小学奥数 5-1-3-3 数阵图(三).教师版
(小学奥数)数阵图(二)
1. 瞭解數陣圖的種類2. 學會一些解決數陣圖的解題方法3. 能夠解決和數論相關的數陣圖問題.一、數陣圖定義及分類:1. 定義:把一些數字按照一定的要求,排成各種各樣的圖形,這類問題叫數陣圖.2. 數陣是一種由幻方演變而來的數字圖.數陣圖的種類繁多,這裏只向大家介紹三種數陣圖:即封閉型數陣圖、輻射型數陣圖和複合型數陣圖.3.二、解題方法:解決數陣類問題可以採取從局部到整體再到局部的方法入手: 第一步:區分數陣圖中的普通點(或方格)和關鍵點(或方格);第二步:在數陣圖的少數關鍵點(一般是交叉點)上設置未知數,計算這些關鍵點與相關點的數量關係,得到關鍵點上所填數的範圍;第三步:運用已經得到的資訊進行嘗試.這個步驟並不是對所有數陣題都適用,很多數陣題更需要對數學方法的綜合運用.複合型數陣圖【例 1】 由數字1、2、3組成的不同的兩位數共有9個,老師將這9個數寫在一個九宮格上,讓同學選數,每個同學可以從中選5個數來求和.小剛選的5個數的和是120,小明選的5個數的和是111.如果兩人選的數中只有一個是相同的,那麼這個數是_____________.例題精講知識點撥教學目標5-1-3-2.數陣圖313233212223131211【考點】複合型數陣圖 【難度】3星 【題型】填空 【關鍵字】迎春杯,中年級,決賽,3題【分析】 這9個數的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小剛和小明選的數中只有一個是相同的,可知他們正好把這9個數全部都取到了,且有一個數取了兩遍.所以他們取的數的總和比這9個數的和多出來的部分就是所求的數.那麼,這個數是12011119833+-=.【答案】33【例 2】 如圖1,圓圈內分別填有1,2,……,7這7個數。
如果6個三角形的頂點處圓圈內的數字的和是64,那麼,中間圓圈內填入的數是 。
【考點】複合型數陣圖 【難度】3星 【題型】填空 【關鍵字】希望杯,五年級,復賽,第5題,5分【解析】 2【答案】2【例 3】 如下圖(1)所示,在每個小圓圈內填上一個數,使得每一條直線上的三個數的和都等於大圓圈上三個數的和.(1)17894【考點】複合型數陣圖 【難度】3星 【題型】填空【解析】 為敘述方便,先在每個圓圈內標上字母,如圖(2),(2)a cb49817則有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3)(1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,則 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:見圖.1789411215【答案】1789411215【例 4】 請你將數字1、2、3、4、5、6、7填在下面圖(1)所示的圓圈內,使得每個圓圈上的三個數之和與每條直線上的三個數之和相等.應怎樣填?【考點】複合型數陣圖 【難度】3星 【題型】填空【解析】 為了敘述方便,將各圓圈內先填上字母,如圖(2)所示.設A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k (A+B+C )+(A+F+G )+(A+D+E )+(B+D+F )+(C+E+G )=5k ,3A+2B+2C+2D+2E+2F+2G=5k ,2(A+B+C+D+E+F+G )+A=5k ,2(1+2+3+4+5+6+7)+A=5k ,56+A=5k.,因為56+A 為5的倍數,得A=4,進而推出k=12,因為在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨設B=1,F=5,D=6,則C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一個基本解為:(見圖)7654321【答案】7654321【例 5】 在左下圖的每個圓圈中填上一個數,各數互不相等,每個圓圈有3個相鄰(即有線段相連的圓圈)的圓圈。
三年级奥数第9讲:巧填数阵-课件
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
开花
放,
选
择
在
夏
我们,还在路上……
例题五(选讲)
将2、3、4、5、6、7这6个数填入下图的圆圈中,使 得每个三角形的顶点之和都相等。
36到45之间能被3整除的总数有:36 39 42 45
当每个三角形的顶点 之和为:36÷3=12
每个三角形的顶点 之和为:39÷3=13
每个三角形的顶点 每个三角形的顶点之和:45÷3=15 之和:42÷3=14
想要打开宝箱就必须把1、2、3、4、 5这五个数填入小圆圈中,使每条线上 的数字之和与圆周上的数字之和都相等。
巧填数阵
例题一
请你将1—9这九个数字填入下图的小圆圈中,使得每条
线上的数字之和都相等。
1+2+3+4+…+9=45
中心数 如果让你们先确定
一个数,你们会从
中心数被重复计算了3次 哪里着手呢?
中间数多加2次:
x 1+2+3+4+5+6+7+2
总和为3的倍数
28+2x
x
28+2×1=30 28+2×4=36 28+2×7=42
x可以为: x=1、4、7
例题三
将1、2、3、4、5、6、7这七个数字填入小圆圈内,
使每条线上的三个数的和相等。
一条直线上3个数的和为:
中间数为1时: (28+2×1)÷3=10
5
3
4
4
7
6
7
5
五年级奥数第4讲:数阵-课件
练习五(选做)
如下图的五个连环,他们相交后分成九个区域,现在两个区域 里已分别填进数字10和6,请在另外七个区域里分别填上2、3、4、 5、6、7、9这七个数,使每个圆内数字的和都是15。
10 5
6 72
96
3
4
排除法
从两头做为突破口
两数之和等于 15-9=6
6=2+4
总结
运用数的总和与每行和的总和关系,利用数和倍数的 特点,先确定几个数,然后用排除法找出正确答案。
8
9
b2 4 8 c3
2573
小结
1. 理解幻方里总和、幻和、阶数的概念,总和=幻和×阶数, 奇数阶幻方中心数=幻和÷阶数。 2. 解决封闭数阵的时候,学会用总和的思想求顶点数,同时 利用自然数、倍数等数的特性辅助求解,并对得出的组合逐一 排除,最后得到正确答案。
2、3、5倍数的特征 什么是偶数?
