方法分析和处理可靠性数据。
3.失效模式与效应分析(FMEA):了解并掌握FMEA的方法和技巧,能够识别产品设计和过程中的潜在失效模式及其影响。
4.故障树分析(FTA):熟悉FTA的原理和应用,能够构建故障树模型,进行定性和定量分析。
5.可靠性预计与分配:掌握可靠性预计和分配的方法,能够对产品的可靠性进行定量评估和预测。
二、实践与应用1.可靠性试验设计:了解各种可靠性试验的方法和标准,能够设计并实施可靠性试验,以验证产品的可靠性水平。
2.数据分析与评估:具备处理和分析大量数据的能力,能够运用统计分析方法识别故障模式、预测失效率和评估系统性能。
3.可靠性设计与改进:能够根据可靠性分析结果,提出并实施改进措施,提高产品的可靠性水平。
4.项目管理:掌握项目管理的基本知识和技能,能够组织和协调团队成员,确保项目的顺利进行。
三、沟通与协作1.沟通能力:具备良好的沟通能力和团队合作精神,能够与不同部门和团队成员进行有效的沟通和协作。
2.报告撰写:能够清晰地撰写可靠性分析报告和项目总结,向管理层和客户提供准确的信息和建议。
四、专业技能与工具1.计算机技能:掌握计算机编程语言和办公软件等基本技能,能够运用计算机进行数据处理和分析。
2.可靠性分析软件:熟悉常用的可靠性分析软件(如ReliaSoft等),能够运用软件进行可靠性建模、预测和分析。
3.行业标准与法规:了解并熟悉与可靠性工程相关的国家和国际标准、法规和指南,如ISO 9001、IEC 61508等。
五、持续学习与创新能力1.持续学习:保持对新技术和新方法的关注,不断学习和更新自己的知识体系。
4可靠性分配
![4可靠性分配](https://img.taocdn.com/s3/m/66bde91c960590c69fc37634.png)
的联络和配合。
帮助设计者了解汽车总成及零部件的可靠 性与汽车系统可靠性之间的关系,使之心中 有数,减少盲目性,明确设计的基本问题; 通过可靠性分配,容易暴露汽车系统的薄弱 环节,为改进设计提供途径和依据。
(4)通过可靠性分配,有利于增强设计者的全 局观念。
系统
总成
零件
可靠性分配的过程是自上而下进行的,是 一个有预测——分配——再预测——再分配的 反复过程。通过自下而上、自上而下的反复研 究,就会对系统的可靠性加深了解,从而以科 学、合理的方法有目的、有预见地解决可靠性 方面所存在的问题。
➢可靠性预测是可靠性分配的基础
可靠性预测和可靠性分配在产品设计 中交替进行。
通过计算,得到其余三部分的可靠度为0.95
3、混联系统:
一般先化成串联等效单元,同级等效单元 分配给相同的可靠。
例:如图所示,先从最后等效逻辑框图开始分
配。
R2=RS1=1-(1-RS2)1/2 R1=RS2=RS1/2
R3=R4=RS11/2
各单元的可靠度:
R1=RS2=RS1/2 R2=RS1=1-(1-RS2)1/2 R3=R4=RS11/2
全面衡量汽车系统的质量、费用及性能等因 素,以获得汽车系统设计的全局效果。
可靠性设计是保证产品可靠性的根本,而可 靠性分配是可靠性设计的前提,它可使设计 者摆脱“干着看”、“走着瞧”、“头疼医 头”的盲目被动局面。
四、可靠性分配与预测的关系
➢可靠性预测和可靠性分配的过程不同 预测:
零件
总成
系统
分配:
• 相对失效率分配法的特点:
以单元在系统中所处的地位来分配。 分配于各子系统的(容许)失效率大小,与 预测失效率有很大关系。预侧的失效率越大, 分配给它的失效率也越大;反之亦然,可靠 性很高的产品,分配的(容许)失效率也越 小。
可靠性概论
![可靠性概论](https://img.taocdn.com/s3/m/1f3775232af90242a895e54d.png)
= 10 /110 = 9.09%
= 53 /110 = 48.18%
35
1.2 可靠性特征量
三、失效概率密度 f(t)
1、失效概率密度——是累积失效概率对时 间的变化率,记作f(t)。它表示产品寿命落在 包含t的单位时间内的概率,即产品在单位时间 内失效的概率。 其表示式为:
dF (t ) f (t ) F (t ) dt
(3)规定的时间,是指产品的工作时间,也称任务时间。
