8.3向量值函数在定向曲线上的积分
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
b{P[x(t),y(t)x ](t)Q[x(t),y(t)]y(t)}dt a
特殊情形
( 1 ) L : y y ( x ) x : a b .
则 P d x Q d y b { P [ x ,y ( x ) Q ] [ x ,y ( x )y ( ] x )d x } .
L
a
( 2 ) L : x x ( y ) y : c d .
则 P d x Q d y d { P [ x ( y )y ] x , ( y ) Q [ x ( y )y ] , d y } .
L
c
例1 计算 xd yx,其L 中 为抛y物 2x上 线从 L A(1,1)到 B(1,1)的一. 段弧 y B(1,1)
定向曲线 A ⌒ B 的参数方程写作:
xx(t), yy(t), zz(t),
t:ab,
其A 中 对 t a 起 ,应 终 B 对 点 点 t b .应
定向曲线A ⌒ B 的参数方程也可 表用 示向 :量
r r ( t ) x ( t ) i y ( t ) j z ( t ) k , t: a b ,
dr 称为定向弧元, 素
dx,dy为 d r 的坐 ,称 标 为定 L的 向 投 弧 影 .
3. 第二类曲线积分存在的充分条件:
当 F(x,y)在光 (或滑 分段 )的光 曲L滑 上 线弧
连续 ,第时 二类曲 LF(x,线 y)dr积 必分 存 . 在
4.第二类曲线积分的性质
1) 第二类曲线积分具有线性性质
P (k, k) x k Q (k ,k ) y k
记作
LP (x,y)dxQ (x,y)dy
都存在, 则称此极限为向量值函数 F(x,y)
在定向曲线弧 L 上 对坐标的曲线积分,
或第二类曲线积分.
n
Pபைடு நூலகம்x,
L
y)dxl im 0k 1P(k,称k为)对xk,坐标x
的曲线积分;
n
Q(x,
L
解一:化为y对 的定积, 分
x y2,
y从1到 1.
o
xd yx⌒xd yx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 1
3) 设 L是有向 ,L曲 是线 L 与 方弧 向相反 有向曲 , 则线弧
P ( x , y ) d x Q ( x , y ) d y P ( x , y ) d x Q ( x , y ) d y
L
L
即对坐标的曲线积分与曲线的方向有关.
二、第二类曲线积分的计算
基本思路: 求曲线积分 转 化 计算定积分 定理 平面光滑定向曲线L弧的参数方程为
第三节 向量值函数在定向曲线上的积分
(第二类曲线积分)
一、定向曲线及其切向量 二、问题的提出 三、第二类曲线积分的概念 四、第二类曲线积分的计算
一、定向曲线及其切向量
1、 带有确定走向的曲线称为定向曲线
用 A ⌒ B 表示起点为 A , 终点为 B 的定向
曲线(弧).
定向曲 的 线反向曲线 -记 . 为 曲线 与 -代表两条不同.的曲线
L(P1dxQ1dy)(P2dxQ2dy) LP1dxQ1dyLP2dxQ2dy
2) 对于定向积分曲线弧的可加性
L L 1L 2,则 L P (x ,y)d xQ (x ,y)d y
P (x ,y)d xQ (x ,y)d y P (x ,y)d xQ (x ,y)d y.
L 1
L 2
其r中 (t)表示 上对t应 的参 点数 .的向
2、定向光滑曲线上各点处的切向量的方向总是 与曲线的走向相一致 .
由参数方程曲 给线 出 在的 其定 上向 任一
切向量 为:
x (t),y (t),z (t)
其a 中 b 时 取 当,当 正 a b 时 号 取.负
一、 对坐标的曲线积分的概念与性质
W k F (k ,k ) M k 1 M k
P ( k ,k ) x k Q ( k ,k ) y k
3) “(求和)近似和”
n
W P ( k ,k ) x k Q ( ξ k ,k ) y k
k 1
4) “取极限”
n
W
lim
0
k1
P ( ξ k , η k ) Δ x k Q ξ k , η k ) Δ y k (
y)dyl i0m k 1Q(k,称k为)对yk坐,标
y
的曲线积分.