还有其它填法吗?
(61,2,89)(67,2,83)(71,2,79) 两两组合共有3种
例题五(选讲)
将1~9这九个数分别填入下图的○里,使外三角形边上○内数 之和等于里面三角形边上○内数之和。
1
两个三角形2共同的点
637 45
三个数的和等于 三个数的和
618
想想符合这样的组合?
37
2
8
94
9
5
你们还能想到更多的答案吗?
所2是有质的偶数数都2不8是是质偶数数吗? 3个质数相加是偶数 奇数+偶数+奇数=不同的质数,其中的四个数都在60~90之间, 要使横行、竖行的三个数的和都是152,可以怎么填?
61 67 2 83
89
3个质数相加是偶数 奇数+偶数+奇数=152 又是偶数又是质数的是2
五年级奥数数阵图(三)学生版
1.五年级奥数数阵图(三)学生版2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点[或方格]和关键点[或方格]; 第二步:在数阵图的少数关键点[一般是交叉点]上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【例 2】 将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.例题精讲知识点拨教学目标5-1-3-3.数阵图【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8[1已填出].从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n[n≤8]。
则从这个圆圈开始顺时针走n步进入另一个圆圈.依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8.请给出两种填法.【例 4】在圆的5条直径的两端分别写着1~10(如图)。
现在请你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。
【例 5】图中是一个边长为1的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F位置上(例如:a b g f A+++=).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a g d⨯⨯=___________.【例 6】在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。
小学奥数基础教程之数阵图三
数阵图(三)
例1把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等。
例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。
例3将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内。
例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。
例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。
1.将1~6这六个数分别填入左下图中的六个○内,使得三条直线上的数字的和都相等。
2.将1~8这八个数分别填入右上图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格及四角四格内四个数相加的和都是18。
3.在下页左上图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数都是1,2,3,4。
4.将1~8填入右上图的八个空格中,使得横、竖、对角任何两个相邻空格中的数都不是相邻的两个自然数。
5.20以内共有10个奇数,去掉9和15还剩八个奇数。
将这八个奇数填入右图的八个○中(其中3已填好),使得用箭头连接起来的四个数之和都相等。
6.在左下图的七个○内各填入一个质数,使每个小三角形(共6个)的三个顶点数之和都相等,且为尽量小的质数。
7.从1~13中选出12个自然数填入右上图的空格中,使每横行四数之和相等,每竖列三数之和也相等。
三年级下册数学试题-奥数专题讲练:第六讲 数字谜(二)——数阵图 精英篇(解析版)全国通用
第六讲 数字谜(二)—数阵图本讲通过对简单数阵的学习,让学生在数与数之间的变化中,感受到数字的奇妙,体会到数学思维 的乐趣知识点:1.封闭型数阵图;2.辐射型数阵图; 3.复合型数阵图.教学目标将 1、2、3、4、5、6 这六个数填在图中的空灯里,使 每个大圆上的四盏灯里的数相加都等于 14.分析:将三个大圆上的所有数字相加,中间三个灯笼上的数字被加了 2 遍, 其余三个灯笼上的数字只加了一遍,所以,中间三个数的和为(1+2+3 +4+5+6)-14=7,三个数相加等于 7 的情况只有 1+2+4,所以中间的三个灯笼上的数为 1,2,4,这 6 个数中四个数相加等于 14 的组合有 (6521)(6431)(5432),就可以填出:想 挑 战 吗 ︕在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜, 奇妙无穷.它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人 有着极大的吸引力,以至有些人留恋其中,用毕生的精力来研究它的变化, 就连大数学家欧拉对它都有着浓厚的兴趣.到底什么是数阵呢? 下面我们一起来研究吧.到底什么是数阵呢?我们先观察右面两个图:左图中有 3 个大圆,每个圆周上都有四个数字,有意思的是, 7 每个圆周上的四个数字之和都等于 13.右图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于 15.上面两个图就是数阵图.准确地说,数阵图是将一些数按照一定要求排列而成的 某种图形,有时简称数阵.2 61 43 58 1 6 3 5 7 4 9 2(一)辐射型数阵图把 1~5 这五个数填入下图中的○里,使每条直线上的三个数之和相等.