例 如 , 某 种 家 电 , 规 定 90% 设 备 无 故 障 工 作 时 间 为
15000h,那么在15000h之内,这一批产品绝大部分不会发
生故障;但超过15000h,则不能保证完好工作的百分比。 规定时间的单位可以是分、秒、小时、天、月、年, 也可以是周期、次数、里程等。如继电器等用触点开关的 次数表示。
包括了狭义可靠性和维修性两个方面的内容。
维修性: 是指产品在规定的条件下和规定的时间内,按规定 的程序和方法进行维修时,保持或恢复到能完成规定功 能的能力。
11
1.1 可靠性基本概念
广义可靠性实质上就是产品的有效性。
有效性(也称有用性)是指可维修产品在某时刻具
有或保持规定功能的能力。
实际上,有效性是将一个可维修产品的可靠性和维 修性有机地结合起来,用一个统一的尺度来评价产品在 全部使用过程中能有效工作的程度和比率。 它表示产品 正常工作的能力。
国家标准《可靠性、维修性术语》(GB 3187—1994)
把可靠性定义为:
产品在规定条件下和规定时间内,完成规定功能的 能力(或概率)。
4
1.1 可靠性基本概念
( 1 )产品,是指可以单独研究、分别试验的任何部件、组
可靠性技术
![可靠性技术](https://img.taocdn.com/s3/m/3dd77643f18583d048645937.png)
第十七章可靠性技术产品的质量指标是产品技术性能指标和产品可靠性指标的综合。
仅仅用产品技术性能指标不能反映产品质量的全貌。
只有具备优良的技术性能指标又具备经久耐用,充分可靠、易维护、易使用等特点的产品,才称得上是一个高质量的产品。
可靠性指标和技术性能指标最大的区别点在于:技术性能不涉及时间因素,它可以用仪器来测量;可靠性与时间紧密联系,它不能直接用仪器测量,要衡量产品的可靠性,必须进行大量的试验分析和统计分析,调查研究以及数学计算。
※本章要求(1)掌握产品可靠性的定义;(2)掌握产品可靠性函数及其计算;(3)掌握产品失效率的计算方法(4)熟悉失效率曲线与类型;(5)掌握常用的失效分布函数;(6)熟悉可靠性分配的概念与等分配方法;(7)了解故障树分析方法。
※本章重点(1)产品可靠性与可靠度函数(2)产品的失效率函数(3)常用的失效分布(4)可靠性预测与分配※本章难点(1)产品的可靠度函数及其计算(2)产品的失效率计算(3)失效分布函数计算§1产品可靠性的概念一、产品可靠性定义所谓可靠性是指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定的能力。
为了正确理解可靠性的定义,应注意:首先,必须明确产品可靠性研究的对象。
其次,必须明确产品可靠性所规定的条件。
再次,必须明确所规定的时间。
最后,必须明确产品所需完成规定的功能。
对于可修复产品来说,可靠性的含义应指产品在其整个寿命周期内完成规定功能的能力。
其中故障是指产品或产品的一部分不能或将不能完成规定功能的事件或状态叫出故障,对某些产品如电子元器件等亦称失效。
分为:致命性故障,产品不能完成规定任务或可能导致重大损失;系统性故障,由某一固有因素引起,以特定形式出现的;偶然故障,由于偶然因素引起得故障。
可靠性需要满足:1)不发生故障。
2)发生故障后能方便地、及时地修复,以保持良好功能状态能力,即要有良好的维修性。
所谓维修性是指在规定条件下使用的产品在规定的时间内,按规定的程序和方法进行维修时,保持和恢复到能完成规定功能的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 某项设备由发射机、接收机、信息处理 与控制机、监控台监测信号源、射频分机、 天线等七部分组成,其中发射机所用的元 器件及失效率估计如下表所示。试估计发 射机的故障。
4.相似设备法
这种方法是根据与所研究的新设备相似的老设备的可靠性, 考虑到新设备在可靠性方面的特点,用比较的方法估计新 设备可靠性的方法。经验公式为
例: 系统可靠性逻辑框图如下图所示, 已知各单元的失效概率为:FA=0.0247; FB=0.0344; FC=0.062; FD=0.0488; FE=0.0979;FF=0.044; FG=0.0373; FH=0.0685;试用上下限法求系统的可靠 度,并与数学模型法的结果比较。
