从数表中找规律小学奥数三年级
三年级奥数-找规律填数
三年级奥数-找规律填数三年级数学题:找规律填数例1:找出下列各数列的规律,并按其规律在括号内填上合适的数:1) 4,7,10,13,16,192) 84,72,60,48,363) 2,6,18,54,1624) 625,125,25,5,15) 1,2,4,8,16,32,646) 1,3,9,27,81,2437) 35,28,21,14,7,08) 64,32,16,8,4,2例2:找出下列各数列的规律,并按其规律在括号内填上合适的数:1) 15.2.12.2.9.2,6,22) 21.4,18.5.15,6,12,73) 10,5,12,6,14,7.16.84) 1,1,2,1,1,4,1,1,6,9,8,16注意:这里有一个明显错误的段落,已删除)例3:找出下列各数列的规律,并按其规律在括号内填上合适的数:1) 18,20,24,30,36,422) 11,12,14,18,26,383) 1,3,6,10,15,21,28,36,454) 1,2,6,24,120,720,50405) 252.124,60,28,12,46) 1.4,9.16,25.36,49例4:找出下列各数列的规律,并按其规律在括号内填上合适的数:1) 1.2.2.4.8.162) 1.3.3.9.273) 2.3.5.8.13.21.344) 3,7,10,17,27,445) 1,2,2,4,8,32,256例5:找规律,填入适当的数:1)2468113572)50.2530.1510例6:下面数列的每一项是由3个数构成的数组,它们依次是:(1,3,5),(2,6,10),(3,9,15)……问:第100个数组内3个数的和是多少?第100个数组内3个数的和为:.例7:找出下列各数列的规律,并按其规律在括号内填上合适的数:1)×3=2)×6=3)×9=4)×12=5)×18=1、找出下列各数列的规律,并按其规律在括号内填上合适的数:(1)2,5,8,11,14,17,20.2)11,15,19,23,27,…3)56,49,42,35,28.4)19,17,15,13,11,9,7.5)1,3,9,27,81,243.6)3,6,12,24,48.7)84,72,60,48,36,24,12;8)1,4,7,10,13,16,19,22,25.9)2,5,8,11,14,17,20……10)25,20,15,10,5.11)64,32,16,8,4,2.12)1,3,9,27,81.2、找出下列各数列的规律,并按其规律在括号内填上合适的数:(1)3,5,3,10,3,15,3,20.2)2,8,5,6,8,4,8,2.3)8,3,9,4,10,5,11,6.4)18,3.15.4,12,5,10,6.5)1,90,2,80,3,70,4,60.6)12,15,17,30,22,45,24,60;7)2,8,5,6,8,4,8,2.8)5,10,10,5,15,6,20,7,25,8.3、找出下列各数列的规律,并按其规律在括号内填上合适的数:(1)2,3,5,9,17,33,…2)2,5,10,17,26,37.3)1,3,7,13,21,31.4)2,5,11,23,47,95,191.5)96.46.22.10.4,2.6)18,20,24,30,38;7)11,12,14,18,26,38;8)2,5,11,23,47,95,191.4、找出下列各数列的规律,并按其规律在括号内填上合适的数:(1)1,1,2,3,5,8,13,21,34,55,89;2)1,3,4,7,11,18,29;3)2,5,7,12,19,31,50;4)6,7,13,20,33,53.5、填入适当的数:30.3666.72 1447、下面数列的每一项是由3个数构成的数组,它们依次是:(1,4,5),(2。
三年级奥数找规律
斐波那契的兔子(数列)知识图谱斐波那契的兔子知识精讲一.数列1.定义:按一定顺序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,……,第n项(末项).二.常见的数列1.兔子数列(斐波那契数列):从第3项开始,每一项都等于前两项之和的数列.2.等差数列:从第二项起,每一项与它的前一项的差等于同一个数的数列.3.等比数列:从第二项起,每一项除以它的前一项的商等于同一个数的数列.三点剖析本讲主要培养学生的综合创新能力,其次还会注重培养学生的运算能力、观察推理能力和实践应用能力.本讲内容是在整数基本计算与找规律的基础上,进一步了解一列数中数与数之间的关系和规律.后续课程还会学习一些简单数列的计算.课堂引入例题1、 最近,唐小果在家附近的小公园里,总能看见好多小兔子,唐小果就想了解一下兔子繁殖.