分析:在图中我们可以看出,中间圆圈里的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”.也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次, 即重叠了一次,其余各数均被加了一次.我们可以得出: (1+2+3+4+5)+重叠数=每条直线上三数之和×2,所以,每条直线上三数之和等于(15+重叠数)÷2.因为每条直线上的三数之和是整数,所以重叠数只可能是 1,3 或 5.若“重叠数”=1,则两条直线上三数之和为(15+1)÷2=8.填法见左下图; 若“重叠数”=3,则两条直线上三数之和为 (15+3)÷2=9.填法见下中图; 若“重叠数”=5,则两条直线上三数之和为 (15+5)÷2=10.填法见右下图.[巩固]把 1~5 这五个数填入下图中的○里(已填入 5),使两条直线上的三个数之和相等.12 5 345专题精讲有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图.填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析, 进行试验填数求解.231 451 23 452 15 43例1分析:与例题不同之处是已知“重叠数”为 5,而不知道两条直线上的三个数之和都等于什么数.所以, 必须先求出这个“和”.两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍, 所以两条直线上的三个数之和都等于 [(1+2+3+4+5)+5]÷2=10.因此,两条直线上另两个数(非“重叠数”)的和等于 10-5=5.非“重叠数”的和也可以这样求,因为 1~4 的和我们可以求,每条直线上两端的数的和是:(1+2+3+4)÷2=5.在剩下的四个数 1,2,3,4 中,只有 1+4=2+3=5.故有右上图的填法.[注意] 求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.把 1~7 这七个数分别填入下图的○内,使每条线段上三个○内数的和相等.分析:解这道题的关键是首先求出中心数.1~7 七个数的和是 28,而计算三条线段中数的和时,中心圆的数要多加两次.因此可得如下关系式:28+(中心数)×2=每条线段上三个数的和×3.即:(28+中心数×2)÷3=每条线段上三个数的和.用试验的方法,将 1~7 这七个数作中心数分别代入上述关系式中.可求出中心数及每条直线上三个数的和.经试验,若中心数取 2、3、5、6,此题无解;中心数取 1、4、7 时该题数阵图成立.(1)(28+1×2)÷2=10,中间圆圈内填 1,各线段其他两数和为 10-1=9. (2)(28+4×2)÷3=12,中间圆圈内填 4,各线段其他两数和为 12-4=8. (3)(28+7×2)÷3=14,中间圆圈内填 7,各线段其他两数和为 14—7=7. 三种基本解法详见下图.将 10~20填入左下图的○内,其中 15 已填好,使得每条边上的三个数字之和都相等.分析:中间○内的 15 是重叠数,并且重叠了四次,所以每条边上的三个数字之和等于 [(10+11+…+ 20)+15×4]÷5=45.15例2 6 31 4 2572 64751334 75621例3201610 191411 1513 121718剩下的十个数中,两两之和等于(45-15=)30 的有 10,20;11,19;12,18;13,17;14,16. 也可以这样求:五条边上两个数的和都是相等的,(10+11+…+20)÷5=30,所以两两之和等于30. 于是得到右图的填法.[拓展]把 10~20 这 11 个数分别填入下图的圆圈内,使每条线段上三个圆圈内的数的和都相等.请你把各种填法都写出来(中心圆圈内的数相同就视为一种填法).(1993 年武汉市小学数学竞赛试题)分析:审题可知中心处的数是五条线段的端点,求和时用了 5 次,因此,确定中心圆圈里的数是关键 (方法一)①列出中心数与每条线段上三数和的关系式:(165+中心数×4)÷5②用试验方法求出中心数及每条线段上三数和.中心数分别为 10、15、20.每条线段上三数和分别为 4l 、45、49.分别以 10、15、20 为中心数的数阵图,相对应的每条线段上两数和分别为:3l 、30、29. 和为 29 的两数可有:10+19、1118、12+17、13+16、14+15; 和为 30 的两数可有:10+20、11+19、12+18、13+17、14+16; 和为 31 的两数可有:11+20、12+19、13+18、14+17、15+16. ③填图.如下图的(1)、(2)、(3).(方法二)设中心的圆圈内的数字是 a ,每条线段的圆圈内的三个数字和是 k ,则:10+11+12+13+ 14+15+16+17+18+19+20+4×a=5k ,即 165+4×a=5k .推出中心处的 a 等于 10,15,20,k 分别等于 41,45,49.当 a =10 时,k =41,每条线段上另外两个圆圈内的两数之和是 31,即 11+20,12+19,13+18,14+ 17,15+16,从而填出数阵图当 a =15 时,k =45,每条线段上另外两个圆圈内的两数之和是 30,即 10+20、11+19、12+18、13+ 17、14+16,从而填出数阵图当 a =20 时,k =49,每条线段上另外两个圆圈内的两数之和是 29,即 10+19、11+18、12+17、13+ 16、14+15,从而填出数阵图[小结]以上例题中数阵图都是辐射型数阵图.一般地,有 m 条边,每边有 n 个数的形如下图的图形称为辐射型 m -n 图.192012 18111310 14 15171620 1610 19141115 1312171819 1510 181411 20 13121617辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即 m -1.对于辐射型数阵图,有: 已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数.