LF(x,y)dr L P (x ,y ) d x Q (x ,y ) d y
L 称为定向积分曲,线 P(x,y)dxQ(x,y)dy称为积分 . 表达
若记 d r (dx,dy), 对坐标的曲线积分也可写作
LF(x,y)dr L P (x ,y ) d x Q (x ,y ) d y
(其中 为 n 个小弧段的
最大长度)
y F(k,k)
L
M yk k B
Mxkk1
A
O
x
2. 定义. 设 L 为xOy 平面内从 A 到B 的一条有向光滑
弧, 在L 上定义了一个向量函数
F(x,y)P (x,y)iQ (x,y)j
若对 L 的任意分割和在局部弧段上任意取点, 极限
n
lim
0
k 1
x x(t) , y y(t) , t :a b P(x, y) ,Q(x, y) 在L上有定义且连,续x(t),y(t) 在 以a 及b 为端点的闭区间上具一有阶连续导数 , 且x2(t) y2(t) 0 , 则第二类曲线积分
P(x, y)dx Q(x, y)dy存在, L 且P(x,y)dxQ(x,y)dy
“(求和)近似和” “取极限”
1) “(分割)大化小”.
把L分成 n 个小弧段, F 沿 Mk1Mk
所做的功为 Wk, 则
y
F(k,k)
n
W Wk
L
M yk k
Mxkk1
B
k 1
A
2) “(近似)常代变”
O
x
有向小弧段 Mk1Mk 用有向线段 Mk1Mk ( xk,yk)
近似代替, 在 Mk1Mk 上任取一点 (k,k),则有
1. 引例: 变力沿曲线所作的功.
设一质点受如下变力作用
F(x,y)P (x,y)iQ (x,y)j
y L
A O
B x
在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B,求移
动过程中变力所作的功W. 变力沿直线所作的功
解决办法: “(分割)大化小”
F
A
WFAB cos“(近似)常代变”
B FAB
b{P[x(t),y(t)x ](t)Q[x(t),y(t)]y(t)}dt a
特殊情形
( 1 ) L : y y ( x ) x : a b .
则 P d x Q d y b { P [ x ,y ( x ) Q ] [ x ,y ( x )y ( ] x )d x } .
L
a
( 2 ) L : x x ( y ) y : c d .
则 P d x Q d y d { P [ x ( y )y ] x , ( y ) Q [ x ( y )y ] , d y } .
L
c
例1 计算 xd yx,其L 中 为抛y物 2x上 线从 L A(1,1)到 B(1,1)的一. 段弧 y B(1,1)
定向曲线 A ⌒ B 的参数方程写作:
xx(t), yy(t), zz(t),
t:ab,
其A 中 对 t a 起 ,应 终 B 对 点 点 t b .应
定向曲线A ⌒ B 的参数方程也可 表用 示向 :量
r r ( t ) x ( t ) i y ( t ) j z ( t ) k , t: a b ,
dr 称为定向弧元, 素
dx,dy为 d r 的坐 ,称 标 为定 L的 向 投 弧 影 .
3. 第二类曲线积分存在的充分条件:
当 F(x,y)在光 (或滑 分段 )的光 曲L滑 上 线弧
连续 ,第时 二类曲 LF(x,线 y)dr积 必分 存 . 在
4.第二类曲线积分的性质
1) 第二类曲线积分具有线性性质
P (k, k) x k Q (k ,k ) y k
记作
LP (x,y)dxQ (x,y)dy
都存在, 则称此极限为向量值函数 F(x,y)
在定向曲线弧 L 上 对坐标的曲线积分,
或第二类曲线积分.
n
Pபைடு நூலகம்x,
L
y)dxl im 0k 1P(k,称k为)对xk,坐标x
的曲线积分;
n
Q(x,
L
解一:化为y对 的定积, 分
x y2,
y从1到 1.
o
xd yx⌒xd yx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 1
3) 设 L是有向 ,L曲 是线 L 与 方弧 向相反 有向曲 , 则线弧
P ( x , y ) d x Q ( x , y ) d y P ( x , y ) d x Q ( x , y ) d y
L
L
即对坐标的曲线积分与曲线的方向有关.