在上网浏览时遇到了这样一个问题:假设每生产一对兔子必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活.那么有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月就可以再生小兔子,那么过三个月后,有多少对兔子?过半年后?9个月呢?带着这个问题,小果就去找她的小伙伴了……聪明的你,知道半年后有多少兔子吗?例题2、 写出课堂引入中每个月的兔子数量组成的这列数,观察有什么特点?兔子数列等例题1、 斐波那契数列(Fibonacci sequence ),又称黄金分割数列、因数学家列昂那多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对兔子.如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子的对数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对.……以此类推我们利用表格找一找规律:这个是可以用枚举数出来的吧~第一个月,会新出生一对小兔子,所以总共有2对兔子.第二个月,原来的兔子会再生产一对小兔子,而第一个月出生的小兔子还不能生产,所以总共有3对小兔子.那第三个月,原来的兔子会再生产一对小兔子,第一个月出生的小兔子也可以再生产一对小兔子,但第二个月出生的小兔子,还不能生产,所以总共有5对兔子. 这不就是“斐波那契的兔子问题”吗?经过月数 0 1 2 3 4 5 6 7 … 幼崽对数 1 0 1 1 2 3 5 8 … 成兔对数 0 1 1 2 3 5 813… 总体对数11235813 21…幼崽对数=前一个月成年兔子对数;成年兔子对数=前一个月成年兔子对数+前一个月幼崽对数;总体对数=本月成年兔子对数+本月幼崽对数;我们不难发现幼崽对数、成兔对数、总体对数都构成一个数列.(1)一年后,幼崽对数、成兔对数、总体对数各是多少个?15个月之后呢?(2)相邻两个月之间兔子对数的差是多少呢?(3)兔子对数有什么规律吗?试着自己总结一下.例题2、一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.……仔细观察哦~13610(1)第8个图形中有多少个石子?第15个呢?(2)相邻两个图形的石子数有什么关系吗?这列数有什么规律吗?例题3、中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…………(1)第10行有几个数?分别是多少?(2)杨辉三角有什么特点?相邻两行有什么关系吗?随练1、斐波那契数列在自然科学的其他分支,有许多应用.例如:树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这个规律,就是生物学上著名的“鲁德维格定律”.观察下图,第一年、第二年、第三年、第四年……第八年各有多少分枝?这些数之间有什么规律?等差等比数列例题1、根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……(1)第8个格子上放了几粒麦子?第10个格子呢?(2)前5个格子一共放了多少粒麦子?前8个格子呢?(3)这组数列中,相邻两个数有什么规律吗?例题2、数列在生活中也有很多的应用,被用于解决实际问题.如:(1)一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,塔群坐西面东,依山临水,塔基下曾出土西夏文题记的帛书和佛祯,可能建于西夏时期是喇嘛式实心塔群.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,总计一百零八座,形成总体平面呈三角形的巨大塔群,因塔数而得名.那么,按照这样的规律,第15行有多少个佛塔?第20行呢?(2)在校技能节比赛中,值周班的同学负责收集同学们喝完水的矿泉水瓶.学校8点开场比赛,每一个小时清点一次收集到的矿泉水瓶,9点钟共收到了120个,10点钟收到了240个,11点钟收到了480个,按这个规律,到下午1点钟,共收到了多少个矿泉水瓶?(3)学校礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问第20排有多少个座位?第10排呢?第1排呢?数列在生活中的应用真不少呢!例题3、二分裂一般指生殖方式,无丝分裂、有丝分裂、减数分裂是真核有性生殖的细胞的分裂方式,原核生物如细菌以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞.(1)开始有一个细菌,假设一个细菌分裂成两个子代细胞需要30秒,3分钟后有多少个细胞?(2)一个生物瓶中装有1个细菌,假设一个细菌分裂成两个子代细胞需要10秒,半小时后,整个瓶中都是细菌,那么什么时候生物瓶中有半瓶的细菌细胞?