由此得到:(1)若已知每条直线上各数之和,则重叠数等于 (直线上各数之和×直线条数-已知各数之和)÷重叠次数 . 如 例 1 、 例 3. (2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数.如例 2. (3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值分析讨论,如例 3.(二)封闭型数阵图将 1~6 这六个自然数分别填入右图的六个○中,使得三角形每条边上的三个数之和都相等.分析:我们不知道每边的三数之和等于几.因为三个重叠数都重叠了一次,由(1+2+…+6)+重叠数之和=每边三数之和×3,得到每边的三数之和等于[(1+2+…+6)+重叠数之和]÷3=(21+重叠数之和)÷3=7+重叠数之和÷3.因为每边的三数之和是整数,所以重叠数之和应是 3 的倍数.考虑到重叠数是 1~6 中的数,所以三个重叠数之和只能是 6,9,12 或 15,对应的每条边上的三数之和就是 9,10,11 或 12. 与例题的方法类似,可得下图的四种填法:每边三数之和=9 每边三数之和=10 每边三数之和=11 每边三数之和=12[小结]像例题中这样各条边是互相连接的数阵图,叫做封闭型数阵图.思考这类问题,主要是要弄清关键数字.抓住关系式,进行分析,确定顶点上的数以及每条边上的数的和,再用试验的 方法,求出解.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为“封闭型数阵图”.填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图.例4 16 5243164325253 416432516例5 将2~9 这八个数分别填入右图的○里,使每条边上的三个数之和都等于18.分析:四个角上的数是重叠数,重叠次数都是 1 次.所以四个重叠数之和等于18×4-(2+3+…+9)=28.而在已知的八个数中,四数之和为 28 的只有:4+7+8+9=28 或 5+6+8+9=28.又由于 18-9-8=1,1 不是已知的八个数之一,所以,8 和9 只能填对角处.由此得到左下图所示的重叠数的两种填法:“试填”的结果,只有右上图的填法符合题意.[巩固]把 1~8 这八个数分别填入下图中的八个○内,使每条边上三个○内数的和都相等.分析:这道题的关键是确定正方形四个顶点上的数及正方形每边上数的和.1~8 的和是 36,36 加上四个顶点上的数其和是 4 的倍数.36 是 4 的倍数,只要考虑从 1~8 里选 4 个数,使其和是 4 的倍数,可得四个不同的和 12、16、20、24.再求出每边四个数的和分别是:(36+12)÷4=12 (36+16)÷4=13 (36+20)÷4=14 (36+24)÷4=15 又因为 1+2+3+6=12,1+2+4+5=12.经试验,四个顶点数只能填 l、2、3、6.然后用凑数法使每边和是 12.采用同样的方法,可填出每边和是 13、14、15 的情况.下面给出一种解法,如右上图.其他解法请同学们自己完成.用1~9 这九个数字填入下图中,使得每条边上的四个数的和都等于 A,问A 可以等于哪些数?给出你的填法.分析:解这道题的关键是确定三边之和与三顶点之和的关系,再运用试验法求解.4 98 75 98 64 5 96 28 3 715684372例6因为每条边上的四数之和都等于 A ,则三边之和为 3×A.因 1 到 9 这九个数的和是 45,而在 3×A 中,三个顶点上的数都被计算了两次,于是顶点上的数之和应为 3×A-45.这个和是 3 的倍数,它最小是 1+2+3=6,最大是 7+8+9=24,从而 A 可以取 17、18、19、20、21、22、23.但是,当 A 为 18 或 22 时,都得不出一个合乎题目要求的解答,所以 A 只能为 17、19、20、23 这五个数.图(1)、(2)、 (3)、(4)、(5)给出了这五种填法.(1)(2)(3)(4)(5)将 l 、2、3、4、5、6 六个数字填入下图中的小圆圈内,使每个大圆上四个数字的和都是 l6.分析:观察发现,中间的两个圆圈最特殊,它们同时在两个圆上,我们要以此入手,填出这个数阵. 这六个数的和是 1+2+3+4+5+6=21.题中要使每个大圆上的数字和是 16,那么两个大圆上的数字总和是 16×2=32,两个大圆圈上数字的总和比六个数的和多 32-21=11,怎么会多 11 呢?因为两个大圆上有两个数被算了两次,也就是多算了一次,即()+()=11,所以,被算了两次的数是 5 和 6. 先填上被多算的数 5 和 6,再通过计算填入其余各数:16-5-6=5,2+3=5,1+4=5,填法如下:[小结]刚刚学习的这几个数阵图都是封闭型数阵图.一般地,在 m 边形中,每条边上有 n 个数的形如下图的图形称为封闭型 m -n 图.与“辐射型 m -n 图只有一个重叠数,重叠次数是 m -1”不同的是,封闭型 m -n 图有 m7A=23 5 63184 2 93 A=21 7 85 1 642 91A=20 876354291A=19 896 245371 A=17 8 96 4275 3例7 251364个重叠数,重叠次数都是 1 次.对于封闭型数阵图,因为重叠数只重叠一次,所以: 已知各数之和+重叠数之和=每边各数之和×边数. 由这个关系式,就可以分析解决封闭型数阵图的问题.(三)复合型数阵如图 “好、助、手、伙、伴、参、谋”这 7 个汉字分别代表 1 至 7 这 7 个数字.已知 3 条直线上的 3 个数相加、2 个圆周上的 3 个数相加,所得的 5 个和相同.那么,“好”字代表多少?分析:通过读题可以知道三条直线的三个数之和相等,两个圆圈的三个数之和相等,而且五个和都相等.所以计算 5 个和的和,这个和一定是 5 的倍数,其中“好”字计算了三遍,其它数只是被计算了 2 遍,因此这个和等于(1+2+3+4+5+6+7)×2+“好”=56+“好”,我们这个“好”只能是 4 才 能保证这个和是 5 的倍数.所以“好”=4.将自然数 l ~7 填入右图的七个○中,使得横、竖、斜的每条直线上的三个数之和都相等.分析:三角形顶上的数重叠 3 次,其他数都重叠 2 次.