陕西中考数学压轴题
最新陕西中考数学压轴题归类
《第25题几何压轴题归类》考点:类型一:线段最值问题(从定点入手,利用轴对称思想解决)考点二:利用隐形圆探究满足特殊角的点问题(常见的题目有:求一个固定的角,求最大角,求二倍角等)类型三:等分面积问题(难点是不规则图形的面积等分,有时会牵涉到既等分周长又等分面积)类型四:面积最值问题(利用二次函数思想解决较常见,也有利用极值思想解决的,还有利用圆的知识求解,面积最大周长最小也会考)类型一:线段最值问题1.如图,在△ABC中,AB=AC=5,BC=6,若点P在AC上移动,则PB的最小值是_____.3.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边中点,E是AB上一动点,则EC+ED 的最小值为_____.4.如图,在矩形ABCD中, AB=6,BC=8,连接AC,点M是AC上一动点,点N是BC上的一动点,则BN+MN 的最小值为________.5.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是______.6.如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA´B´,连接BB´,则BB´=_______.问题探究:4的等边三角形,以BC为边向外作等边△BCD.P为△ABC 如图②,已知△ABC为边长为3内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q,连接DQ、BP.(1)求证△DCQ≌△BCP;(2)求PA+PB+PC的最小值.实际应用如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?7.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A′.②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE周长的最小值______.(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值______.类型二:利用隐形圆探究满足特殊角的点问题例1.问题探究(1)如图①,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图②,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;问题解决如图③,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,并求出△BPC的面积的最大值及此时AP的长,保留作图痕迹.练习1.问题探究(1)如图①,在矩形ABCD中,AB=2,BC=4,如果BC边上存在一点P,使△APD为直角三角形,那么请画出满足条件的一个直角三角形,并求出此时AP的长;(2)如图②,在四边形ABCD中,AB∥CD,∠B=90°,AD=10,AB=7,CD=1,点P在边BC 上,且∠APD=90°,求BP的长.问题解决(3)如图③,在平面直角坐标系中,点A、B、C分别是某单位的门房及两个仓库,其中OA=100m,AB=200m,OC=300m,单位负责人想选一点P安装监控装置,用来监控AB,使△APB的面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.例4.问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由问题解决(3)如图③,已知足球门宽AB约为B点C 点(点A 、B 、C 均在球场的底线上),沿与AC 成45°的CD 方向带球.试问,该球员能否在射线CD 上找一点P ,使得点P 最佳射门点(即∠APB 最大)?若能找到,求出这时点P 与点C 的距离;若找不到,请说明理由.练习 问题探究(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点P ,并说明理由;(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由; 问题解决(3)如图③,现有一块矩形钢板ABCD ,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB=∠CP ′D=60°,请你在图③中画出符合要求的点P 和P ′,并求出△APB 的面积。
2024陕西中考数学二轮专题训练 题型二 小几何压轴题 (含答案)
2024陕西中考数学二轮专题训练题型二小几何压轴题类型一与线段有关的问题1.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8.若点E 、F 是BC 边上的两个动点,以EF 为边的等边△EFP 的顶点P 在△ABC 内部或边上,则等边△EFP 的周长的最大值为________.第1题图2.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,点D 、E 分别在AB 、BC 上,且以DE 为直径的圆与AC 相切,则DE 的最小值为________.第2题图3.如图,在菱形ABCD 中,AB =AC =10,对角线AC 、BD 相交于点O ,点M 在线段AC上,且AM =3,点P 为线段BD 上的一个动点,则MP +12PB 的最小值是__________.第3题图4.