二、第二类曲线积分的计算
基本思路: 求曲线积分 转 化 计算定积分 定理 平面光滑定向曲线L弧的参数方程为
第三节 向量值函数在定向曲线上的积分
(第二类曲线积分)
一、定向曲线及其切向量 二、问题的提出 三、第二类曲线积分的概念 四、第二类曲线积分的计算
一、定向曲线及其切向量
1、 带有确定走向的曲线称为定向曲线
用 A ⌒ B 表示起点为 A , 终点为 B 的定向
曲线(弧).
定向曲 的 线反向曲线 -记 . 为 曲线 与 -代表两条不同.的曲线
L(P1dxQ1dy)(P2dxQ2dy) LP1dxQ1dyLP2dxQ2dy
2) 对于定向积分曲线弧的可加性
L L 1L 2,则 L P (x ,y)d xQ (x ,y)d y
P (x ,y)d xQ (x ,y)d y P (x ,y)d xQ (x ,y)d y.
L 1
L 2
其r中 (t)表示 上对t应 的参 点数 .的向
2、定向光滑曲线上各点处的切向量的方向总是 与曲线的走向相一致 .
由参数方程曲 给线 出 在的 其定 上向 任一
切向量 为:
x (t),y (t),z (t)
其a 中 b 时 取 当,当 正 a b 时 号 取.负
一、 对坐标的曲线积分的概念与性质
W k F (k ,k ) M k 1 M k
P ( k ,k ) x k Q ( k ,k ) y k
3) “(求和)近似和”
n
W P ( k ,k ) x k Q ( ξ k ,k ) y k
k 1
4) “取极限”
n
W
lim
0
k1
P ( ξ k , η k ) Δ x k Q ξ k , η k ) Δ y k (
y)dyl i0m k 1Q(k,称k为)对yk坐,标
y
的曲线积分.
LF(x,y)dr L P (x ,y ) d x Q (x ,y ) d y
L 称为定向积分曲,线 P(x,y)dxQ(x,y)dy称为积分 . 表达
若记 d r (dx,dy), 对坐标的曲线积分也可写作
LF(x,y)dr L P (x ,y ) d x Q (x ,y ) d y
(其中 为 n 个小弧段的
最大长度)
y F(k,k)
L
M yk k B
Mxkk1
A
O
x
2. 定义. 设 L 为xOy 平面内从 A 到B 的一条有向光滑
弧, 在L 上定义了一个向量函数
F(x,y)P (x,y)iQ (x,y)j
若对 L 的任意分割和在局部弧段上任意取点, 极限
n
lim
0
k 1
x x(t) , y y(t) , t :a b P(x, y) ,Q(x, y) 在L上有定义且连,续x(t),y(t) 在 以a 及b 为端点的闭区间上具一有阶连续导数 , 且x2(t) y2(t) 0 , 则第二类曲线积分
P(x, y)dx Q(x, y)dy存在, L 且P(x,y)dxQ(x,y)dy
“(求和)近似和” “取极限”
1) “(分割)大化小”.
把L分成 n 个小弧段, F 沿 Mk1Mk
所做的功为 Wk, 则
y
F(k,k)
n
W Wk
L
M yk k
Mxkk1
B
k 1
A
2) “(近似)常代变”
O
x
有向小弧段 Mk1Mk 用有向线段 Mk1Mk ( xk,yk)
近似代替, 在 Mk1Mk 上任取一点 (k,k),则有
1. 引例: 变力沿曲线所作的功.
设一质点受如下变力作用
F(x,y)P (x,y)iQ (x,y)j
y L
A O
B x
在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B,求移
动过程中变力所作的功W. 变力沿直线所作的功
解决办法: “(分割)大化小”
F
A
WFAB cos“(近似)常代变”
B FAB