C++ 多线程编程总结

合集下载

C#多线程编程实战(一):线程基础

C#多线程编程实战(一):线程基础

C#多线程编程实战(⼀):线程基础1.1 简介为了防⽌⼀个应⽤程序控制CPU⽽导致其他应⽤程序和操作系统本⾝永远被挂起这⼀可能情况,操作系统不得不使⽤某种⽅式将物理计算分割为⼀些虚拟的进程,并给予每个执⾏程序⼀定量的计算能⼒。

此外操作系统必须始终能够优先访问CPU,并能调整不同程序访问CPU的优先级。

线程正式这⼀慨念的实现。

多线程优点:可以同时执⾏多个计算任务,有可能提⾼计算机的处理能⼒,使得计算机每秒能执⾏越来越多的命令多线程缺点:消耗⼤量的操作系统资源。

多个线程共享⼀个处理器将导致操作系统忙于管理这些线程,⽽⽆法运⾏程序。

1.2 创建线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Thread t1 = new Thread(new ThreadStart(PrintNumbers));//⽆参数的委托t1.Start();Thread t2 = new Thread(new ParameterizedThreadStart(PrintNumbers));//有参数的委托t2.Start(10);Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}//注意:要使⽤ParameterizedThreadStart,定义的参数必须为objectstatic void PrintNumbers(object count){Console.WriteLine("Starting...");for (int i = 0; i < Convert.ToInt32(count); i++){Console.WriteLine(i);}}}}注释:我们只需指定在不同线程运⾏的⽅法名,⽽C#编译器会在后台创建这些对象1.3 暂停线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Thread t1 = new Thread(PrintNumbersWithDelay);t1.Start();PrintNumbers();Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤Thread.Sleep(TimeSpan.FromSeconds(2));暂停线程1.4 线程等待using System;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Starting...");Thread t = new Thread(PrintNumbersWithDelay);t.Start();t.Join(); //使⽤Join等待t完成PrintNumbers();Console.WriteLine("THread Complete");Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤t.Join(); 等待t完成1.5 终⽌线程using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Starting Program...");Thread t1 = new Thread(PrintNumbersWithDelay);t1.Start();Thread.Sleep(TimeSpan.FromSeconds(6));t1.Abort(); //使⽤Abort()终⽌线程Console.WriteLine("Thread t1 has been aborted");Thread t2 = new Thread(PrintNumbers);PrintNumbers();Console.ReadLine();}static void PrintNumbers(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Console.WriteLine(i);}}static void PrintNumbersWithDelay(){Console.WriteLine("Starting...");for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}}}注释:使⽤Thread实例的Abort⽅法终⽌线程1.6 检测线程状态using System;using System.Threading;namespace MulityThreadNote{class Program{static void Main(string[] args){Console.WriteLine("Start Program...");Thread t1 = new Thread(PrintNumbersWithStatus);Thread t2 = new Thread(DoNothing);Console.WriteLine(t1.ThreadState.ToString());//获取实例线程状态 t2.Start();t1.Start();for (int i = 0; i < 30; i++)}Thread.Sleep(TimeSpan.FromSeconds(6));t1.Abort();Console.WriteLine("thread t1 has been aborted");Console.WriteLine(t1.ThreadState.ToString());Console.WriteLine(t2.ThreadState.ToString());Console.ReadLine();}private static void PrintNumbersWithStatus(){Console.WriteLine("Starting...");Console.WriteLine(Thread.CurrentThread.ThreadState.ToString());//获取当前线程状态for (int i = 0; i < 10; i++){Thread.Sleep(TimeSpan.FromSeconds(2));Console.WriteLine(i);}}private static void DoNothing(){Thread.Sleep(TimeSpan.FromSeconds(2));}}}注释:使⽤Thread.ThreadState获取线程的运⾏状态。

线程实例实验报告总结

线程实例实验报告总结

一、实验目的本次实验旨在通过实例操作,深入了解线程的概念、创建、同步与通信机制,以及线程在实际编程中的应用。

通过实验,提高对线程的理解和运用能力,为以后开发多线程程序打下坚实基础。

二、实验环境1. 操作系统:Windows 102. 开发工具:Visual Studio 20193. 编程语言:C#三、实验内容1. 线程的基本概念线程是程序执行的最小单位,是操作系统进行资源分配和调度的基本单位。

线程具有以下特点:(1)线程是轻量级的,创建、销毁线程的开销较小。

(2)线程共享进程的资源,如内存、文件等。

(3)线程之间可以并发执行。

2. 线程的创建在C#中,可以使用以下方式创建线程:(1)使用Thread类```csharpThread thread = new Thread(new ThreadStart(MethodName));thread.Start();```(2)使用lambda表达式```csharpThread thread = new Thread(() => MethodName());thread.Start();```(3)使用匿名方法```csharpThread thread = new Thread(delegate () { MethodName(); });thread.Start();```3. 线程的同步线程同步是指多个线程在执行过程中,为了防止资源冲突而采取的协调机制。

C#提供了以下同步机制:(1)互斥锁(Mutex)```csharpMutex mutex = new Mutex();mutex.WaitOne();// 线程同步代码mutex.ReleaseMutex();```(2)信号量(Semaphore)```csharpSemaphore semaphore = new Semaphore(1, 1);semaphore.WaitOne();// 线程同步代码semaphore.Release();```(3)读写锁(ReaderWriterLock)```csharpReaderWriterLock rwlock = new ReaderWriterLock();rwlock.AcquireReaderLock();// 读取操作rwlock.ReleaseReaderLock();```4. 线程的通信线程通信是指线程之间传递消息、共享数据的过程。