仔细观察题目,看清要求哦~随练1、下图是用火柴棒拼出的一列图形,依次类推,则第十个图形中的火柴棒的根数有________根,第n个图形中的火柴棒的根数有________根.随练2、如图一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V形架上共放着多少根钢管?易错纠改例题1、将一条长方形的纸条对折一次可以得到1条折痕,保持折痕平行时对折两次可以得到3条折痕,对折三次可以得到7条折痕,对折四次可以得到15条折痕,对折十次可以得到多少条折痕?我拿张纸来试一试不就知道了吗?我还是找找它们之间的规律吧?1、3、7、15……下一个是不是29呢?聪明的你知道是多少吗?拓展1、分析并口述题目的做题思路及方法.找规律填数:0,3,8,15,24,(),48,63.2、一根绳子弯成如图形状,当用剪刀沿一条虚线剪断时,绳子被剪成5段;沿两条虚线剪断时,绳子被剪成9段;沿三条虚线剪断时,绳子被剪成13段;以此方法,沿10条虚线剪断时,绳子被剪成多少段?(1)(2)(3)3、下面是由大小相同的小正方体木块叠放而成的图形,第一个图中有1个木块,第二个图中有6个木块,第三个图中有15个木块,第四个图中有28个木块,按照这样的规律摆放下去,则第七个图中小木块的个数是多少?4、下面是按规律排成的一列数,从左向右数第九个数是多少?3,5,9,17,33,65,……5、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)2,5,8,11,(),17,20.(2)19,17,15,13,(),9,7.(3)1,3,9,27,(),243.(4)64,32,16,8,(),2.(5)1,1,2,3,5,8,()21,34.(6)1,3,4,7,11,18,(),47.(7)1,3,6,10,(),21,28,36,().(8)1,2,6,24,120,(),5040.6、小明上楼梯,每次走一个台阶或两个台阶现在他要上一段楼梯,有12个台阶,有多少种方法呢?(可以先看台阶有1、2、3、4个……会有多少种方法)7、一条直线上一个点可以构成0条线段,两个点可以构成1条线段,三个点可以构成3条线段,四个点可以构成6条线段,以此类推15个不同的点可以构成多少条线段?。
三年级奥数讲义-第一讲 找规律填数(附答案)
三年级奥数-第一讲找规律填数【学法指导】寻找一列数的变化规律,再根据这样的规律填上适当的数,这样的问题我们叫作“找规律”。
在一般情况下,我们可以从以下几个方面来找规律:1. 从相邻两数的和、差、积、商考虑,或将和、差、积、商依次写下来成新的一列数,通过对这列数的变化规律的分析,找出规律,推断出所要填的数。
2.有时要将一列数分成两列数,分别考虑它们的变化规律。
3.对于那些分布在某些图形中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关。
这是我们解决这类问题的入手点【经典例题1】找出下面各数的排列规律,并根据规律在括号里填出适当的数。
(1)2,5,8,11,14,( ),().(2) 1,2,4,7,11,16,( ).(3) 4,12 ,36 ,108,( ) ,972.(4) 1,2,6,24,120,( ),5040.思路点拨(1)比较相邻两个数的差。
发现后一个数总比前一个数大3。
(2)比较相邻两个数的差。
发现前6个数每相邻两个数的差依次是1,2,3,4,5,由此可以推算第7个数比第6个数16大6。
(3)比较相邻两个数的商,发现后一个数总是前一个数的3倍。
(4)比较相邻两个数的商,发现前5个数每相邻两个的商依次是2,3,4,5,由此可以推算第6个数是第5个数120的6倍。
完全解题(1)2,5,8,11,14,( 17 ),( 20 ).(2) 1,2,4,7,11,16,( 22 ).(3) 4,12 ,36 ,108, ( 324 ) ,972.(4) 1,2,6,24,120,( 720 ),5040.【能力冲浪1】1.找规律填数。
(1)1,4,7,10,()(2)55,49,43,(),31,(),19.2. 找规律填数。
(1)3,4,6,9,13,18,(),(),39.(2)1,4,9,16,(),36,()。
3. 先找规律,再填数。
(1)1,3,9,27,(),().(2)1,2,6,24,(),720。
小学三年级奥数 第10讲图形数列找规律
图形数列找规律【例1】(★★)观察图1中蝴蝶的变化规律,从图2中找出相应的选项填在空缺的位置上。
图形找规律秘籍⑴数量⑵图形(形状、颜色、大小等)⑶位置/方向(顺逆时针、前后、左右、上下等等)⑷组合1【拓展】(★★★)【例2】(★★★★)如图,沿箭头方向网格中图形变化的规律,在最后一个网格中填入适当的图形。