如图,在四边形ABCD 中,AB =6,AD =BC =3,E 为AB 边的中点,且∠CED =120°,则边DC 长度的最大值为________.第4题图5.如图,在四边形ABCD 中,AB =9,∠A +∠B =90°,以CD 为斜边向内作等腰直角△CDE ,使得直角顶点E 在AB 边上,若AE =2BE ,则AD +CB 的值为________.第5题图6.如图,在菱形ABCD中,AB=12,∠B=60°,AE⊥CD于点E,点F为AB上一点,且AB,P为AE上一点,连接PC、PD、PF,则PC与PD之间的数量关系为________,AF=13PC+PF的最小值为________.第6题图类型二与面积有关的问题1.如图,在等边△ABC内部有一个半径为2的动圆,则动圆不能覆盖的面积为________.第1题图2.如图,已知四边形ABCD内接于半圆O,AB为半圆O的直径,AB=8,CD=4,点E 是CD的中点,连接AE、BE,则△ABE面积的最大值为________.第2题图3.如图,已知AB是⊙O的直径,AB=10,点P是⊙O上一点,连接AP、BP,OE⊥AP于点E,OF⊥BP于点F,则四边形OEPF面积的最大值为________.第3题图4.如图,在▱ABCD中,E、F是AD边上的两点,且AE=DF=14AD.点G为BC边上一点,连接EG交BF于点H.若EG平分四边形ABCD的面积,BH=6,则BF的长为________.第4题图5.如图,在四边形ABCD中,∠ABC=90°,AB=2,BC=23,点E、F分别是AD、CD 的中点,若四边形ABCD的面积为43,则△BEF的面积为________.第5题图6.如图,在菱形ABCD中,∠B=60°,点E、F分别在BC、CD边上,且∠EAF=60°,连接EF.若AB=4,则△CEF面积的最大值为________.第6题图类型三与角度有关的问题1.如图,在正方形ABCD中,AC与BD相交于点O,点P是正方形边上或对角线上一点,若∠BPC=60°,则满足条件的点P的个数为________.第1题图2.如图,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,则点P到点A的距离为________.第2题图3.如图,在4×4的正方形网格中,四边形ABCD的顶点都在格点上,则tan∠ACD的值为________.第3题图4.如图,在四边形ABCD中,AB=AD=2,∠BAD=∠BCD=90°,连接A C.若AC=6,则∠ABC的大小为________.第4题图5.如图,在正方形ABCD中,AB=8,点E是AD边上一点,连接BE、CE,过点B作BF⊥CE 于点F,当∠EBF最小时,AE的长为________,BF的长为________.第5题图参考答案类型一与线段有关的问题1.632.125【解析】如解图,设切点为P ,连接BP ,过点B 作BH ⊥AC 于点H ,由垂线段最短可知BP ≥BH ,∵DE 是该圆的直径,∴DE ≥BP ≥BH ,即DE 的最小值为BH 的长.∵S △ABC=12AB ·BC =12AC ·BH ,AC =AB 2+BC 2=5,∴BH =AB ·BC AC =125.即DE 的最小值为125.第2题解图3.732【解析】如解图,过点P 作PQ ⊥BC 于点Q ,过点M 作MN ⊥BC 于点N .∵四边形ABCD 是菱形,∴AB =BC .∵AB =AC =10,∴△ABC 是等边三角形,∴∠ABC =∠ACB=60°,∴∠OBC =30°,∴PQ =12BP ,∴MP +12PB =MP +PQ .由两点之间线段最短可知,当M 、P 、Q 三点共线,即点Q 与点N 重合时,MP +PQ 取得最小值,最小值为MN 的长.∵AM =3,∴CM =AC -AM =7.∵∠ACB =60°,∴MN =32CM =732,∴MP +12PB 的最小值为732.第3题解图4.9【解析】如解图,分别作点A 关于DE 的对称点A ′,点B 关于CE 的对称点B ′,连接A ′D ,A ′E ,B ′C ,B ′E ,A ′B ′,则A ′D =AD =3,A ′E =AE =3,B ′C =BC =3,B ′E =BE =3,∠A ′ED =∠AED ,∠B ′EC =∠BEC ,∵∠CED =120°,∴∠AED +∠BEC =180°-∠CED =60°,∴∠A ′ED +∠B ′EC =60°,∴∠A ′EB ′=∠DEC -(∠A ′ED +∠B ′EC )=60°.∵A ′E =B ′E =3,∴△A ′EB ′是等边三角形,∴A ′B ′=A ′E =3.由两点之间线段最短可得DC ≤A ′D +A ′B ′+B ′C =9,∴DC 长度的最大值为9.第4题解图5.35【解析】∵AB =9,AE =2BE ,∴AE =6,BE =3.∵ED =EC ,∠DEC =90°,∴如解图,将△ECB 绕点E 逆时针旋转90°得到△EDF ,∴EF =EB =3,DF =BC ,∠EDF =∠ECB .∵∠A +∠B =90°,∠EDC =∠ECD =45°,∴∠ADE +∠ECB =180°,∴∠ADE +∠EDF =180°,∴A 、D 、F 三点共线,∴AD +CB =AD +DF =AF .在Rt △AEF 中,AF =AE 2+EF 2=35,∴AD +CB 的值为3 5.第5题解图6.PC =PD ,413【解析】如解图,连接AC ,FD ,∵四边形ABCD 为菱形,∠B =60°,∴△ADC 为等边三角形.∵AE ⊥CD ,∴点C 关于PE 的对称点为点D ,∴PC =PD ,∴PC +PF =PD +PF ≥FD ,∴当F ,P ,D 三点共线时,PC +PF 的值最小,最小值为FD 的长.