所以有: (1+2+…+7)×2+顶上的数=每条线上的三个数之和×5,56+顶上的数=每条线上的三个数之和×5.由上式等号左端是 5 的倍数,推知“顶上的数”=4.所以每条线上的三个数之和为(56+4)÷5=12.经试验可得如下填法(填法不唯一):有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”.我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和与关键数字.例8 谋伴参伙好 助手例9 47 2 3 1 65请问如何才能将 26,27,28,36,37,38,46,47,48 这九个数分别填入图中的圆圈中,使得通过中心圆圈的每条直线上的三个数之和都是 111.分析:我们已知九个数的和是 26+27+28+36+37+38+46+47+48=333.题中要使每条线上三个数的和是 111,那么四条线上数的总和是 l11×4=444.四条线上数的总和比九个数的和多 444—333=111.中心圆圈里的这个数是重叠数,重叠了四次,即多算了 3 次,即重叠数×3=111.因为只有 37×3=111,所以中心圆圈里填 37.先填上中心圆圈里的数 37,再通过计算分别填人其余各数:111-37=74,26 +48=74,27+47=74,28+46=74,36+38=74.填法如右图:数阵图是一类非常有趣的数学问题,同学们,你们在这座数学迷宫中感受到它的奇妙了吗?在春季我们还会有类似问题的学习哦,敬请期待吧!1. 将 1~7 这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于 12.分析:1+2+3+4+5+6+7+2×中间数=28+2×中间数=12×3,中间数为 4,填法如右上图.例10专题展望练习六32741652628 36 27 37473846482. 将 1~7 这七个自然数填入下图的七个○内,使得每条边上的三个数之和都等于 10.分析: (1+2+…+7)+重叠数×2=10×3.由此得出重叠数为 [10×3-(1+2+…+7)]÷2=1.剩下的六个数中,两两之和等于 9 的有 2,7;3,6;4,5.可得右上图的填法.3. 把 1、2、3、4、5、6 六个数字分别填入下图的六个圆圈中,使每一边三个数相加的和都等于 9.分析:三边的和为 9×3=27.但是 1~6 六个数的和等于 21,三行数的和比题中六个数的和多 27—21 =6,原因在于三个顶点的数字都要用 2 次,说明三个顶点数之和是 6. 1+2+3=6,所以把 1、2、3 分别填入三个顶点中,再根据每行和都等于 9 的要求填上其他各数.如右上图.4. 请分别将 1,2,4,6 这 4 个数填在下图的各空白区域内,使得每个圆圈里 4 个数的和都等于 15.分析:5+7=12,3+7=10,3+5=8,三个圆中已有数的和与 15 的差分别是 3、5、7,只有 1 能和其他三个数的和分别是 3、5、7,所以中间数一定是 1,由和为 15,其它三个数即可得,见右上图.5. 在图中 x ,y ,z 三个小圆圈内各填上一个数,使得每条直线上三个数的和都等于大三角形三个顶点上三个数的和.分析:如图,把三条直线上的三个和相加,相当于把 4 算了三遍,1,5,6 算了一遍, 三个顶点上的数各算了一遍.根据题意,这三个和应该是相等的,并且和三个顶点上的和也相等.那么 4×3+1+5+6+三个顶点和=三个顶点和×3;和是(4×3+1+5 +6)÷2=12.所以,图中 x 处的数是 l2-4-5=3;图中 y 处的数是 l2-4-1=7;图中 z 处的数是 l2-4-6=2.721 4 3561 6 5 2435732573416x 5 4 6 1zy推理小故事图像从不闪动一个星期日的中午,绿庄公寓里 008 号房间的单身职员,到距离很近的售货摊上买东西,只离开房间五六分钟,没有锁门,5 万元现金被盗.报案后,刑警问他:“公寓里有谁知道你出去买东西?”“10号房间的北村知道,我出去时他还托我买呢.”刑警马上到 10 号房间查看.一进门,就见北村一边在吃方便面一边看漫画.“8 号房间的失盗者出去买东西时,你在哪儿?干什么了?”“我一直在看漫画呀.”“你没听见那个房间里有异常动静吗?”“没有,那时正好一架直升飞机在这座公寓的上空盘旋,噪音很大,一点点动静也觉察不到.”据公寓管理人员说,中午并没有外人进公寓.肯定是内部人员干的.“别的房间里有人在吗?”“今天星期日,别人出去玩了,只6号房间里一个叫寺内的青年人在.”刑警又来到 6 号房间,见寺内正穿一身睡衣躺在床上,边吃花生米边看电视.那是台新型彩电.“哎呀,好漂亮的彩电啊!图像一点不闪动吗?”“从来没有过,这是我三天前才买来的新产品.”“听到 8 号房间里有可疑动静吗?”“没有,一点没察觉到,因电视里有我喜欢的歌手在演唱,我看得入了迷,再加上那架讨厌的直升飞机在盘旋……”“你说谎.直升飞机盘旋时你并没看电视,而是溜进8号房间找钱吧.”刑警凭什么识破了寺内的手段呢?答案见第七讲.第五讲“巧断小偷”答案:小偷在甲、乙、丙、丁四人中,并且只有一人说的话是真话,其余三人说的是假话.也就是“一真三假”,这也是我们判断是非的准则.假如乙是小偷,那么其余三人均不是小偷.而甲说乙是小偷,所以甲讲了真话;既然乙是小偷,那么丁就不是小偷,可见丁说:“反正我没偷.”这句也是真话.于是,便有甲、乙两人说了真话,这与“一真三假”的准则相矛盾,所以乙不是小偷.同理可推斯出甲、丙都不是小偷,小偷自然就是丁了.不过,我们还可验证一下.当丁是小偷时,甲、乙、丙三人便不是小偷.丁说:“反正我没偷.”这便是一句假话;乙不是小偷,故甲说:“手表是乙偷的.”也是假话;丙不是小偷,则乙说:“手表是丙偷的.”还是假话;既然乙说的是假话,所以丙说:“乙在撒谎.”就是真话,这不是正符合“一真三假”的准则吗?同学们,你答对了吗?。
(小学奥数)5-1-4-2 幻方(二).学生版
1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独 すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