【例3】(★★★)根据前三个方格表中阴影部分的变化规律,填上第⑽个方格表中阴影部分的小正方形内的几个数之和?⑴18,15,12,( ),( )。
⑵3,5,8,12,17,( ),( )。
⑶2,1,3,3,4,5,5,7,( ),( ),( ),( )。
⑷1,3, 9,( ),( )。
⑸1, 1, 2, 3, 5,8,13, ( ),( )。
2【例4】(★★★★)下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的。
仔细观察后,请回答:⑴十层的“宝塔”的最下层包含多少个小三角形?⑵整个十层“宝塔”一共包含多少个小三角形?⑶如果一个小三角形是用三根火柴棒拼成,那么整个十层“宝塔”一共需要多少根火柴棒?【例5】(★★★★★)有一天,安迪在黑板上写下了这样一列数:1,1,2,3,5,8,13,21,34,55,……,得意洋洋的问乐乐老师,“您知道这个数列吗?”聪明的小朋友们你们知道吗?请你回答下面的问题。
⑴这个数列的第11项是多少?⑵这个数列的第20项被5除余几?⑶这个数列的第4098项是奇数还是偶数?【例6】(★★★★)【趣味数学】有一串数如下:1,2,4,7,11,16,……它的规律是:由1开始,加1,加2,加3,……,依次逐个产生这串数,直到第50个数为止。
那么在这50个数中,被3除余1的数有多少个?聪明的小朋友,你知道吗?⑴请问下面3组数字间有什么关系吗?1 3 8 72 4 65 9⑵在下面的数列中继续向下填一行1 12 11 1 1 23 1 1 22 1 1 2 1 33【本讲总结】一、图形找规律方法:秘籍1:数量秘籍2:颜色秘籍3:形状秘籍4:位置/方向秘籍5:组合(分开看)二、数列找规律基本能力:1.观察能力2.计算能力【本讲总结】熟记常见数列类型:等差数列等比数列兔子数列(斐波那契数列)双重数列数的排列有规律,多种多样真有趣,有增加、有减少,变化可测有道理,图形排列善变化,变化总会有规律。
小学奥数之数阵中的规律
小学奥数之数阵中的规律1.自然数1 , 2 , 3,4 ,…排成了下面的数阵:第1行 1 2 3 4第2行 3 4 5 6第3行 5 6 7 8第4行7 8 9 10第5行9 10 11 12(1)这个数阵中的第15行左起第3个数是(2)48排在这个数列第行左起第2.在下面的数阵中,第10行左起第3个数是第1行 1第2行 2 3第3行 4 5 6第4行7 8 9 10第5行11 12 13 14 15第6行16 17 18 19 20 213.自然数如下表的规律排列:1 2 5 10 17 …4 — 3 6 11 18 …9 —8 —7 12 19 …16 —15 —14 —13 20 …25—24 —23 —22 —21 …求上起第10行,左起第7个数。
数87应排在上起第几行,左起第几列?4.下面的数阵中共有100个数,你能用几种方法把这100 个数相加的结果算出来?1 2 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 10 113 4 5 6 7 8 9 10 11 124 5 6 7 8 9 10 11 12 135 6 7 8 9 10 11 12 13 146 7 8 9 10 11 12 13 14 157 8 9 10 11 12 13 14 15 168 9 10 11 12 13 14 15 16 179 10 11 12 13 14 15 16 17 1810 11 12 13 14 15 16 17 18 195.观察下列各数组成的“三角阵”,它的第7行右起第1个数是,第15行左起第7个数是1。
23456 7 8 910 11 12 13 14 15 16将自然数按下表的顺序排列。
(1)最下面一横排从左到右第10个数是(2)a= 。
6.一串数按下面方式排列。
1 2 4 7 11 …3 5 8 126 9 13 …10 14 … …15 … … …(1)第1行第8个数是。
三年级奥数从数表中找规律题及答案【三篇】
【导语】芬芳袭⼈花枝俏,喜⽓盈门捷报到。
⼼花怒放看通知,梦想实现今⽇事,喜笑颜开忆往昔,勤学苦读最美丽。
在学习中学会复习,在运⽤中培养能⼒,在总结中不断提⾼。
以下是⽆忧考为⼤家整理的《三年级奥数从数表中找规律题及答案【三篇】》供您查阅。
【第⼀篇】 ⼀、在1,2两数之间,第⼀次写上3;第⼆次在1,3之间和3,2之间分别写上4,5,得到 1 4 3 5 2 。
以后每⼀次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复了6次,那么所有数的和是多少? ⼆、先观察下⾯各算式,再按规律填数。