过点F 作FH ⊥DA 交DA 的延长线于点H ,∵∠B =60°,∴∠HAF =60°.∵AB =12,AF =13AB ,∴AF =4,∴AH =2,FH =23,∴DH =14.在Rt △DHF 中,FD =FH 2+DH 2=(23)2+142=413,∴PC +PF 的最小值为413.第6题解图类型二与面积有关的问题1.123-4π【解析】如解图,图中阴影部分面积即为动圆不能覆盖的面积,由题意知⊙O 与AC ,AB 两边相切,切点分别为点E ,F ,连接OE ,OF ,AO ,则∠EAO =∠FAO =30°,∠EOF =120°,∴在Rt △AOE 中,AE =3OE =23,∴S △AOE =12×2×23=2 3.∵S 扇形EOF =120π×22360=4π3,∴动圆不能覆盖的面积=3(2×23-4π3)=123-4π.第1题解图2.83【解析】如解图,连接OC 、OE ,∵点E 为CD 的中点,∴CE =12CD =2,OE ⊥CD .∵OC =12AB =4,∴OE =OC 2-CE 2=2 3.过点E 作EH ⊥AB 于点H ,则S △ABE =12AB ·EH =4EH .∵EH ≤OE ,∴当EH =OE ,即当OE ⊥AB 时,△ABE 的面积最大,最大值为8 3.第2题解图3.252【解析】如解图,连接OP ,过点P 作PH ⊥AB 于点H ,∵AB 是⊙O 的直径,∴∠APB =90°.∵OE ⊥AP ,OF ⊥BP ,∴四边形OEPF 为矩形,AE =PE =12AP ,BF =PF =12BP ,∴S 四边形OEPF =PE ·PF =12AP ·12BP =14AP ·BP =14AB ·PH =14×10PH =52PH .∴当PH 最大时,四边形OEPF 的面积最大,∵PH ≤OP ,∴当PH =OP ,即当OP ⊥AB 时,四边形OEPF 的面积最大,此时PH =OP =12AB =5,S 四边形OEPF 最大=52PH 最大=252,即四边形OEPF 面积的最大值为252.第3题解图4.10【解析】∵四边形ABCD 为平行四边形,∴AD =BC .∵AE =DF =14AD ,∴EF =12AD .∵EG 平分▱ABCD 的面积,∴AE =CG =14AD .∴BG =34AD .∵AD ∥BC ,∴BH FH =BG EF =32,∴BH BF=35.∵BH =6,∴BF =10.5.332【解析】如解图,连接BD ,在△ABC 中,∵∠ABC =90°,AB =2,BC =23,∴S △ABC =12×2×23=2 3.∵四边形ABCD 的面积为43,∴S △ADC =2 3.∵E 为AD 的中点,F 为DC 的中点,∴S △ABE =S △DBE ,S △CFB =S △DFB ,∴S 四边形EBFD =S △EBD +S △FBD =12S 四边形ABCD =2 3.∵E 、F 分别为AD 、CD 的中点,∴EF =12AC ,EF ∥AC ,∴S △DEF S △DAC =(EF AC )2=(12)2=14.∵S △DAC =23,∴S △DEF =14×23=32,∴S △BEF =S 四边形EBFD -S △DEF =23-32=332.第5题解图6.3【解析】∵四边形ABCD 是菱形,且∠EAF =∠B =60°,∴∠BAC =∠ACF =∠B =60°,AB =BC ,∴∠BAE +∠EAC =∠EAC +∠CAF =60°,△ABC 是等边三角形,∴∠BAE =∠CAF ,AB =AC ,∴△ABE ≌△ACF ,∴AE =AF ,S △ACF =S △ABE ,∴△AEF 是等边三角形,S 四边形AECF =S △ABC ,∴S △CEF =S △ABC -S △AEF .∵AB =4,△ABC 是等边三角形,∴S △ABC =34×42=43,∴当S △AEF 最小时,S △CEF 最大.∵当AE ⊥BC 时,AE =4sin60°=23,S △AEF 最小,∴S △AEF 最小=34×(23)2=33,∴S △CEF 最大=43-33=3,即△CEF 面积的最大值为3.类型三与角度有关的问题1.4个【解析】如解图,在正方形内部作∠M =120°,且BM =MC ,以点M 为圆心,BM 为半径画圆,⊙M 与正方形ABCD 各边及对角线的交点即为满足条件的点P ,共4个.第1题解图2.2或8【解析】如解图,∵BC =10,∠BPC =90°.∴取BC 的中点O ,则OB >AB .∴以点O 为圆心,OB 长为半径作半圆O ,半圆O 一定与AD 相交于P 1、P 2两点,连接P 1B 、P 1O 、P 1C .∵∠BPC =90°,点P 不能在矩形外,∴△BPC 的顶点P 在BP ︵1或CP ︵2上.显然,当顶点P 在P 1或P 2位置时,△BPC 的面积最大.过点P 1作P 1E ⊥BC ,垂足为E ,则P 1E =4,∴OE =52-42=3,∴AP 1=BE =OB -OE =5-3=2.由对称性,得AP 2=8;综上所述,点P 到点A 的距离为2或8.第2题解图3.13【解析】如解图,连接BD 交AC 于点O ,设每个小正方形的边长为1,由勾股定理可知:AC =32+32=32,BD =12+12=2,AB =BC =CD =AD =22+12=5,∴四边形ABCD 为菱形,∴AC ⊥BD ,在Rt △OCD 中,tan ∠OCD =OD OC =12BD 12AC =12×212×32=13,∴tan ∠ACD =13.