c 多线程实现的四种方式

c 多线程实现的四种方式

c 多线程实现的四种方式C语言是一种非常流行的编程语言,它可以用来实现多线程编程。

多线程编程可以让你的程序更高效、更快速地运行,因为它可以同时执行多个任务。

在这篇文章中,我们将介绍 C 多线程实现的四种方式。

1. 使用 pthread 库pthread 是一个 POSIX 标准定义的多线程库,它提供了一套API 接口,可以用来实现多线程编程。

使用 pthread,你可以创建多个线程并且控制它们的行为。

这种方式是 C 语言实现多线程的最常用方式之一。

2. 使用 OpenMP 库OpenMP 是一个开源的多线程库,它可以用来在 C 语言中实现多线程编程。

OpenMP 提供了一套 API 接口,可以让你更方便地编写并行程序。

使用 OpenMP,你可以使用 #pragma 指令来控制并行执行的代码块。

3. 使用 POSIX 线程POSIX 线程是一种 POSIX 标准定义的多线程接口,它可以用来实现多线程编程。

与 pthread 类似,POSIX 线程提供了一套 API 接口,可以让你更方便地编写多线程程序。

4. 使用 Windows 线程如果你在 Windows 操作系统上编写 C 语言程序,你可以使用Windows 线程来实现多线程编程。

Windows 线程提供了一套 API 接口,可以让你在 Windows 平台上创建多个线程并且控制它们的行为。

总结以上是 C 多线程实现的四种方式。

在选择使用哪种方式时,你应该考虑自己的需求和使用的操作系统。

不同的方式会有不同的 API 接口、性能和可移植性。

如果你需要了解更多关于 C 多线程编程的知识,可以参考相关的书籍和教程。

C#多线程文件读写整理总结

C#多线程文件读写整理总结

C#多线程⽂件读写整理总结多线程读写⽂件⼀直是⼀个⽐较常⽤的技术,普通的锁显得效率低下,和单线程感觉基本没有啥区别,这⾥参考了⼤⽜的代码,采⽤了线程池技术,⼩菜我⼀直不明⽩异步和多线程有啥区别,后来读了个⼤⽜的博客,才明⽩,为加强理解,抄袭⼀下吧,多线程相关名词概念的解释并发:在操作系统中,是指⼀个时间段中有⼏个程序都处于已启动运⾏到运⾏完毕之间,且这⼏个程序都是在同⼀个处理机上运⾏。

其中两种并发关系分别是同步和互斥互斥:进程间相互排斥的使⽤临界资源的现象,就叫互斥。

同步:进程之间的关系不是相互排斥临界资源的关系,⽽是相互依赖的关系。

进⼀步的说明:就是前⼀个进程的输出作为后⼀个进程的输⼊,当第⼀个进程没有输出时第⼆个进程必须等待。

具有同步关系的⼀组并发进程相互发送的信息称为消息或事件。

其中并发⼜有伪并发和真并发,伪并发是指单核处理器的并发,真并发是指多核处理器的并发。

并⾏:在单处理器中多道程序设计系统中,进程被交替执⾏,表现出⼀种并发的外部特种;在多处理器系统中,进程不仅可以交替执⾏,⽽且可以重叠执⾏。

在多处理器上的程序才可实现并⾏处理。

从⽽可知,并⾏是针对多处理器⽽⾔的。

并⾏是同时发⽣的多个并发事件,具有并发的含义,但并发不⼀定并⾏,也亦是说并发事件之间不⼀定要同⼀时刻发⽣。

多线程:多线程是程序设计的逻辑层概念,它是进程中并发运⾏的⼀段代码。

多线程可以实现线程间的切换执⾏。

异步:异步和同步是相对的,同步就是顺序执⾏,执⾏完⼀个再执⾏下⼀个,需要等待、协调运⾏。

异步就是彼此独⽴,在等待某事件的过程中继续做⾃⼰的事,不需要等待这⼀事件完成后再⼯作。

线程就是实现异步的⼀个⽅式。

异步是让调⽤⽅法的主线程不需要同步等待另⼀线程的完成,从⽽可以让主线程⼲其它的事情。

异步和多线程并不是⼀个同等关系,异步是最终⽬的,多线程只是我们实现异步的⼀种⼿段。

异步是当⼀个调⽤请求发送给被调⽤者,⽽调⽤者不⽤等待其结果的返回⽽可以做其它的事情。

c语言多线程编程实例

c语言多线程编程实例

c语言多线程编程实例C语言多线程编程实例多线程编程是一种并发编程的方式,它可以让程序同时执行多个任务,提高程序的效率和响应速度。

C语言是一种广泛使用的编程语言,也支持多线程编程。

本文将介绍一些C语言多线程编程的实例,帮助读者更好地理解和掌握多线程编程技术。

1. 创建线程在C语言中,可以使用pthread库来创建线程。

下面是一个简单的例子,创建一个线程并让它输出一段文字:```#include <stdio.h>#include <pthread.h>void* thread_func(void* arg){printf("Hello, world!\n");return NULL;}int main(){pthread_t tid;pthread_create(&tid, NULL, thread_func, NULL);pthread_join(tid, NULL);return 0;}```在上面的代码中,我们定义了一个函数thread_func,它将作为线程的入口函数。

在main函数中,我们使用pthread_create函数创建了一个线程,并将thread_func作为入口函数。

然后使用pthread_join 函数等待线程结束。

2. 线程同步在多线程编程中,线程之间的同步非常重要。

下面是一个例子,演示如何使用互斥锁来保护共享资源:```#include <stdio.h>#include <pthread.h>int count = 0;pthread_mutex_t mutex;void* thread_func(void* arg){pthread_mutex_lock(&mutex);count++;printf("Thread %d: count = %d\n", (int)arg, count); pthread_mutex_unlock(&mutex);return NULL;}int main(){pthread_t tid1, tid2;pthread_mutex_init(&mutex, NULL);pthread_create(&tid1, NULL, thread_func, (void*)1); pthread_create(&tid2, NULL, thread_func, (void*)2); pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&mutex);return 0;}```在上面的代码中,我们定义了一个全局变量count,它将被两个线程同时访问。