9×9+7=88 98×9+6=888 987×9+5=8888 98765×9+___=888888 __________×9+1=_____________ ⼀、解答:原来两数之和:1+2=3;操作⼀次:1+3+2=6=3+3;操作2次:1+4+3+5+2=15=3+3+9;操作3次:1+5+4+7+3+8+5+7+2=42=3+3+9+27;......规律是,操作n次,和为 ,所以,操作6次的和为 =1095。
⼆、解答:3;9876543,88888888【第⼆篇】有同样⼤⼩的红⽩⿊珠共96个,按先5个红的,再4个⽩的,再3个⿊的排列着,如图:◎◎◎◎◎○○○○●●●◎◎◎◎◎○○○○●●●◎◎…试问:⿊珠共的⼏个? 5+4+3=12,可以发现每隔12个珠⼦(5个红的4个⽩的3个⿊的)就重复⼀次,96÷12=8。
所以⼀共有8组⼀样的,每组有3个⿊的,所以共有⿊珠3×8=24个。
找规律常会出现循环,此类问题的关键是找出重复出现的"⼀组"内容。
然后看总共出现多少个这样的组即可。
【第三篇】 “把1~9这九个数字填写在右图正⽅形的九个⽅格中,使得每⼀横⾏、每⼀竖列和每条对⾓线上的三个数之和都相等。
解答:⾸先要弄清每⾏、每列以及每条对⾓线上三个数字之和是⼏。
小学三年级奥数找规律知识点与习题
第5讲 找规律(一)这一讲我们先介绍什么是这一讲我们先介绍什么是“数列”“数列”,然后讲如何发现和寻找然后讲如何发现和寻找“数列”“数列”的规律。
按一定次序排列的一列数就叫数列。
例如, (1) 1 1,,2,3,4,5,6,…(2) 1 1,,2,4,8,1616,,3232;;(3) 1 1,,0,0,1,0,0,1,…(4) 1 1,,1,2,3,5,8,1313。
一个数列中从左至右的第n 个数,称为这个数列的第n 项。
如,数列(1)的第3项是3,数列(2)的第3项是4。
一般地,我们将数列的第n 项记作a n 。
数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。
许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。
律。
数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项是:后项==前项前项+1+1+1,或第,或第n 项a n =n 。
数列(2)的规律是:后项的规律是:后项==前项×前项×22,或第n 项数列(3)的规律是:“的规律是:“11,0,0”周而复始地出现。
”周而复始地出现。
数列(4)的规律是:从第三项起,每项等于它前面两项的和,即a 3=1+1=2=1+1=2,,a 4=1+2=3=1+2=3,,a 5=2+3=2+3==5,a 6=3+5=8=3+5=8,,a 7=5+8=13=5+8=13。
常见的较简单的数列规律有这样几类:第一类是数列各项只与它的项数有关,或只与它的前一项有关。
例如数列(1)(2)。
第二类是前后几项为一组,以组为单元找关系才可找到规律。
例如数列(3)(4)。
第三类是数列本身要与其他数列对比才能发现其规律。
这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。
来作一些说明。
例1 找出下列各数列的规律,并按其规律在( )( )内填上合适的数:内填上合适的数:内填上合适的数:(1)4,7,1010,,1313,,( )( ),…,…(2)8484,,7272,,6060,,( )( ),,( )( );;(3)2,6,1818,,( )( ),,( )( ),…,…(4)625625,,125125,,2525,,( )( ),,( )( );;(5)1,4,9,1616,,( )( ),…,…(6)2,6,1212,,2020,,( )( ),,( )( ),…,…解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项的规律是:前项+3=+3=+3=后项。
(奥数)小学三年级思维能力提升第数三讲找规律(共23页)
拓展提高 3、找规律,填空: (1) 1,2,4,4,7,8,10,16,13,32, , ,19,128; (2) 1,2,3,3,6,5,10,8,15,13, , ,28,34.
4、下图中的数都是按某种规律排列的,请分
别根据规律填上“?”处的数:
(1)
1
(2)
11
1 3 17 19 ?
121 133 1 1 464 1
?
小朋友,刚才的问题你 做得很好。现在,我们 要提高一点点难度了,
你做好准备了吗?
拓展提高 1、找规律,填空: (1)8,15,22,29,36, , ,57; (2)1,2,4,8, ,32,64; (3)3,4,6,9,13,18, ,31; (4)3,5,9,17,33, ,129.