第3题解图4.60°【解析】如解图,将△ADC 绕点A 顺时针旋转90°,使得AD 与AB 重合,得到△ABE ,则∠ABE =∠ADC ,∠DAC =∠EAB ,AC =AE .∵∠BAD =∠BCD =90°,∴∠ADC +∠ABC =180°,∠EAC =∠BAD =90°,∴∠ABE +∠ABC =180°,∴C 、B 、E 三点共线.过点A 作AF ⊥CE 于点F ,在Rt △ACE 中,∵AE =AC =6,∴∠E =45°,∴AF = 3.在Rt △ABF 中,∵AB =2,AF=3,∴∠ABC =60°.第4题解图5.4,1655【解析】在Rt △BEF 中,要求∠EBF 最小时,BF 的长,即求∠BEF 最大时,BF 的长.如解图,过点B 、C 作⊙O ,与AD 相切于点E ,此时∠BEF 最大.连接EO 并延长,交BC 于点G ,则EG 垂直平分BC ,∴AE =12AD =4,CG =12BC =4,∴CE =42+82=45,∴12×8×8=12×45×BF ,解得BF =1655.第5题解图。
西安铁一中中考数学压轴题
I 、阅读理解(1)小红说“已知线段AB ,作RT △ABC 使∠C=90°,这样的三角形可以做无数个”,小红这样做的理由是 (2)小张受此启发提出问题:“已知线段AB ,作△ABC 使∠C=60°,这样的三角形有多少个?”,请在下图中画出,不必说理由;(不写画法,保留作图痕迹)问题探究: 如图(3),直线m,n 交与点O,夹角为60°,现有线段AB=2,在直线m 上自左向右移动(点A 在点B 的左边),点P 在直线n 上且∠APB=30° (3)请在给定的图中找出符合条件的点P, (不写画法,保留作图痕迹) (4)在线段 AB 移动的过程中,当OB 的长为多少时,符合条件的点P 有且只有一个?请说明理由(5)在线段 AB 移动的过程中,是否存在符合条件的点P 有三个的情况?若存在,请直接写出OB 的值;若不存在,请说明理由,解:(1)直径所对的圆周角有无数个,且都是直角(2)做等边三角形ABC,上下各一个,再做等边三角形ABC 的外接圆,有两个圆如图。
所以这样的三角形有无数个。
(3以AB 为边做等边三角形ABC ,以C 为圆心,AB 长为半径做圆,与直线有两个交点P,则∠APB=60°(4)当 OB=2334,334+或时,符合条件的点P 有一个,理由如下: ① 当直线l 与⊙1O 相切,且点B 在点O 左侧时,如图A Ba2R F O BE 1===334OB 30EBO =∴=∠②当直线l 与⊙2O 相切,且点B 在点O 右侧侧时2R AF E O 112===30OEA =∠ 334OA =∴ 2334B O +=∴∴当334OB =或2334OB +=是符合条件的点P 又且只有一个 解(5):当OB=334,2334或- 符合条件的点P 有3个,理由如下: 当直线n 与⊙2O相切,与⊙1O 相交时,6022,R OE F O 2=∠===334OA =∴, 2-334OB =∴ 当直线n 与⊙1O 相切,与⊙2O 相交时,334OB =∴ 当OB=334,2334或-,符合条件的点P 有三个2、已知,O 的半径为4,P 为O 一定点,MN 为O 内过P 点的弦,连结MO ,NO ,⑴当OP=3时,求△MON 的最大面积aa a⑵当OP=1时,求△MON 的最大面积解:过O 作OH ⊥MN ,垂足为H ,则MN=2MHMNO 1S MN OH MH OH 2==⑴设OH=x,则0<x ≤3在Rt △MHO 中,2222MH OM OP 16x =-=-2222(16)MH OH x x =- 令2,x t =则 0<t ≤9,22MH OH 16)t t =-(当8t =时,( 22MH OH )max =64 ∴MNO max max(S )(MH OH)8==⑵设OH=x,则0<x ≤1由⑴得2222(16)MH OH x x =-,令2,x t =则 0<t ≤1,22MH OH 16)t t =-(, ∴对称轴t=8, 又0<t ≤1∴t=1时,( 22MH OH )max =15∴MNO max max (S )(MH OH)==3、已知扇形,MON 90,MON ︒∠=半径R ,求扇形MON 内接最大矩形 方案(一):如图(1)22222222222212x y R x y xy S xy x y S S R S R +=+≥=∴+≥∴≤∴≤ 方法2:22224222224()11()24S S x R x x R x x R R ==-=-+=--+当2212x R =时,24max 2max 1()41S R 2S R x ===即当时,方案二、方法一:由对称性得,,AOB BCE 为等腰直角三角形,在Rt COB 中,OB=OA=x ,BE=CE=y ,222()x y y R ++=,即22222,x y xy R ++=而S 2xy ==,所以2222x y R S +=-①,又因为22222x y xy +≥,所以222x y +≥②,由①②得,2R S S -≥,所以2221),1)S R S S R ≤≤≤,所以2m a x 1)S R = 方法二:设AB=x ,BC=y ,则22211()(),22x x y R ++=整理得2221,2x x y y R ++=22212()2]22S x y R x y y x y==-+=-+⨯⨯=22)R x y --,所以22),xy R x y =--所以221)(),2xy R x y=--而2()0,2x y -≥所以当2()02x y-=时,2m a x [21)]x y R=,所以22max max []1)S xy R ===.方法三:设AB=x ,BC=y ,则22211()(),22x x y R ++=整理得2221,2x xy y R ++=2221()2S xy R x y ==-+①, 因为22122,22x y x y +≥所以2212x y +≥,代入①得,2,S R ≤所以2(12),S R ≤所以2m a x 1)S R =.综上所述,2max 21R S =4、有两个直角边分别为100cm,50cm 的全等直角三角形纸板,一个用来裁剪正方形,一个用来裁剪矩形(正方形和矩形均为完整图形),则该矩形的最大面积1250 平方厘米,正方形的最大面积是910000平方厘米。