C++多线程编程——线程的挂起、唤醒与终止

C++多线程编程——线程的挂起、唤醒与终止

C++多线程编程——线程的挂起、唤醒与终止C++多线程编程——线程的挂起、唤醒与终止在线程创建并运行后,用户可以对线程执行挂起和终止操作.所谓挂起,是指暂停线程的执行,用户可以通过气候的唤醒操作来恢复线程的执行.线程终止是指结束线程的运行.系统提供了SuspendThread,ResumeThread和TerminateThread等函数来实现线程的挂起、唤醒和停止操作。

SuspendThread该函数用于挂起线程.语法格式如下:DWORD SuspendThread(HANDLE hThread);•hThread: 表示线程句柄•返回值: 如果函数执行成功,返回值为之前挂起的线程次数;如果函数执行失败,返回值为0xFFFFFFFFResumeThread该函数用于煎炒线程挂起的次数,如果线程挂起的次数为0,将唤醒线程.语法格式如下:DWORD ResumeThread(HANDLE hThread);•hThread: 表示线程句柄•返回值: 如果函数执行成功,返回值为之前挂起的线程次数;如果函数执行失败,返回值为0xFFFFFFFFExitThread该函数用于结束当前线程.语法格式如下:VOID ExitThread(DWORD dwExitCode);•dwExitCode: 表示线程退出代码TerminateThread该函数用于强制终止线程的执行.语法格式如下:BOOL TerminateThread(HANDLE hThread, DWORD dwExitCode);•hThread: 表示待终止的线程句柄•dwExitCode: 表示线程退出代码例子:线程代码:DWORD __stdcall ThreadProc(LPVOID lpParameter) { CMultiThreadDlg * pdlg = (CMultiThreadDlg *)lpParameter;pdlg->m_ProCtrl.SetRange32(0,99999); for (int i = 0; i < 99999; i++) { pdlg->m_ProCtrl.SetPos(i); } return 0; }创建线程:void CMultiThreadDlg::OnBtCreate() { m_hThread = CreateThread(NULL,0,ThreadProc,this,0,NULL); }挂起线程:void CMultiThreadDlg::OnBtSuspend() { SuspendThread(m_hThread); }唤醒线程:void CMultiThreadDlg::OnBtResume() { ResumeThread(m_hThread); }终止线程:void CMultiThreadDlg::OnBtTerminate() { TerminateThread(m_hThread); }。

多线程编程实验总结与体会 -回复

多线程编程实验总结与体会 -回复

多线程编程实验总结与体会-回复[多线程编程实验总结与体会]作为一名计算机科学专业的学生,在学习多线程编程时,我们不仅需要理论知识,还需要通过实践来深入理解多线程的编写和应用。

在完成多线程编程的实验过程中,我吸取了许多经验和教训,形成了深刻的体会和总结。

以下是我在完成多线程编程实验后所得到的心得体会,希望对于有需求的学生有所帮助。

一、了解多线程编程的基础知识在进行多线程编程之前,必须要先掌握多线程的基础知识,包括线程的概念、线程的生命周期、线程的状态、线程同步和线程互斥等概念。

对于多线程编程的初学者来说,这是一个非常重要的基础,只有通过这些基础知识的学习,才能够更好地编写程序,解决实际的多线程应用问题。

二、了解并掌握多线程编程语言的特点在进行多线程编程时,我们需要使用支持多线程的编程语言,如Java、Python等。

对于不同的编程语言,其多线程操作的实现方式也有所不同。

因此,在进行多线程编程前,需要先掌握所用编程语言特有的多线程操作方式,并对其有所了解。

三、考虑问题全面,深入分析多线程编程的逻辑在设计多线程程序时,需要全面考虑程序的逻辑,注重多线程之间的协同工作和互相制约的因素。

多线程程序中需要解决的问题可能会很复杂,会牵扯到线程之间的通信、共享数据、同步/互斥和线程调度等问题。

因此,在编写多线程程序时,要仔细分析每个线程的作用和实现,考虑线程的优先级和时间片等有关因素,以便更好地实现程序的协同工作。

四、如何调试多线程程序多线程编程常常会带来一些难以预测的问题,使得程序的调试变得困难。

在调试多线程程序时,可以使用一些常见的调试方法,如使用输出语句来查看程序运行过程中的变量值和状态,使用调试器来单步调试程序,并在开发初期就引入测试用例,在程序开发与质量保证过程中使用到测试方法、性能调优和代码静态分析等工具,在不断地测试迭代中逐步减少bug 和其他难以预测的问题。

五、常见的多线程编程问题及解决方法在多线程编程中,常常会出现一些问题,这些问题可能会导致程序的运行出现异常,甚至会导致数据丢失和程序崩溃。

C语言多线程操作

C语言多线程操作

C语⾔多线程操作多线程是多任务处理的⼀种特殊形式,多任务处理允许让电脑同时运⾏两个或两个以上的程序。

⼀般情况下,两种类型的多任务处理:基于进程和基于线程。

基于进程的多任务处理是程序的并发执⾏。

基于线程的多任务处理是同⼀程序的⽚段的并发执⾏。

多线程程序包含可以同时运⾏的两个或多个部分。

这样的程序中的每个部分称为⼀个线程,每个线程定义了⼀个单独的执⾏路径。

本教程假设您使⽤的是 Linux 操作系统,我们要使⽤ POSIX 编写多线程 C++ 程序。

POSIX Threads 或 Pthreads 提供的 API 可在多种类 Unix POSIX 系统上可⽤,⽐如 FreeBSD、NetBSD、GNU/Linux、Mac OS X 和 Solaris。

下⾯的程序,我们可以⽤它来创建⼀个POSIX 线程:#include <pthread.h>pthread_create (thread, attr, start_routine, arg)在这⾥,pthread_create 创建⼀个新的线程,并让它可执⾏。