拓展提高 2、找规律,填空: (1) , ,76,70,64,58,52,46; (2) ,66,56,47,39,32,26,21; (3)1,2,2,4,8,32, ; (4)2,6,12,20,30,42, ,72,90.
典型规律数分类
二、递增数
(1)1,2,4,7,11, ,22; (2)1,3,6,10,15, ,28; (3)2,4,7,11,16, ,29; (4)1,4,8,13,19, ,34; (5)80,64,50,38,28, ,14.
典型规律数分类
三、顺加数
(1)1,2,3,5,8, ,21; (2)1,3,4,7,11, ,29; (3)2,4,6,10,16, ,42; (4)1,4,5,9,14, ,37; (5)97,60,37,23,14, ,5.
典型问题
1、找规律,填空: (1)2,6,10,14,18,22, , ,34; (2)97,88,79,70,61, , ,34; (3) , ,15,24,35,48,63,80,99.
三年级奥数之找规律填数(一)
第二讲找规律填数(一)知识要点与学法指导:观察给出的一列数,通过计算相邻或相隔的两个数之间的和、差、积、商,发现和、差、积、商所具有的相同的特点,从而发现数列的变化规律,然后按照发现的规律把数列中缺少的数填出来。
找规律填数,一般有两种情况:一种是根据前后两个数之间的关系,找出规律;另一种是根据相隔的两个数之间的关系,找出规律。
例1下面的每组数都各自按一定的规律排列起来,请先找出规律,再根据规律填数。
(1)1,5,9,13,17,21,();(2)19,17,15,(),11,9,7,5,3,1;(3)1,3,6,10,15,21,(),36,45;(4)100,70,45,25,(),0。
【分析与解】(1)1,5,9,13,17,21,();分别计算这一列数中相邻两个数相差多少。
发现:)每相邻两个数的差都是4,而且这一列数是从小到大排列的,那么括号里的数比前一个数多4。
21+4=25,括号里应填25。
(2)19,17,15,(),11,9,7,5,3,1;观察这一列数,是按从大到小的顺序排列的,每相邻两个数的差都是2,即前一个数减2就得到后一个数。
根据这一定律,15-2=13,且13-2=11,故括号里应填13。
(3)1,3,6,10,15,21,(),36,45;这一列数的变化规律与上两题不同,从第一个数起,后面每个数依次比前一个数多2、3、4、5、6、7、8……()排在左起第7个数,它比前一个数多7,21+7=28,且28+8=36,故括号里应填28。
(4)100,70,45,25,(),0。
这一列数是按从大到小的顺序排列的,左起第一个数后面的每一个数依次比前一个数少30、25、20、15、10,25-15=10,且10-10=0,故括号里应填10。
试一试1先找规律,再填数。
(1)5,9,13,(),21,()。
(2)81,72,63,54,(),(),27。
(3)1,2,4,7,11,(),22。
奥数试题三年级找规律填数(完整资料).doc
此文档下载后即可编辑找规律填数观察下面各组数,你发现它们的排列各有什么规律吗?⑴ 2、4、6、8、10、12、14⑵ 5、10、15、20、25、30、35⑶ 5、6、6、7、7、8、8、9⑷ 13、11、9、7、5、3、11、找规律,再填数⑴ 78、74、70、66、()、()⑵()、90、85、80、()、()⑶ 1、3、9、27、()、()⑷ 1、4、9、16、25、()、()⑸ 7、8、10、13、17、()、()⑹ 3、2、4、3、5、4、()、()、7、6⑺ 1、50、3、40、5、30、()、()⑻ 128、64、32、16、()、()2、先找规律,再继续画下去或写下去。
⑴ ODAAODAAODAA……⑵□△"△口△[△口△O……⑶ 357913579135791••…⑷ 896889966888999666 ••…3、找出与其他四行不同的一行数。
填数时,要注意_____________________________________________________O第一部分必做题1、在括号里填上适当的数。
⑴(☆)11、13、15、()、()⑵(☆)& 17、8、15、10、13、12、()、()⑶(☆)△ 6、18、54、()、()⑷(☆)()、()、65、60、55⑸(☆☆)6、5、9、8、12、11、15、()、()⑹(☆)()、()、84、81、78、75、()⑺(☆)3 7、5、9、7、11、9、13、11、15、()、(⑻(☆☆)30、15、45、15、60、()、()2、先找规律,再继续画下去或写下去。
(1)(☆) OAOAAOAAAOAAAAO(☆^)△△。
△△△△。
△△△△△△^⑶(☆)135113355111333⑷(☆)4327274327274327⑸(☆)135791357913(6)(^)OAAOOOAAAAOOOOOAAAAAA(7)(☆)□□□ □□□□□□□□□□⑻(☆☆)345456 567 6783、找规律填上合适的数。
三年级奥数2 找规律填数
【练习3】按规律填数。 (1)2,3,5,9,17,( ),( )
(2)2,4,10,28,82,( ),( )
(3)94,46,22,10,( ),( )
(4)2,3,7,18,47,( ),( )
【例题4】根据前面图形里的数的排列规律,填入适当的数。
1、 5 10
9 14
7 12 11 16
在(2)列数中,第2个数比第1个数增加1,第3个数比第2 个数增加2,第4个数比第3个数增加3……故空格里面的两个数 分别为:11+5=16,16+6=22。