陕西中考数学十年压轴题汇总
25.(本题满分12分)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。
(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。
之间的两条线段相等。
(2条“曲线段相等” (3)化地,=n ,且m <种花草种植在S 1、S 2、S 3、S 425.(本题满分12分)板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。
他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。
(1)求FC 的长;到BC 边的距离)(cm x 为多少时,矩形的面 如图,O 的半径均为)请在图①中画出弦①为轴对称图形而不是..中心对称图形;请在图O 中,(02)AB m m R <<,且AB 与CD 交于点E ,夹角为锐角α.求面积(用含;O 的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由. 由供水站直接铺设管道到另外两处。
a b第25题图M N 第25题图) (第25题图③) (第25题图④)如图,甲、乙两村坐落在夹角为30°的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学。
点B 在点M 的北偏西30°的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60°的处。
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段图①中,画出铺设到点A 和点M 方案三:供水站建在甲村(线段处和点M25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD (2)请在图②的正方形ABCD 由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).25.(本题满分12分)问题探究..分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。
西安中考数学压轴题2023
西安中考数学压轴题2023西安中考数学压轴题2023近日,西安市中考数学压轴题2023公布,引起了广大考生和家长的关注。
这道题目以其独特的设计和高难度而备受瞩目,成为了今年中考数学试卷的一大亮点。
这道题目要求考生利用已知条件,求解一个复杂的几何问题。
题目描述了一个三角形ABC,其中AB=AC,角BAC=60°。
在三角形ABC内部有一点P,使得∠APB=∠BPC=∠CPA=120°。
考生需要根据这些已知条件,求解出三角形ABC的各边长和角度。
这道题目的难度在于它要求考生综合运用几何知识和推理能力来解决问题。
首先,考生需要利用已知条件推导出一些等式或者关系式。
例如,根据∠APB=∠BPC=∠CPA=120°可以得出BP=CP=AP,并且三角形PBC、PCA、PAB都是等边三角形。
然后,考生需要利用这些等边三角形的性质来进一步推导出其他的等式或者关系式。
最后,通过解方程组或者运用特殊三角形的性质来求解出所需的边长和角度。
这道题目的出现,不仅考察了考生对几何知识的掌握程度,更重要的是考察了考生的逻辑思维和问题解决能力。
解决这道题目需要考生具备良好的数学思维和推理能力,能够灵活运用所学知识解决实际问题。
同时,这道题目也对考生的时间管理能力提出了挑战,因为在有限的时间内完成这道题目需要高效地组织思路和计算。
对于广大考生来说,面对这样一道高难度的数学题目,首先要保持冷静和自信。
不要被题目表面上的复杂性所吓倒,要相信自己已经掌握了足够的数学知识和解题技巧。
其次,要善于分析问题和提炼关键信息。
通过仔细阅读题目描述,找出已知条件,并将其转化为等式或者关系式。
最后,要有条理地进行推理和计算。
可以先从简单的等边三角形入手,逐步推导出其他等式或者关系式,并运用合适的方法求解出所需答案。
总之,西安中考数学压轴题2023是一道具有挑战性的数学题目,要求考生综合运用几何知识和推理能力来解决问题。
面对这样的题目,考生需要保持冷静和自信,善于分析问题和提炼关键信息,并有条理地进行推理和计算。
陕西中考函数压轴题含答案-8页word资料