小学五年级奥数 举一反三课件数阵(附讲解步骤及答案)
15 19 16
A=19
13
15
17
4
在下图(1),每边上的数加起来之和都是5,所有数的和是12,现用任何 数字重新排列填入(2)(3)中,使每边的数字之和仍为5,但全部数的和
是13、14。
2 1 2
1
2 1
1 2 2
2
2 1
1 2 2
2
2 2
1
2
1
2
2
1
5
把1~12分别填入下图的空格中,使四个椭圆、四个圆形、四个正方形及 四条直线上的四个数之和都为26。 3 4 12 6 2 8
数阵 基础卷
1
把3~10分别填在下图中正方体的八个顶点上的圆圈里,使每个面 四个顶点上圆圈中的数的和相等。
9 6 7 4
3 8 5
10
2
把1~14分别填入下图中的方格内,使“十一”三笔中每五个方格 内的数的和相等。
5 7
2
4
3 10
11
13
14
1
6
8
9
12
把1~9分别填入下图中的圆圈中,使七个三角形(四个小三角形,
5
1
11
9
10
7
2 3 3 3 4 4 4 5 5
2
把1~16分别填入下图中的十六个圆圈中,使每条线段上四个圆圈内的数的 和相等,两个八边形顶点上的数的和也相等。
5 6 4
2 1 9
10 11
7 8
15
3
16
13 14
12
3
在下图的七个圆圈内各填一个数,要求在每条线上的三个数中,当中的 数是两边两个数的平均数,现已填好两个数,求A。
(完整版)小学三年级奥数--数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9 九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1 把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3 。
重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1 题。
例2 把1~5 这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1 不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1 的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] ÷2=10。
小学奥数模块教程数阵图
数阵图是小学奥数阶段一个很重要的专题。
在这节课中,我们的教学目标就是让学生初步认识数阵,并能通过一系列的练习,找到解数阵的一般方法。
今天我们重点研究的方法,就是通过找中心数来解题,会根据题目中给出的已知条件来求中心数。
在例题的设计中,我们也是层层深入,让学生能通过简单的例题来发现规律找到解题的方法,通过例题难度的加深来拓展应用。
希望这节课的学习能使学生的思维能力得到培养,能让学生对数阵产生兴趣,为今后的继续学习奠定基础。
在神奇的数学王国里,有一类非常有趣的数学问题,它变化多端,引人入胜, 奇妙无穷.它就是数阵图.到底什么是数阵图呢?我们先观察下面两个图:数阵图就是将一些数按照一定要求排列而成的某种图形.它一般分为辐射型(图1)和封闭型(2)两种.要把一些数字按一定的规则填入图形中,并不是一件容易的事,这需要我们多观察,找关系,仔细推理才能完成.下面我们就一起来找一找数阵图的秘密吧【例1】 把1,2,3,4,5这 5个数分别填入图中的圆圈内,(1)使得横行 3个数的和与竖列 3个数的和都等于10。
(2)使得横行3个数的和与竖列3个数的和都相等.一共有多少种不同的填法?【例2】 把4~8这五个数填入图中(已填入6),使两条直线上的三个数之和相等.例题精讲知识框架数阵图 巧求周长【例3】把1,2,3,4,5,6,7 这7个数分别填入圆圈中,使得每条直线上的3个数的和等于12.【例4】把1~9这九个数字填入下列圆圈内,使每条线上的三个圆圈内的数之和都等于15。
【例5】1~7这七个数分别填入图中的各○内,使每条直线上三个○里数的和相等.一共有多少种方法?【例6】把1~9这9个数分别填入下图的圆圈中,使得每条直线上的3个数的和都等于15。
【例7】将1,2,3,4,5,6这6个数分别填入下图中,使两个大圆上4个数的和都等于14.【例8】 把1,2,3,4,5,6这6个数分别填入右图的6个圆圈中,(1)使得三角形每条边上的3个数的和都等于10.(2)使得三角形每条边上的三个数之和都相等.还有几种不同的填法?【例9】 将1、2、3、4、5、6、7、8、9这9个数字分别填入图中的小圆圈里,使得每条边上4个数字的和是17.【例10】把1~8这八个数分别填入图中的圆内,使每条线上的三个数相加的和等于12.【随练1】 将1、2、3、4、5、6六个数填在图中的空灯里,使每个大圆上的四盏灯里的数相加都等于14.【随练2】 把2、3、4、5、6、7、8、9、10填入方格里,使每一横行、每一竖行、每一斜行的3个数的和都是18.课堂检测【作业1】 在下面的○里填上适当的数,使每条线上的三个数之和都是16.【作业2】 在空格内填入适当的数,使得每行、每列和两条对角线上的三个数的和都为18.【作业3】 在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【作业4】 把数字1、2、3、4、5分别填入下图中的方格内,使横行3个数的和与竖列3个数的和都等于9.【作业5】 把5,6,7,8,9这5个数填在下图的◇内,使横行、竖列3个数的和都相等.【作业6】 将1~9填入小方格里,使横行和竖列上五个数之和相等.家庭作业【作业7】把10,20,30,40,50,60,70这7个数填在圆圈里,使每条直线上和每个圆周上的三个数的和都是120.【作业8】把3、5、7、9、11、13、15这7个数分别填入图中的圆圈内,使每条直线上的3个数都等于27.【作业9】把1~6填入○里,使每个圆圈上的四个数之和都相等16.【作业10】把4~9这6个数分别填入下图的6个圆圈中,使得三角形每条边上的3个数的和都等于21.。
小学三年级奥数 数阵图