在(3)列数中,相邻的两个数的积都是3,即每一个数乘 以3都等于后面的数。根据这一规律,括号里应填的数为: 54×3=162、162×3=486。
【练习1】
在括号内填上合适的数。 (1)2,4,6,8,10,( ),( ) (2)1,2,5,10,17,( ),( ) (3)2,8,32,128,( ),( ) (4)1,5,25,125,( ),( )
【例题2】
先找出规律,再在括号里填上合适的数。 (1)15,2,12,2,9,2,( ),( ) (2)21,4,18,5,15,6,( ),( )
【解析】
在(1)列数中,通过观察可以发现这是分为单数和双数 两个不同的数列。其中双数列都为2,而单数列是前数比后数 大3,根据这一规律,括号里应填的数为:9-3=6、2。
在(2)列数中,通过观察可以发现这也是分为单数和双 数两个不同的数列。其中单数列是前数比后数大3,双数列都 是后数比前数大1,根据这一规律,括号里应填的数为:153=12、6+1=7。
【练习2】
按规律填数。 (1)2,1,4,1,6,1,( ),( ) (2)3,2,9,2,27,2,( ),( ) (3)18,3,15,4,12,5,( ),( ) (4)1,15,3,13,5,11,( ),( ) (5)12,1,10,1,8,1,( ),( )
小学三年级奥数-找规律-知识点与习题
第5讲找规律(一)这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。
按一定次序排列的一列数就叫数列。
例如,(1) 1,2,3,4,5,6,…(2) 1,2,4,8,16,32;(3) 1,0,0,1,0,0,1,…(4) 1,1,2,3,5,8,13。
一个数列中从左至右的第n个数,称为这个数列的第n项。
如,数列(1)的第3项是3,数列(2)的第3项是4。
一般地,我们将数列的第n项记作an。
数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。
许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。
数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。
数列(2)的规律是:后项=前项×2,或第n项数列(3)的规律是:“1,0,0”周而复始地出现。
数列(4)的规律是:从第三项起,每项等于它前面两项的和,即a 3=1+1=2,a4=1+2=3,a5=2+3=5,a 6=3+5=8,a7=5+8=13。
常见的较简单的数列规律有这样几类:第一类是数列各项只与它的项数有关,或只与它的前一项有关。
例如数列(1)(2)。
第二类是前后几项为一组,以组为单元找关系才可找到规律。
例如数列(3)(4)。
第三类是数列本身要与其他数列对比才能发现其规律。
这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。
例1找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)4,7,10,13,( ),…(2)84,72,60,( ),( );(3)2,6,18,( ),( ),…(4)625,125,25,( ),( );(5)1,4,9,16,( ),…(6)2,6,12,20,( ),( ),…解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。
所以应填16。
(2)的规律是:前项-12=后项。
小学三年级奥数--数字找规律
三年级奥数--数字找规律知识定位在今天这节课中,我们将来研究数列问题.正确认识数列,并且掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力.知识梳理一、日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。
根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。
注:从日常生活中找出例子来举例说明,数列在生活中处处相关,例如日期,时间,年龄等等二、重点难点解析1、掌握一些常见的数列的规律.2、掌握一些特殊数列的规律,并熟练应用规律解决问题.3、理解掌握运用数列规律解决数阵问题.三、竞赛考点挖掘1.数列规律的发现2.综合数列的区分和解答例题精讲【题目】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20②19,17,15,13,(),9,7③1,3,9,27,(),243④64,32,16,8,(),2【题目】(1) 1,1,2,3,5,8,(),21,34…(2) 1,3,4,7,11,18,(),47…(3) 1,3,6,10,(),21,28,36,().(4) 1,2,6,24,120,(),5040。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从数表中找规律
教学目标:
1.在学习了数列中找规律的基础上,使学生进一步掌握从数表中找规律的方法和一般技巧。
2.机一部积累分析和处理数据的方法。
3.提高学生的分析能力,培养思维的灵活性。
教学重点:运用数列的规律性,研究数表中的规律性。
教学难点:用较短的时间找到最简捷的解题方法。
教学过程:
学习例2: 用数字摆成下面的三角形,请你仔细观察后回答下面的问题:
①这个三角阵的排列有何规律?