04-09陕西中考函数压轴题24. (04陕西)如图,在Rt △ABC 中,∠ACB =90°,BC>AC ,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根. (1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E 三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由. 解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根, 又∵OA 2+OB 2=17,∴(OA+O B )2-2·OA ·OB =17.(3) ∴把(1)(2)代入(3),得m 2-4(m-3)=17. ∴m 2-4m -5=0.解之,得m =-1或m =5. 又知OA+OB =m >0, ∴m =-1应舍去.∴当m =5时,得方程x 2-5x +4=0. 解之,得x =1或x =4. ∵BC>AC, ∴OB>OA . ∴OA =1,OB =4.在Rt △ABC 中,∠ACB =90°,CO ⊥AB , ∴OC 2=OA ·OB =1×4=4. ∴OC =2.∴C (0,2).(2)∵OA =1,OB =4,C 、E 两点关于x 轴对称, ∴A (-1,0),B (4,0),E (0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax 2+bx+c ,则 ∴所求抛物线解析式为2132.22y x x =-- (3)存在.∵点E 是抛物线与圆的交点,∴Rt △ACB ≌△AEB . ∴E (0,-2)符合条件. ∵圆心的坐标(32,0)在抛物线的对称轴上, ∴这个圆和这条抛物线均关于抛物线的对称轴对称. ∴点E 关于抛物线对称轴的对称点E ′也符合题意. ∴可求得E ′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2).(第24题图)24.(05陕西)如图,在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0,。
陕西2023中考数学最后一道压轴题的典型例题讲解
陕西2023中考数学最后一道压轴题的典型例题讲解1. 引言陕西2023年中考数学考试备受关注,其中最后一道压轴题更是备受瞩目。
本文将对这一典型例题进行全面讲解,以帮助同学们更好地理解题目背后的数学原理。
2. 题目描述题目如下:已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),求\(\alpha\)的一个确定值。
3. 排除法解题这道题的解法可以有多种,其中一种比较简单的方法是使用排除法。
通过对一元二次方程的解的性质进行分析,我们可以排除一些不符合条件的根的取值,从而得到\(\alpha\)的确定值。
一元二次方程\(ax^2+bx+c=0\)的根可以通过求根公式得到:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]由于给定的一元二次方程为\(3x^2+4x-5=0\),所以\(a=3, b=4, c=-5\)。
根据求根公式,我们可以得到两个根:\[x=\frac{-4\pm\sqrt{4^2-4*3*(-5)}}{2*3}=\frac{-4\pm\sqrt{16+60}}{6}=\frac{-4\pm\sqrt{76}}{6}\]显然,给定的一元二次方程的根不满足问题中给定的条件,所以我们可以排除掉这组根。
进过排除法,我们知道\(\alpha\)的确定值不在\(\frac{-4\pm\sqrt{76}}{6}\)中。
4. 求和乘积解题除了排除法外,我们还可以利用一元二次方程根的特性进行解题。
根据一元二次方程的根与系数的关系,我们可以得到一元二次方程的两个根的和和积分别为:\(x_1+x_2=\frac{-b}{a}, x_1x_2=\frac{c}{a}\)将给定的一元二次方程\(3x^2+4x-5=0\)的系数代入上面的公式,可以得到:\(x_1+x_2=\frac{-4}{3}, x_1x_2=-\frac{5}{3}\)根据题目要求,已知一元二次方程\(3x^2+4x-5=0\)的一个根是\(\alpha\),所以另一个根可以表示为\(\frac{-4}{3}-\alpha\)根据这两根的特性,我们可以得到以下的等式:\(\alpha+\frac{-4}{3}-\alpha=\frac{-4}{3}\)\(\alpha*\frac{-4}{3}=-\frac{5}{3}\)通过解以上方程组,可以得到\(\alpha=-\frac{1}{3}\)5. 总结与回顾通过以上的讲解,我们可以得出一元二次方程的根的确定值为\(\alpha=-\frac{1}{3}\)。
陕西省西安市中考数学压轴题总复习(附答案解析)
2021年陕西省西安市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。
从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。
预计2021年中考数学压轴题依然主要考查这些知识点。
1.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;
(1)若P(1,√3),求点P的“等边对称点”的坐标.
(2)若P点是双曲线y=2
x(x>0)上一动点,当点P的“等边对称点”点C在第四象
限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.
2.如图,抛物线y=ax2+9
4x+c交x轴于A,B两点,交y轴于点C.直线y=−
3
4x+3经过
点B,C.
(1)求抛物线的解析式;
(2)点P从点O出发以每秒2个单位的速度沿OB向点B匀速运动,同时点E从点B 出发以每秒1个单位的速度沿BO向终点O匀速运动,当点E到达终点O时,点P停止运动,设点P运动的时间为t秒,过点P作x轴的垂线交直线BC于点H,交抛物线于点Q,过点E作EF⊥BC于点F.