下⾯是关于参数的说明:参数描述thread指向线程标识符指针。

attr⼀个不透明的属性对象,可以被⽤来设置线程属性。

您可以指定线程属性对象,也可以使⽤默认值 NULL。

start_routine线程运⾏函数起始地址,⼀旦线程被创建就会执⾏。

arg运⾏函数的参数。

它必须通过把引⽤作为指针强制转换为 void 类型进⾏传递。

如果没有传递参数,则使⽤ NULL。

创建线程成功时,函数返回 0,若返回值不为 0 则说明创建线程失败。

使⽤下⾯的程序,我们可以⽤它来终⽌⼀个 POSIX 线程:#include <pthread.h>pthread_exit (status)在这⾥,pthread_exit ⽤于显式地退出⼀个线程。

通常情况下,pthread_exit() 函数是在线程完成⼯作后⽆需继续存在时被调⽤。

Linux下c语言多线程编程

Linux下c语言多线程编程

Linux下c语⾔多线程编程引⾔ 线程(thread)技术早在60年代就被提出,但真正应⽤多线程到中去,是在80年代中期,solaris是这⽅⾯的佼佼者。

传统的Unix也⽀持线程的概念,但是在⼀个进程(process)中只允许有⼀个线程,这样多线程就意味着多进程。

现在,多 为什么有了进程的概念后,还要再引⼊线程呢?使⽤多线程到底有哪些好处?什么的系统应该选⽤多线程?我们⾸先必须回答这些问题。

使⽤多线程的理由之⼀是和进程相⽐,它是⼀种⾮常"节俭"的多任务操作⽅式。

我们知道,在Linux系统下,启动⼀个新的进程必须分配给它独⽴的地址空间,建⽴众多的数据表来维护它的代码段、堆栈段和数据段,这是⼀种"昂贵"的多任务⼯作⽅式。

⽽运⾏于⼀个进程中的多个线程,它们彼此之间使⽤相同的地址空间,共享⼤部分数据,启动⼀个线程所花费的空间远远⼩于启动⼀个进程所花费的空间,⽽且,线程间彼此切换所需的时间也远远⼩于进程间切换所需要的时间。

使⽤多线程的理由之⼆是线程间⽅便的机制。

对不同进程来说,它们具有独⽴的数据空间,要进⾏数据的传递只能通过通信的⽅式进⾏,这种⽅式不仅费时,⽽且很不⽅便。

线程则不然,由于同⼀进程下的线程之间共享数据空间,所以⼀个线程的数据可以直接为其它线程所⽤,这不仅快捷,⽽且⽅便。

当然,数据的共享也带来其他⼀些问题,有的变量不能同时被两个线程所修改,有的⼦程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地⽅。

除了以上所说的优点外,不和进程⽐较,多线程程序作为⼀种多任务、并发的⼯作⽅式,当然有以下的优点: 1) 提⾼应⽤程序响应。

这对图形界⾯的程序尤其有意义,当⼀个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应、、菜单的操作,⽽使⽤多线程技术,将耗时长的操作(time consuming)置于⼀个新的线程,可以避免这种尴尬的情况。

C++多线程编程调试技巧

C++多线程编程调试技巧

C++多线程编程调试技巧上个月,我在《ThreadPool分析》一文中介绍了如何构建ThreadPool进行多线程编程,大家在进行多线程编程过程中,肯定会发现多线程调试比较困难。

本系列中将详细的介绍两种方法来调试多线程程序:一种自然是使用GDB,另一种是使用gcc的内置函数打印程序调用的帧栈来调试程序。

GDBgdb是Unix下用来调试C和C++程序的常用的调试器.它使你能在程序运行时观察程序的内部结构和内存的使用情况。

但在多线程编程过程中很多程序问题出在启动阶段,而且很难使用gdb进行调试,我们可以采用手工插入以下辅助代码暂停程序运行do{int flag=1;while(ff)slleep(1);}while(0)用gdb附到暂停的进程上去,再在gdb中执行(gdb)set var flag=0是程序继续执行,我们就可以开始对程序进行调试。

在gdb中我们可以使用(gdb)info threads来显示当前进程中执行的所有线程;通过(gdb)thread来切换当前线程到线程thnum;并通过set scheduller-locking on来修改OS线程调度器的策略,指定只有当前线程才能运行,来锁定调度器。

下一章《C++多线程编程调试技巧(二)》将向大家介绍如何使用gcc内置函数打印线程的函数栈,来调试程序由于程序中函数的调用是存储在内存栈中,本章通过介绍使用gcc的内置函数(见以下)来打印函数栈,来显示函数的调用的层次关系,来调试程序。

__builtin_return_address():此函数返回当前函数或其调用函数的返回地址__builtin_frame_address():返回调用函数的帧地址void*stack[4];_stack[0]=__builtin_return_address(1);if(__builtin_frame_address(2)==static_cast(NULL)){_stack[1]=NULL;}else{_stack[1]=__builtin_return_address(2);if(__builtin_frame_address(3)==static_cast(NULL)){_stack[2]=NULL;}else{_stack[2]=__builtin_return_address(3);if(__builtin_frame_address(4)==static_cast(NULL)){_stack[3]=NULL;}else_stack[3]=__builtin_return_address(4);}}以上代码就是将函数调用栈每一帧的地址保存在stack数组中,再将地址打印出来,我们可以通过启动gdb,执行(gdb)list address。