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:91635T492左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1〜9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1〜5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
5同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3重叠数求出来了,其余各数就好填了(见右上图)。
试一试:练习与思考第1题。
例2把1〜5这五个数填入下页左上图中的O里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5] - 2=10因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5。
五年级上册数学培优奥数讲义-第23讲数阵图
第23讲数阵图知识与方法数阵图问题千变万化,需要综合运用各种数学知识来解决问题,而往往同学们喜欢毫无顺序的“瞎试”,本讲要介绍一些通用的方法。
所以,一般是先用公式法分析出重复数,再用尝试法进行试填。
方法一:尝试法:所给的是一个等差数列,并且每条线上的数是奇数个时,中间数只能填最大数、最小数或中间数,因此可以依据这个规律进行尝试。
方法二:公式法:线和×线数=数字和+重复数×重复次数初级挑战1将1~7分别填入下图的7个○内,使每条线段上三个○内数的和相等。
思维点拨:观察发现,每条线上的三个数之和相等,而这三条线相交刚好重复了一个数,我们叫做重复数。
除去重复数,三条线上其他两数之和应相等。
1~7中,找出三组和相等的六个数即可,剩下的一个数填中间。
答案:(答案不唯一)能力探索1把1~11分别填入下图的○内,使每条线段上3个○内数的和相等。
答案:中间重复数为1或6或11。
给出一种填法:(答案不唯一)初级挑战2将数字1~8填入图中,使横行方框中的数之和与竖列方框中的数之和相等且为19。
思维点拨:本题的关键在于先确定中间重复数。
横行和竖列的和为19×2=38,而实际上所有方框中的数之和为1+2+3+4+5+6+7+8=36,38-36=2,多出来的2正好是中间重复的数。
答案:(答案不唯一)能力探索2将2~8填入下图的方框中,使横行、竖列的和相等且为20。
答案:中间重复数:20×2-(2+3+4+…+8)=5。
(答案不唯一)中级挑战1将1~10这十个自然数填入下图的○中,使每个圆上六个数的和为29。
思维点拨:两个大圆圈的和为29×2=58,而圆圈上所有的数之和为:1+2+3+…+10=55,因此中间两个圆圈数(重复数)的和为58-55=3,而3=1+2,由此可先填出中间的两个圆圈数分别为1和2,再两两配对填出其它数即可。
答案:(答案不唯一)把数字1~8分别填入下图的小圆圈内,使每个五边形上5个数的和都等于20。
四年级奥数之《数阵图》 教参+配套练习 覆盖面广,类型全面,针对性强,可直接下载
数阵图
数阵图,就是把一些数按照一定的规则,填在某一特定图形的规定位置上,这种图形,我们称它为数阵图。
数阵图的种类繁多、绚丽多彩,这里我们将主要介绍两种数阵图,即封闭型数阵图和开放型数阵图。
解答这类问题时,常用以下知识:
等差数列的求和公式:总和﹦(首项+末项)x项数÷2
计算中的奇偶问题:
奇数±奇数﹦偶数
偶数±偶数﹦偶数
奇数±偶数﹦奇数
10以内数字有如下关系:
(1)1+9=2+8=3+7=4+6
(2)1+8=2+7=3+6=4+5
(3)2+9=3+8=4+7=5+6
在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字;要会对基本解中的数进行适当调整,得到其他的解,从而培养自己的观察能力、思维的灵活性和严密性。
例1:
把1,2,3,4,5,6这六个数填在下图的6个○中,使每条边上的三个数之和都等于9。
例2:
把1—12这十二个数,分别填在下图中正方形四条边上的十二个○内,使每条边上四个○内数的和都等于22,试求出一个基本解。
随堂练习1
1、(1)将5—10这六个数字分别填入左下图中三角形三条边的六个○内,使每条边上三个○内数的和都是24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题 【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能例题精讲知识点拨教学目标5-1-3-3.数阵图【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
则从这个圆圈开始顺时针走n步进入另一个圆圈.依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8.请给出两种填法.【考点】数阵图与数论【难度】4星【题型】填空【关键词】走美杯,5年级,决赛,第12题,15分【解析】按顺时针方向:1,2,5,3,8,7,4,6或1,5,2,4,8,6,7,3或1,6,2,3,8,5,7,4或1,6,4,2,8,7,5,3 (答对任一种给6分,总得分不超过12)由于无论如何填8都是最后一个填写,而填之前,已经走过了28步,因为28÷8=3余4,即8永远只能在最底下的圆圈里。
顺推:试算,从1到8顺序填写发现可以,此时从1顺时针为1、2、5、3、8、7、4、6;逆推:8前面的一个填有2、3、5、6、7共5种可能。
假设为2,如上图,再往前一个数有3、4、5、7共4种可能,设为3,再前推一个数可能是4或6,设为4,…依次类并排除错误的选择,可得1、5、2、4、8、6、7、3。
【答案】1、5、2、4、8、6、7、3。
【例 4】在圆的5条直径的两端分别写着1~10(如图)。
现在请你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。