①当PQ=5EF时,求出t值;
②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.。
陕西中考数学填空题压轴2023
陕西中考数学填空题压轴2023数学是中学阶段考试中的重中之重,尤其是在陕西中考中,数学填空题一直是考生们最为头疼的一部分。
因此,2023年的陕西中考数学填空题必然是备受关注的焦点。
下面我将给大家分享一道陕西中考数学填空题压轴题,并且带着大家一起解题探究。
题目:已知直线k过点A(2,1),且k的斜率为-2/3。
点B在k上,且点B关于点A对称。
若线段AB的长为5个单位长度,则点B的坐标为________。
解题思路:首先,我们来分析题意。
题目给出了直线k过点A(2,1),且斜率为-2/3。
由直线的斜率可以推断出直线的方程为y=(−2/3)x+b,其中b 为直线的截距。
将点A(2,1)代入直线的方程,可以求出b的值。
将x = 2,y = 1代入方程:1 = (-2/3) × 2 + b解得b = 7/3所以,直线k的方程为y = (-2/3)x + 7/3。
接下来,题目告诉我们点B在直线k上,且点B关于点A对称。
这意味着点A、B、和k上的另一点C构成一个等腰三角形。
由于线段AB的长度为5,且点A和点B关于点C对称,所以线段AC的长度也为5。
设点C的坐标为(x,y)。
根据点对称的性质可知,点C的坐标为(x,y) = (4,-2)。
由于斜率为-2/3,我们可以根据直线斜率的定义来求直线上两点之间的距离。
由于AC和BC的长度相等,我们可以使用勾股定理来求得点B的坐标。
根据勾股定理,有AC^2 = AB^2 + BC^2代入AC和AB的长度,可以得到5^2 = AB^2 + BC^2化简得25 = AB^2 + (y - 1)^2 (由于点A的坐标为(2,1))将点C的坐标代入,得25 = AB^2 + (-2 - 1)^2化简后得25 = AB^2 + 9移项得AB^2 = 25 - 9AB^2 = 16取正平方根,得AB = 4所以,点B与点A的距离为4个单位长度。
将点B与点C的横坐标相加,除以2可以得到点B的横坐标。
2022中考数学压轴题-陕西卷
2022中考数学压轴题-陕西卷
这题就是一道送分题,成绩不错的同学考试中应该几分钟就解决了。
(1)△APC等腰,顶角∠PAC=30°
无脑计算可得∠APC=75°
(2)根据条件不难发现,如果连接PC,则△PAC就是一个等边三角形
PE其实就是BC的垂直平分线
∴四边形OECA的面积割补法随便用
如果仔细观察,会发现如果过C向AB作垂线,连接OC,会将△ABC分成几个部分,可得△OBE的面积为△ABC的六分之一则只需要搞定△OBE的面积,即可得四边形OECA的面积
不能搞定△OBE的面积=(3√3)/2
则四边形OECA的面积=(15√3)/2
(3)这一小题刚开始的时候可能会吓人一跳,不过仔细一看就是让证明∠BAP=15°的,那么只需要∠PAC=30°即可
根据条件,我们知道∠ACD=90°,
只需要过P向AC作垂线,假设垂足为F,如图
则PECF为矩形,PF=CE=CD/2=AC/2=AP/2
∴△APF其实就是含30°角的直角三角形
则∠PAF=30°
∴∠BAP=15°
符合要求
题目确实很简单,所以有时候最后一道题可能真的是来送分的。
陕西省西安市西安铁一中学2024届中考押题数学预测卷含解析
陕西省西安市西安铁一中学2024届中考押题数学预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.122.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1073.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体4.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.5.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径'AA的长为()A.πB.2πC.4πD.8π7.化简16的结果是()A.±4 B.4 C.2 D.±28.比较4,17,363的大小,正确的是()A.4<17<363B.4<363<17C.363<4<17D.17<363<49.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.31310.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°二、填空题(共7小题,每小题3分,满分21分)11.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)12.分解因式:2x3﹣4x2+2x=_____.13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()16.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.17.因式分解:a2﹣a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC =20米.(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:2≈1.414,3≈1.732).19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A 型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?21.(10分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?22.(10分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?23.(12分)在锐角△ABC 中,边BC 长为18,高AD 长为12如图,矩形EFCH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值.24.(14分)解方程(1)2430x x --=;(2)()22(1)210x x ---=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D 作DE ⊥AB 于E ,∵AB =8,CD =2,∵AD 是∠BAC 的角平分线,90C ,∠=︒∴DE =CD =2,∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.2、D【解题分析】试题解析:55000000=5.5×107, 故选D .考点:科学记数法—表示较大的数3、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4、B【解题分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可. 解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤. ∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、A【解题分析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.6、B【解题分析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.7、B【解题分析】根据算术平方根的意义求解即可.【题目详解】=4,故选:B.【题目点拨】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.8、C【解题分析】根据【题目详解】解:易得:且所以363<4<17,故选C.【题目点拨】本题主要考查开平方开立方运算。