c语言多线程的三种实现方式

c语言多线程的三种实现方式

c语言多线程的三种实现方式1 C语言多线程实现C语言语言既可以用于创建单线程应用程序,也可以用于创建多线程应用程序。

它的多线程实现有三种方式:POSIX线程库(Pthread),Windows API,以及共享内存。

1.1 POSIX线程库(Pthread)POSIX线程库(Pthread)是Linux系统的一种线程API,它由标准POSIX提供,以实现多线程程序设计。

它提供许多函数用于创建、销毁线程,设置线程属性,等待线程完成以及通信功能等。

Pthread在多线程编程中被使用广泛,它更易于操纵,可以让多线程编程更加容易和有趣。

1.2 Windows APIWindows API 也是可用于C语言多线程编程的方式之一。

Windows API提供许多功能:创建线程,挂起线程,等待线程结束,分离线程,设置线程优先级等等。

Windows API也提供了很多函数和常量用于控制线程。

它与POSIX线程库不同,Windows API不使用POSIX线程库,而使用Windows API实现多线程程序时,同一应用程序可以具有多个线程。

1.3 共享内存共享内存是指多个进程可以访问同一个内存区域,从而使它们能够共享数据,实现常见的多线程编程任务。

在C语言中,可以使用mmap()函数将共享内存映射成文件描述符,在一定范围内允许多个进程对共享内存的随机读写访问。

这是一种实现多线程的方式,能够极大地提高程序的效率。

以上就是C语言中多线程实现的三种方式。

POSIX线程库(Pthread)可以简易实现,更能让多线程编程更加容易和有趣;Windows API也可以实现多线程编程,可以让同一应用程序有多个线程;共享内存是一种实现多线程的方法,能够极大地提高程序的效率。

多线程编程实验报告

多线程编程实验报告

一、实验目的1. 理解多线程编程的基本概念和原理。

2. 掌握多线程的创建、同步、通信和调度等关键技术。

3. 通过实验加深对多线程编程的理解,提高编程能力。

二、实验环境硬件:PC机软件:VMware虚拟机、Linux系统、C/C++编译器三、实验内容1. 多线程创建与运行2. 线程同步与互斥3. 线程通信与协作4. 线程调度与优先级5. 生产者-消费者问题四、实验步骤1. 多线程创建与运行(1)创建线程:使用pthread_create函数创建线程,指定线程的入口函数、参数、线程属性等。

(2)线程运行:编写线程入口函数,实现线程需要执行的任务。

(3)线程结束:在线程入口函数中执行任务后,使用pthread_exit函数结束线程。

2. 线程同步与互斥(1)互斥锁:使用pthread_mutex_lock和pthread_mutex_unlock函数实现互斥锁,保证同一时刻只有一个线程访问共享资源。

(2)条件变量:使用pthread_cond_wait和pthread_cond_signal函数实现条件变量,实现线程间的同步与协作。

(3)读写锁:使用pthread_rwlock_rdlock和pthread_rwlock_wrlock函数实现读写锁,允许多个线程同时读取共享资源,但只有一个线程可以写入。

3. 线程通信与协作(1)线程间通信:使用pthread_cond_signal、pthread_cond_broadcast、pthread_barrier_wait等函数实现线程间的通信。

(2)线程协作:使用pthread_barrier_init、pthread_barrier_wait函数实现线程间的协作,确保所有线程到达某个点后再继续执行。

4. 线程调度与优先级(1)线程调度:了解操作系统的线程调度算法,如时间片轮转、优先级调度等。

(2)线程优先级:使用pthread_setschedparam函数设置线程的调度策略和优先级。

多线程程序c语言

多线程程序c语言

多线程程序c语言多线程是计算机中的一个概念,它可以让多个线程同步运行,从而加快计算机运行速度,改善性能。

而在C语言中,使用多线程的方法也是被广泛应用于各个领域中的。

本文将为大家详细讲解如何在C语言中创建和管理多线程。

一、线程和进程的概念在C语言中,线程是执行代码的一种方式,它可以用来实现并发和异步编程。

而进程是资源分配的最小单位,每个进程都有自己的地址空间和独立的工作流程。

一个进程可以包含多个线程。

在操作系统的层面,每个线程都是由进程来管理的,由于线程共享进程的地址空间,所以它们之间的数据传递和通信比较方便。

二、多线程的实现方法在C语言中,要实现多线程的功能,需要使用相关的函数库。

其中最常用的函数库是pthread,使用它可以轻松地创建和管理多个线程。

1. 线程的创建线程的创建主要是通过pthread_create函数实现的。

它的原型定义如下:```#include <pthread.h>int pthread_create(pthread_t *thread, const pthread_attr_t *attr,void *(*start_routine)(void*), void *arg);```该函数的第一个参数是一个指向线程ID的指针,第二个参数是指向线程属性的指针,第三个参数是线程所要执行的函数,最后一个参数是传递给函数的参数。