3.元件计数法
n
F j Fk R j Rk
n—系统中的单元总数; n1—系统中的并联单元数目; Rj,Fj—单元j,j=1,2,…,nl,的可靠度,不可靠度; RjRk,FjFk—并联子系统中的单元对的可靠度,不可靠 度,这种单元对的两个单元同时失效时,系统仍能正 常工作; n2—上述单元对数。
(1)上限值的计算
当系统中的并联子系统可靠性很高时,可以
认为这些并联部件或冗余部分的可靠度都近 似于1,而系统失效主要是由串联单元引起的, 因此在计算系统可靠度的上限值时,只考虑 系统中的串联单元。
RU 0 R1 R2 Rm Ri
i 1
m
系统应取m=2,即 RU 0 R1R2 当系统中的并联子系统的可靠性较差时,若 只考虑串联单元则所算得的系统可靠度的上限值 会偏高,因而应当考虑并联子系统对系统可靠度 上限值的影响。但对于由3个以上的单元组成的并 联子系统,一般可认为其可靠性很高,也就不考 虑其影响。
m m
(2)下限值的计算
首先是把系统中的所有单元,不管是串 联的还是并联的、贮备的,都看成是串 联的。
n i 1
系统的可靠度下限初始值为 RL 0 Ri
在系统的并联子系统中如果仅有1个单元失效,系统 仍能正常工作。有的并联子系统,甚至允许有2个、3 个或更多的单元失效而不影响整个系统的正常工作。
对于图a所示的串并联系统作两步化简后, 则可先从最后的等效串联系统(图c)开始按 等分配法对各单元分配可靠度:
/2 R1 Rs 234 R1 s
再由图b分得
R2 Rs34 1 1 Rs 234
1/ 2
最后再求得图a中的R3和R4:
1/ 2 R3 R4 R34
G
它们是在一定的环境条件(包括一定的试验 条件、使用条件)下得出的,设计时可从手 册、资料中查得。
4.1.1 单元的可靠性预计
根据其使用条件确定其应用失效率,即 单元在现场使用中的失效率。它可以直 接使用现场实测的失效率数据,也可以 根据不同的使用环境选取相应的修正系 数KF值,并按下式计算求出该环境下的 失效率 K F G
计算所用的系统可靠度下限值公式:
RL1 Ri 1 i 1
n
n1 F j j 1 R j
RL 2 Ri 1 i 1
n
F j Fk j 1 R j j , k n 2 R j Rk
4.2.2 利用预计值的分配方法
当对某一系统进行可靠性预计后,有时 发现该系统的可靠度预计值Rsy小于要求 该系统应该达到可靠度值Rsq。此时必须 重新确定各组成单元(也包括子系统) 的可靠度,即对各单元的可靠度进行重 新分配。
4.2.2 利用预计值的分配方法
设被研究系统由n个单元(或子系统)组成,其可 靠度预计值符号为Riy,失效概率预计值符号为qiy, 分配后可靠度分配值符号为Rip,失效概率分配值 符号为qip。 若该串联系统各组成部分的失效分布均服从指数 分布,则各组成部分的失效率的预计值符号为 iy
i k1d i
r k1d r
式中 i —老设备的故障率; k1—比例系数; r —新设备的故障率 di—老设备内可能的缺陷数; dr—新设备内可能的缺陷数,且 d r di d n de
式中 dn—新增加的缺陷数;de—已排除的缺陷数。 还可以根据新老设备相对复杂性进行估计,即
当系统中的单元3与5,3与6,4与5,4与6,7与 8中任一对并联单元失效,均将导致系统失效
R1R2 (F3F5+F3F6+F4F5+F4F6+F7F8) RU= R1R2 - R1R2 (F3F5+F3F6+F4F5+F4F6+F7F8)
写成一般形式为
m
RU Ri Ri ( F j Fk ) Ri 1 ( F j Fk ) ( j ,k )s ( j , k ) s i 1 i 1 i 1 m—系统中的串联单元数; FjFk—并联的两个单元同时失 效而导致系统失效时,该两单元的失效概率之积,s—一 对并联单元同时失效而导致系统失效的单元对数,
由于单元多为元件或零、部件,而在机械产 品中的零、部件都是经过磨合阶段才正常工 作的,因此其失效率基本保持一定,处于偶 然失效期,其可靠度函数服从指数分布,即