【考点】数阵图与数论【难度】5星【题型】填空【关键词】走美杯,五年级,初赛,第4题【解析】共6种【答案】【例 5】 图中是一个边长为1的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A 、B 、C 、D 、E 、F 位置上(例如:a b g f A +++=).已知A 、B 、C 、D 、E 、F 依次分别能被2、3、4、5、6、7整除,那么a g d ⨯⨯=___________.【考点】数阵图与数论 【难度】5星 【题型】填空【关键词】迎春杯,六年级,初赛,第12题 【解析】 先考虑菱形顶点的和为3、6的倍数,7个数被3除的余数分别为1、0、2、1、0、2、1,可以得到中间数g =8或14,同样分析5的倍数,7的倍数,得到具体的填法(如图),a ⨯g ⨯d =4⨯8⨯10=320评注:采用余数分析法,找到关键数的填法。
6311221F ED CB A 10161486124【答案】320【例 6】 在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。
请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。
【考点】数阵图与数论 【难度】4星 【题型】填空 【关键词】希望杯,六年级,二试,第18题,10分 【解析】 图中共有4个不同的数,每个数除以3的余数只可能有0、1、2三种,根据抽屉原理可知,这4个数中必然至少存在一对同余的数,那么这两个数的差必然为3的倍数,故不存在这样的填法。
【答案】不存在这样的填法【例 7】 如图ABC ∆被分成四个小三角形,请在每个小三角形里各填入一个数,满足下面两个要求:(1)任何两个有公共边的三角形里的数都互为倒数(如:23和32是互为倒数);(2)四个小三角形里的数字的乘积等于225。
则中问小三角形里的数是ACB【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 四个小三角形共三对相邻三角形,这三对的积都是1,所以将这三对数乘起来,得到的积还是1,但其中中间的数被乘了3次,如果只乘1次那么积为225,所以中间的数是115.【答案】115【例 8】 (2010年第8届走美杯3年级初赛第8题)2010年是虎年,请把1~11这11个数不重复的填入虎额上的“王”字中,使三行,一列的和都等于18【考点】复合型数阵图 【难度】5星 【题型】填空 【关键词】走美杯,3年级,初赛 【解析】 三个答案均可881199556622101077443311111134710265918三个交叉点数的和是:()12114186+++-⨯=,只能是6123=++。
剩下通过整数分拆即可得到如图的三种实质不同的答案 【答案】881199556622101077443311111134710265918【例 9】 将1~9这9个数字填入下图的9个圆圈内,使得每条线段两端上的两个数字之和各不相同(即可得到12个不同的和)。
【考点】数阵图与数论 【难度】5星 【题型】填空【关键词】走美杯,3年级,决赛,第4题,8分 【解析】 答案不唯一。
例如:【答案】【例 10】 在棋盘中,如果两个方格有公共点,就称为相邻的。
右图中A 有3个相邻的方格,而B 有8个相邻的方格。
图中每一个奇数表示与它相邻的方格中,偶数的个数(如3表示相邻的方格中有3个偶数),每个偶数表示与它相邻的方格中,奇数的个数(如4表示相邻的方格中有4个奇数)。
请在下面的4×4的棋盘中填数(至少有一个奇数),满足上面的要求。
34B A【考点】数阵图与数论 【难度】5星 【题型】填空【关键词】走美杯,4年级,决赛,第12题,12分 【解析】 如右图44443333333322224444333333332222【答案】答案不唯一44443333333322224444333333332222【例 11】 在右图所示的5⨯5方格表的空白处填入适当的自然数,使得每行、每列、每条对角线上的数的和都是30。
要求:填入的数只有两种不同的大小,且一种是另一种的2倍。
61751614135【考点】复合型数阵图 【难度】5星 【题型】填空 【关键词】走美杯,3年级,决赛,第12题,12分 【解析】 提示:设填入的较小的数为a ,则较大的数为2a 。
第一行要填的两数之和为16,最后一列要填的两数之和为8,由此知第一行填入了两个较大的数,第一列填入了两个较小的数。
较大的数为16÷2=8,较小的数为8÷2=4。
得到下图。
513414461571868其余数容易填入。
888884444444513414461571868【答案】888884444444513414461571868【例 12】 请在右图所示4×4的正方形的每个格子中填入l 或2或3,使得每个2×2的正方形中所填4个数的和各不相同。
【考点】数阵图与数论 【难度】4星 【题型】填空 【关键词】走美杯,4年级,决赛,第10题,12分 【解析】21333332221111112323333222111111【答案】答案不唯一21333332221111112323333222111111【例 13】 请在8×8表格的每个格子中填人1或2或3,使得每行、每列所填数的和各不相同。
【考点】数阵图与数论 【难度】4星 【题型】填空 【关键词】走美杯,决赛,5年级,决赛,第12题,10分 【解析】 答案不唯一2333333333333321112333331112333333311111111111331111111311111111【答案】2333333333333321112333331112333333311111111111331111111311111111【例 14】 在8×8表格的每格中各填入一个数,使得任何一个5×5正方形中25个数的平均数都大于3,而整个8×8表格中64个数的平均数都小于2.【考点】 【难度】星 【题型】填空【关键词】走美杯,5年级,决赛,第12题,15分 【解析】 如图所示,根据题意,在任何一个任何一个5×5正方形中的总和应该大于75,而整个的数之和要小于128,其中粗线格部分的在所有的5×5的正方形里都存在,我们要让它尽可能的大,同时让外边的尽可能的小,则外面的60个方格最小和为60,中间四个方格,应该小于68。
在每一个5×5的正方形内除去这4个,所有之和为21,则中间四个数之和应该大于54,即只要中间四个数的和在54到68之间即可。