调用成功后,会返回0,并将线程ID放到第一个参数所指向的地址中。

```#include <pthread.h>int pthread_cancel(pthread_t thread);```该函数的参数是要撤销的线程ID。

调用成功后,函数会直接将指定的线程终止掉,并释放它所占用的资源。

三、多线程的应用场景在C语言中,多线程的应用场景非常广泛,下面分别介绍几种典型的应用场景:1. 网络编程在网络编程中,要同时处理多个客户端请求,这时使用多线程可以使程序并发执行,效率更高。

c 多线程实现的四种方式

c 多线程实现的四种方式

c 多线程实现的四种方式C 编程语言是一种非常流行的编程语言,使用广泛且应用广泛。

如今,许多程序员都在寻找更有效的方式来编写多线程程序。

在这篇文章中,我们将介绍 C 多线程实现的四种方式。

1. POSIX 线程库POSIX 线程库是用于编写可移植线程程序的标准 C 库。

它提供了一组函数和数据结构,使程序员能够创建和管理线程。

POSIX 线程库是跨平台的,可在多个操作系统上使用,包括 Linux、Unix 和 MacOS。

在 POSIX 线程库中,程序员使用 pthread.h 头文件来访问对线程库的访问函数。

其中一些关键函数包括pthread_create()、pthread_join() 和pthread_mutex_lock()。

2. Win32 APIWin32 API 是面向 Windows 操作系统的 API。

它是微软 Windows 操作系统的基础。

使用 Win32 API,程序员可以创建和管理线程。

Win32 API 使用 CreateThread() 函数创建线程,并使用 WaitForSingleObject() 函数等待线程完成。

Win32 API 的优点是它可以与其他 Windows API 一起使用。

它还支持在 Windows 平台上编写 C++ 和 C# 程序。

3. OpenMPOpenMP 是一种非常流行的多线程编程模型。

它适用于共享内存系统上的并行编程。

OpenMP 定义了一组编译器指示符,程序员可以在其代码中使用这些指示符以指示哪些部分应并行执行。

在 OpenMP 中,程序员可以使用 #pragma 指令来指示程序应该并行执行哪些代码块。

程序员可以控制 OpenMP 应该使用多少个线程。

4. Pthreads for WindowsPthreads for Windows 是 POSIX 线程库的 Windows 版本。

它使用 pthreads-w32 库提供相同的接口和功能,与 Windows 和 Visual Studio 兼容。

《用C语言实现高效的多线程》

《用C语言实现高效的多线程》

《用C语言实现高效的多线程》
本文阐述了如何使用C语言实现高效的多线程,来提高程序
性能。

第一,我们首先要讨论多线程。

多线程是指程序中有多个可以同时运行的部分,即多个线程可以分别在不同的CPU中执行
不同的任务。

在C语言中,可以使用POSIX线程库(Pthread)来实现多线程。

第二,要了解如何优化多线程程序的性能。

优化多线程程序的一个主要方法是减少线程间的竞争。

通常我们可以通过以下方式减少线程间的竞争:1)使用原子操作;2)使用锁;3)使
用消息传递;4)使用数据分区。

此外,程序的性能也可能受到硬件平台的影响。

针对不同的平台,我们可以采用不同的优化技巧。

例如,在多核CPU上,
主要是利用多核来增加程序的性能,这就要求程序有足够的并行可能性。

第三,在实际的应用程序中,我们应该特别考虑如何在C语
言中设计并行程序来提高程序性能。

在设计并行程序时,主要考虑如何将程序分解成多个独立的线程,以实现最大的利用多核处理器的性能,还要考虑线程间的通信和同步问题以避免数据竞争。

总之,使用C语言实现高效的多线程主要包括:首先,利用POSIX线程库(Pthread)实现多线程;其次,通过减少线程
间的竞争和考虑硬件平台的性能特点来优化多线程程序;最后,在实际的应用程序中,我们应该设计并行程序来充分利用多核处理器的性能,并考虑线程间的通信与同步问题。

多线程编程实验总结与体会

多线程编程实验总结与体会

多线程编程实验总结与体会《多线程编程实验总结与体会》2000字以上通过本次多线程编程实验,我对多线程编程的原理、实现方式以及应用场景有了更加深入的理解,并且学会了使用Java语言进行多线程编程。

在整个实验过程中,我遇到了许多困难和挑战,但最终通过不断学习和探索,我成功地完成了实验任务。

在此过程中,我从中收获了许多宝贵的经验和教训。

首先,在实验过程中我学会了如何创建线程以及线程的基本操作。

在Java 中,使用Thread类可以创建一个新的线程,通过重写run()方法可以定义线程的执行任务。

通过调用start()方法可以启动线程,并且多个线程可以并发执行。

而在实验中,我了解到了使用Runnable接口也可以实现线程的创建,并且相比于直接使用Thread类,使用Runnable接口可以更好的实现线程的共享和资源的线程安全性。

其次,在多线程编程中,线程之间的协调和通信是非常重要的。

通过学习实验,我了解到了使用synchronized关键字可以实现线程的互斥操作,保证同一时刻只有一个线程可以访问某个共享资源。

此外,实验还引入了Lock对象以及Condition条件变量,这些类提供了更加灵活和高级的线程同步机制,如可以实现线程的中断、超时等功能。

同时,在实验中我还了解到了线程的调度和优先级的概念。

在Java中,线程调度是由操作系统负责的,通过使用yield()方法可以让出一段时间的CPU执行时间,从而让其他优先级较高的线程有机会执行。

而在实验中,我也了解到了线程优先级的设置,通过使用setPriority()方法可以设置线程的优先级,优先级较高的线程获取CPU时间片的几率更大。

此外,在多线程编程中,线程安全是一个非常重要的问题。

在实验中,我学习到了一些线程安全的编程技巧。

比如,使用volatile关键字可以保证变量的可见性,多个线程对该变量的修改能够在其他线程中立即得到通知。

另外,使用synchronized关键字可以保证共享资源的一致性,通过对关键代码块或方法进行加锁,可以防止多个线程同时修改共享资源导致的错误。

C#多线程编程のTask(任务全面解析)

C#多线程编程のTask(任务全面解析)

C#多线程编程のTask(任务全⾯解析)Task是.NET4.0加⼊的,跟线程池ThreadPool的功能类似,⽤Task开启新任务时,会从线程池中调⽤线程,⽽Thread每次实例化都会创建⼀个新的线程。

我们可以说Task是⼀种基于任务的编程模型。

它与thread的主要区别是,它更加⽅便对线程进程调度和获取线程的执⾏结果。