R(t ) e
t
exp(K F Gt )
4.1.2系统可靠性预计 1数学模型法
2边值法
3元件计数法 4相似设备法
1数学模型法 (1) 串联系统的可靠性预测; (2) 并联系统的可靠性预测; (3) 贮备系统的可靠性预测; (4) 表决系统的可靠性预测; (5) 串并联系统的可靠性预测;
如果在3与4,3与7,4与7,5与6,5与8,6与8的单元对中有一对(两个) 单元失效,或3,4,7或3,4,8或5,6,7和5,6,8单元组中有一组(3个)单 元失效,系统仍能正常工作。
则系统的可靠度下限值
P1—考虑系统的并联子系统中有1个单元失效,系统仍能正常工作的概率; P2—考虑系统的任一并联子系统中有2个单元失效,系统仍能正常工作的概率。
这种方法仅适用于方案论证和早期设计阶段,只需要 知道整个系统采用元器件种类和数量,就能很快地进 行可靠性预计,以便粗略地判断某设计方案的可行性。 若设系统所用元、器件的种类数为N,第i种元、器件 数量为ni,则系统的失效率为
s ni i
i 1
N
需要说明的是上式仅适用于整个系统在同一环境中使用。 若元、器件的使用环境不同,同一种类的元、器件其应 用失效率也不同,应分别加以处理,然后相加再求出总 的失效率。
4.1 可靠性预计
可靠性预计的目的
(1)了解设计任务所提的可靠性指标是否能满足,是否 已满足;即检验设计是否能满足给定的可靠性目标, 预计产品的可靠度值。
(2)便于比较不同设计方案的特点及可靠度,以选择最 佳设计方案。 (3)查明系统中可靠性薄弱环节。根据技术和经济上的 可能性,协调设计参数及性能指标,以便在给定性能、 费用和寿命要求下,找到可靠性指标最佳的设计方案, 以求得合理地提高产品的可靠性。
Ri (Rs )1 n (0.729)1 3 0.9
即分配结果为 R1 R2 R3 0.9
4.2.1.2 并联系统可靠度分配
Rs 1 1 Ri
Ri 1 1 Rs
n
1/ n
1,2, n
4.2.1.3 串并联系统可靠度分配
利用等分配法对串并联系统进行可靠性分配 时,可先将串并联系统化简为“等效串联系统” 和“等效单元”,再给同级等效单元分配以相同 的可靠度。
4.2 可靠性分配
4.2.1 等分配法 4.2.2 利用预计值的分配方法 4.2.3 相对失效率法和相对失效 概率法(阿林斯分配法)
4.2.4 AGREE分配法(代数分配法)
4.2.5 花费最小的最优化分配方法 (努力最小算法)
4.2.1等分配法 对系统中的全部单元分配以相等的可 靠度的方法称为“等分配法”或“等同 分配法”。 4.2.1.1 串联系统可靠度分配 4.2.1.2 并联系统可靠度分配 4.2.1.3 串并联系统可靠度分配
4.1 可靠性预计
可靠性预计的目的
(4)发现影响产品可靠性的主要因素,找出薄 弱环节,以采取必要的措施,降低产品的失 效率,提高其可靠度。 (5)作为可靠性分配的基础。
4.1 可靠性预计
4.1.1 单元的可靠性预计
4.1.2 系统可靠性预计
4.1.1 单元的可靠性预计
Leabharlann 首先要确定单元的基本失效率
第四章 可靠性预计和分配
4.1 可靠性预计 4.2 可靠性分配
4.1 可靠性预计
一、什么是可靠性预计
可靠性预计是在设计阶段进行的定量地估计未来 产品的可靠性的方法。
它是运用以往的工程经验、故障数据,当前的技 术水平,尤其是以元器件、零部件的失效率作为 依据,预计产品(元器件、零部件、子系统或系 统)实际可能达到的可靠度,即预计这些产品在 特定的应用中完成规定功能的概率。
n1
Fj
(3)按上、下限值综合预计系统的可靠度
上、下限值RU,RL的算术平均值
Rs 1 1 RU 1 RL
采用边值法计算系统可靠度时,一定要注意使计 算上、下限的基点一致,即如果计算上限值时只 考虑了一个并联单元失效,则计算下限值时也必 须只考虑一个单元失效;如果上限值同时考虑了 一对并联单元失效,那么下限值也必须如此。
P 1 R1 R2 ( F3 R4 R5 R6 R7 R8 R3 F4 R5 R6 R7 R8 R3 R4 R5 R6 R7 F8 ) F3 F4 F8 R1 R2 R8 R R R 4 8 3
写成一般形式为