②根据找出的规律写出三角阵的第6行、第7行.
③推断第20行的各数之和是多少?
集体讨论:你能在数表中找到哪些规律并讨论如何运用这些规律解题。
分析与解释过程:
①指导学生查看数表都有哪些规律,可以看到,首先这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中与它相邻的两数之和.如:2=1+1,3=2+1,4=3+1,6=3+3。
②根据由①得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1.
③要求第20行的各数之和,我们不妨先来看看开始的几行数。
至此,我们可以推断,第20行各数之和为219。
小结:回想一下我们是如何找的规律,都是从哪些地方入手找到数据组合的规律,由此我们可以举一反三,总结出解答这类题的技巧。
学习例3:将自然数中的偶数2,4,6,8,10…按下表排成5列,问2000出现在哪一列?
集体讨论:你能在数表中找到哪些规律并讨论如何运用这些规律解题。
分析与解释过程:
方法1:考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,每组8个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、D、C、B、A.因此,我们只要考察2000是第几组
中的第几个数就可以了,因为2000是自然数中的第1000个偶数,而1000÷8=125,即2000是第125组中的最后一个数,所以2000位于数表中的第250行的A列。
方法2:仔细观察数表,可以发现:A列中的数都是16的倍数,B列中数除以16余2或者14,C 列中的数除以16余4或12,D列的数除以16余6或10,E列中的数除以16余8.这就是说,数表中数的排列与除以16所得的余数有关,我们只要考察2000除以16所得的余数就可以了,因为2000÷16=125,所以 2000位于A列。
举一反三:如果我们把例 3修改一下,把偶数改为奇数, 2000改为 1993,其他条件不变,你能很快得到结果吗?
小结:要充分运用以前学过的知识,结合此题我们找到的规律,找到解题的方法。
另外,学习的目的不仅仅是为了会做一道题,而是要学会思考问题的方法.一道题做完了,我们还应该仔细思考一下,哪种方法更简洁,题目主要考察的问题是什么…这样学习才能举一反三,不断进步。
学习例5:从1开始的自然数按下图所示的规则排列,并用一个平行四边形框出九个数,能否使这九个数的和等于①1993;②1143;③1989.若能办到,请写出平行四边形框内的最大数和最小数;若不能办到,说明理由.
集体讨论:从数表中你发现了什么?平行四边形中的数据有什么规律?
分析与解释过程:
我们先来看这九个数的和有什么规律.仔细观察,容易发现:12+28=2×20,13+27=2×20,14+26=2×20,19+21= 2 × 20,即: 20是框中九个数的平均数.因此,框中九个数的和等于20与9的乘积.事实上,由于数表排列的规律性,对于任意由这样的平行四边形框出的九个数来说,都有这样的规律,即这九个数的和等于平行四边形正中间的数乘以9.
①因为1993不是9的倍数,所以不可能找到这样的平行四边形,使其中九个数的和等于1993.
② 1143÷9=127,127÷8=15…7.这就是说,如果1143是符合条件的九个数的和,则正中间的数一定是127,而127位于数表中从右边数的第2列.但从题中的图容易看出,平行四边形正中间的数不能位于第1行,也不能位于从左数的第1列、第2列、第7列和第8列,因此,不可能构成以127为中心的平行四边行.
③ 1989÷9=221,221÷8=27…5,即1989是9的倍数,且数221位于数表中从左起的第5列,故可以找到九个数之和为1989的平行四边形,如图:
其中最大的数是229,最小的数是213.
练习:
1观察下面已给出的数表,并按规律填空:
2 下图是自然数列排成的数表,按照这个规律,1993在哪一列?
作业:P144。