Task类和Task<TResult>类前者接收的是Action委托类型后者接收的是Func<TResult>委托类型任务和线程的区别:1、任务是架构在线程之上的,也就是说任务最终还是要抛给线程去执⾏。

2、任务跟线程不是⼀对⼀的关系,⽐如开10个任务并不是说会开10个线程,这⼀点任务有点类似线程池,但是任务相⽐线程池有很⼩的开销和精确的控制。

⼀、Task的创建1、直接创建var task1 = new Task(() =>{Console.WriteLine("Begin");System.Threading.Thread.Sleep(5000);Console.WriteLine("Finish");});Console.WriteLine("Before start:" + task1.Status);task1.Start();2、⼯⼚创建Task.Factory.StartNew(()={});3、4.5以后Run运⾏Task.Run(()=>{});4、⼀种⽅便获取返回值的⽅式static void Main(string[] args){var tcs = new TaskCompletionSource<int>();new Thread(() => {Thread.Sleep(5000);int i = Enumerable.Range(1, 100).Sum();tcs.SetResult(i); }).Start();//线程把运⾏计算结果,设为tcs的Result。

《如何使用C语言实现多线程编程?》

《如何使用C语言实现多线程编程?》

《如何使用C语言实现多线程编程?》使用C语言实现多线程编程是一种强大的方法,它可以使程序更加高效、多样化,并可以完成更复杂的任务。

本文将介绍如何使用C语言实现多线程编程。

一、准备工作在开始使用C语言实现多线程编程之前,需要准备一些相关的资源,其中包括编程所需的适当的硬件和软件设备,多线程同步编程所需的程序库,以及使用C语言实现多线程编程所需的支持库。

二、编写并启动多线程程序使用C语言实现多线程编程的关键是,开发人员需要利用程序库和支持库,编写实现具体功能的代码。

比如,开发人员可以利用POSIX线程库,编写使用pthread_create()函数的多线程程序;可以利用Windows线程库,编写使用CreateThread()函数的多线程程序;也可以利用OpenMP线程库,编写使用omp_set_num_threads()函数的多线程程序。

三、运行多线程程序完成了多线程程序的编写,开发人员需要使用C语言的编译器,将多线程程序编译为可执行程序,然后使用操作系统的任务管理器,将多线程程序载入内存,进而启动多线程程序,使其正常运行。

四、检查多线程程序的运行状态开发人员可以使用操作系统提供的任务管理器,对多线程程序的运行状态进行实时检查,以确保多线程程序的正确性,并尽量避免出现无意义的多线程并发运行,以及多线程状态的混乱。

五、在多线程程序中使用同步如果多线程程序中的多个线程要访问同一个共享变量,开发人员需要使用同步技术,保证多个线程之间的数据操作是正确和可靠的。

支持这种技术的有Mutexes(互斥)、Semaphores(信号量)、Condition Variables(条件变量),以及Read/Write Lock(读/写锁)等。

总之,使用C语言实现多线程编程可以使程序更加高效、多样化,并可以完成更复杂的任务。

开发人员需要做好准备工作,编写并启动多线程程序,运行多线程程序,检查多线程程序的运行状态,以及在多线程程序中使用同步,来实现多线程编程。

软件开发实习报告:多线程并发编程的实践与总结经验分享

软件开发实习报告:多线程并发编程的实践与总结经验分享

软件开发实习报告:多线程并发编程的实践与总结经验分享一、引言在软件开发过程中,多线程并发编程是一个非常重要的概念。

它可以提高程序的执行效率,实现任务的并行处理,提升系统的响应速度。

因此,在软件开发实习中,我选择了多线程并发编程作为我的主要实践项目。

本篇报告将结合我的实践经验,分享我对多线程并发编程的理解和总结。

二、实践项目介绍在我的软件开发实习中,我参与了一个网络爬虫的开发项目。

该项目的主要目标是从互联网上获取大量的数据,并进行存储和分析。

由于需要处理大量的数据和任务,单线程的处理方式显然效率低下。

因此,我们决定采用多线程并发编程来优化程序的执行效率。

三、多线程并发编程的基本概念1. 线程线程是程序中独立运行的基本单位,它可以并发执行,共享进程的资源。

一个进程中可以包含多个线程,线程之间可以共享内存空间,相互之间可以通过共享内存进行通信。

2. 并发并发是指多个任务在同一时间段内同时执行的能力。

在多线程并发编程中,通过创建多个线程来实现程序的并发执行,提高程序的执行效率。

3. 线程同步由于多个线程共享同一份数据,可能会产生数据竞争的问题。

为了保证数据的一致性和正确性,需要使用线程同步机制来协调各个线程的执行。

常用的线程同步机制有互斥锁、条件变量、信号量等。

四、多线程并发编程的实践与总结1. 多线程任务的划分与执行在我们的网络爬虫项目中,我们将爬取数据的任务划分为多个独立的子任务,并由不同的线程负责执行。

通过合理的任务划分和线程分配,可以充分利用系统的资源,提高程序的并发执行效率。

2. 数据竞争的处理在多线程并发编程中,由于多个线程共享同一份数据,可能会产生数据竞争的问题。

为了解决这个问题,我们使用互斥锁来保证数据的一致性。

在访问共享数据之前,我们使用互斥锁对数据进行加锁,防止其他线程同时对数据进行访问和修改。

3. 线程间的通信在我们的项目中,由于涉及到多个线程的协作,我们需要使用线程间的通信机制来实现任务的分配和协调。

c语言多线程编程注意事项

c语言多线程编程注意事项

c语言多线程编程注意事项
1. 线程安全性:多个线程并发访问共享资源时可能出现数据竞争,需要使用同步机制(如互斥锁、条件变量等)来保护共享资源的访问。

2. 内存管理:多线程程序可能面临内存管理问题,如内存泄漏、内存覆盖等。

注意在线程结束时释放动态分配的内存。

3. 线程创建和销毁:合理地创建和销毁线程,避免过多地创建线程而导致系统资源的浪费。

可以使用线程池来管理线程的生命周期。

4. 线程间通信:多个线程之间需要进行通信,如共享数据、消息传递等。

需要使用合适的机制来实现线程间的数据交换和同步,如信号量、条件变量等。

5. 资源竞争:多个线程使用相同的资源时可能引发竞态条件。

需要避免使用共享资源或者使用适当的同步机制来解决资源竞争问题。

6. 线程调度:多线程程序的执行是由系统的线程调度器来控制的,可能出现线程优先级不均衡的问题。

可以使用线程优先级的设置来改善线程调度。

7. 异常处理:线程中的异常可能会导致整个程序崩溃,需要在多线程程序中合理地处理异常,确保程序能够恢复正常执行。

8. 线程数量:过多的线程可能会导致系统负载过大,降低程序的性能。

需要根据系统的实际情况和要求来合理地设置线程数量。

9. 可重入性:多个线程可能需要同时调用某个函数,需要保证函数是可重入的(即多次调用不会出现问题)。

10. 浮点数操作:在多线程环境中,浮点数操作可能会出现精度问题,需要谨慎处理浮点数的计算。

总之,多线程编程需要细心和谨慎,遵循一些基本的编程原则和注意事项,以确保程序的正确性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C++ 多线程编程总结
在开发C++程序时,一般在吞吐量、并发、实时性上有较高的要求。

设计C++程序时,总结起来可以从如下几点提高效率:
∙l 并发
∙l 异步
∙l 缓存
下面将我平常工作中遇到一些问题例举一二,其设计思想无非以上三点。

1任务队列
1.1 以生产者-消费者模型设计任务队列
生产者-消费者模型是人们非常熟悉的模型,比如在某个服务器程序中,当User数据被逻辑模块修改后,就产生一个更新数据库的任务(produce),投递给IO模块任务队列,IO模块从任务队列中取出任务执行sql操作(consume)。

设计通用的任务队列,示例代码如下:
详细实现可参见
1.2 任务队列使用技巧
注意,此模式下为多任务队列,每个任务队列单线程。

1.2.3 连接池与异步回调
比如逻辑Service模块需要数据库模块异步载入用户数据,并做后续处理计算。

而数据库模块拥有一个固定连接数的连接池,当执行SQL的任务到来时,选择一个空闲的连接,执行SQL,并把SQL 通过回调函数传递给逻辑层。

其步骤如下:
∙n 预先分配好线程池,每个线程创建一个连接到数据库的连接
∙n 为数据库模块创建一个任务队列,所有线程都是这个任务队列的消费者
∙n 逻辑层想数据库模块投递sql执行任务,同时传递一个回调函数来接受sql执行结果
注意,此模式下为单任务队列,每个任务队列多线程。

2. 日志
本文主要讲C++多线程编程,日志系统不是为了提高程序效率,但是在程序调试、运行期排错上,日志是无可替代的工具,相信开发后台程序的朋友都会使用日志。

常见的日志使用方式有如下几种:
∙n 流式,如logstream << "start servie time[%d]" << time(0) << " app name[%s]"
<< app_string.c_str() << endl;
∙n Printf 格式如:logtrace(LOG_MODULE, "start servie time[%d] app name[%s]", time(0), app_string.c_str());
二者各有优缺点,流式是线程安全的,printf格式格式化字符串会更直接,但缺点是线程不安全,如果把app_string.c_str() 换成app_string (std::string),编译被通过,但是运行期会crash(如果运气好每次都crash,运气不好偶尔会crash)。

我个人钟爱printf风格,可以做如下改进:
∙l 增加线程安全,利用C++模板的traits机制,可以实现线程安全。

示例:
这样,除了标准类型+std::string 传入其他类型将编译不能通过。

这里只列举了一个参数的例子,可以重载该版本支持更多参数,如果你愿意,可以支持9个参数或更多。

∙l 为日志增加颜色,在printf中加入控制字符,可以再屏幕终端上显示颜色,Linux下示例:printf("\033[32;49;1m [DONE] \033[39;49;0m")
更多颜色方案参见:
∙l 每个线程启动时,都应该用日志打印该线程负责什么功能。

这样,程序跑起来的时候通过top –H – p pid 可以得知那个功能使用cpu的多少。

实际上,我的每行日志都会打印线程id,此线程id 非pthread_id,而其实是线程对应的系统分配的进程id号。

3. 性能监控
尽管已经有很多工具可以分析c++程序运行性能,但是其大部分还是运行在程序debug阶段。

我们需要一种手段在debug和release阶段都能监控程序,一方面得知程序瓶颈之所在,一方面尽早发现哪些组件在运行期出现了异常。

通常都是使用gettimeofday 来计算某个函数开销,可以精确到微妙。

可以利用C++的确定性析构,非常方便的实现获取函数开销的小工具,示例如下
struct profiler{
profiler(const char* func_name){
gettimeofday(&tv, NULL);
m_func_name=func_name;
}
~profiler(){
struct timeval tv2;
gettimeofday(&tv2, NULL);
long cost = (_sec - _sec) * 1000000 + (_usec - _usec);
//! post to some manager
}
struct timeval tv;
const char * m_func_name;
};
#define PROFILER() profiler
____profiler_instance##__LINE__(__FUNCTION__)
Cost 应该被投递到性能统计管理器中,该管理器定时讲性能统计数据输出到文件中。

4 Lambda 编程
使用foreach 代替迭代器
很多编程语言已经内建了foreach,但是c++还没有。

所以建议自己在需要遍历容器的地方编写foreach函数。

澳门新濠天地 习惯函数式编程的人应该会非常钟情使用foreach,使用foreach的好处多多少少有些,如:
但主要是编程哲学上层面的。

示例:
void user_mgr_t::foreach(boost::function<void (user_t&)> func_){
for (iterator it = m_users.begin(); it != m_users.end() ++it){
func_(it->second);
}
}
这样当要改动该接口时,直接在该接口内修改代码,非常直观。

5. 奇技淫巧
利用shared_ptr 实现map/reduce
Map/reduce的语义是先将任务划分为多个任务,投递到多个worker中并发执行,其产生的结果经reduce汇总后生成最终的结果。

Shared_ptr的语义是什么呢?当最后一个shared_ptr析构时,将会调用托管对象的析构函数。

语义和map/reduce过程非常相近。

我们只需自己实现讲请求划分多个任务即可。

示例过程如下:
∙l 定义请求托管对象,加入我们需要在10个文件中搜索“oh nice”字符串出现的次数,定义托管结构体如下:
∙l 定义执行任务的worker
∙l 将任务分割后,投递给不同的worker。

相关文档
最新文档