2024陕西中考数学试卷压轴题
2024陕西中考数学试卷压轴题题目描述在高中阶段的最后一年,学生们都将面临着重要的中考。
为了帮助陕西省的考生更好地复习和应对数学考试,陕西教育部门特别设计了一道压轴题。
这道题目将涉及到中学数学的各个知识点,对考生的综合能力提出了挑战。
接下来,让我们来看一下这个压轴题的具体内容。
题目要求考虑函数f(x) = x2 - 4ax + b,其中a和b为实数。
已知函数f(x)在区间[-1, 3]上的最小值为4,并且函数图像与x轴交于两个点。
求a和b的值,并说明为什么函数f(x)在区间[-1, 3]上的最小值为4。
解题过程第一步:确定函数的最小值点题目中给出了函数f(x)在区间[-1, 3]上的最小值为4,我们可以利用这个信息来推导a和b的值。
最小值点的x坐标可以通过求导数为零求得。
因此,我们对函数f(x)求导数得到f’(x) = 2x - 4a。
将求导得到的表达式置为零,我们可以得到2x - 4a = 0。
解这个一次方程可以得到x = 2a。
由于函数图像与x轴交于两个点,说明最小值点是一个抛物线的顶点。
根据对称性,最小值点的横坐标与两个交点的平均值相等,即-x1/2 = 2a。
将x = 2a代入函数f(x),我们可以得到函数f(x)在最小值点的函数值:f(2a) = (2a)2 - 4a(2a) + b。
根据题目给出的信息,我们知道最小值为4,因此可以得到方程:(2a)2 -4a(2a) + b = 4。
第二步:求解方程现在我们需要解这个方程以求得a和b的值。
将方程展开,我们得到4a2 -8a2 + b = 4,化简得-b = 4a2 - 4。
进一步整理为b = 4 - 4a2。
第三步:解释为什么函数f(x)在区间[-1, 3]上的最小值为4已知最小值点为函数的顶点,因此可以证明在最小值点处函数的二阶导数大于0。
对函数f(x)再次求导得到f’‘(x) = 2。
显然,f’’(x)大于0。
因此,根据二阶导数的正负性,我们可以得知函数f(x)在最小值点处取得最小值,并且最小值为正数。
陕西省宝鸡市,2020~2021年中考数学压轴题精选解析
陕西省宝鸡市,2020~2021年中考数学压轴题精选解析陕西省宝鸡市中考数学压轴题精选~~第1题~~(2020扶风.中考模拟) (问题探究)(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求 AM+MC的最小值;(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路。
如果同样的物资在每千米公路上的运费是铁路上的两倍。
那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)~~第2题~~(2020凤翔.中考模拟)(1)问题提出:如图①在中,是边的高,点E是上任意一点,若则的最小值为_________;(2)如图②,在等腰中,是的垂直平分线,分别交于点,,求的周长;(3)问题解决:如图③,某公园管理员拟在园内规划一个区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路和,满足点到的距离为 .为了节约成本,要使得之和最短,试求的最小值(路宽忽略不计).~~第3题~~(2020岐山.中考模拟)(1) [问题发现]如图1,半圆O的直径是半圆O上的一个动点,则面积的最大值是________.(2) [问题解决]如图2所示的是某街心花园的一角.在扇形中,米,在围墙和上分别有两个入口C和D且米,D是的中点,出口E在上.现准备沿从入口到出口铺设两条景观小路,在四边形内种花,在剩余区域种草.①出口设在距直线多远处可以使四边形的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路所用的普通石材每米的造价是200元,铺设小路DE所用的景观石材每米的造价是元问:在上是否存在点E,使铺设小路和的总造价最低?若存在,请求出最低总造价和出口E距直线OB的距离;若不存在,请说明理由.~~第4题~~(2020凤翔.中考模拟)(1)问题提出如图,是的弦,点是上的一点,在直线上方找一点,使得,画出,并说明理由;(2)问题探究如图,是的弦,直线与相切于点,点,是直线上异于点的任意一点,请在图中画出图形,试判断的大小关系;并说明理由;(3)问题解决如图,有一个平面图为五边形ABCDE的展览馆,其中,, .展览馆保卫人员想在线段上选一点安装监控装置,用来监视边,现只要使最大,就可以让监控装置的效果达到最佳,问在线段上是否存在点,使最大?若存在,请求出符合条件的的长,若不存在,请说明理由.~~第5题~~(2020渭滨.中考模拟) 我们知道,三角形的三条角平分线交于一点,这个点称为三角形的内心(即三角形内切圆的圆心) .现在规定,如果四边形的四条角平分线交于一点,我们把这个点称为“四边形的内心”.问题提出(1)如图1,在△ABC中,∠C=90°,点O为△ABC的内心,若直线DE分别交边AC、BC于点D、E,且点O仍然为四边形ABED的内心,这样的直线DE可以画多少条?请在图1中画出一条符合条件的直线DE,并简要说明画法.(2)如图2,在△ABC中,∠C=90°, AC=3, BC=4,若满足(1)中条件的一条直线DE// AB,求此时线段DE的长;(3)如图3,在△ABC中,∠C=90°, AC=3,BC=4,问满足(1)中条件的线段DE是否存在最小值?如果存在,请求出这个值;如果不存在,请说明理由.~~第6题~~(2019宝鸡.中考模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AB=8,∠A=60°,求BD的长.~~第7题~~(2019岐山.中考模拟) 问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC 外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC (3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.~~第8题~~(2019岐山.中考模拟)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2 ,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.~~第9题~~(2019金台.中考模拟) 问题探究:(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE= BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.(3)为了迎接新年的到来,西安城墙举办了迎新年大型灯光秀表演.其中一个镭射灯距城墙30米,镭射灯发出的两根彩色光线夹角为60°,如图③,若将两根光线(AB,AC)和光线与城墙的两交点的连接的线段(BC)看作一个三角形,记为△ABC,那么该三角形周长有没有最小值?若有,求出最小值,若没有,说明理由.~~第10题~~(2019宝鸡.中考模拟) 如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰△CEF,且满足∠B+∠F=180°,则称三角形CEF为四边形ABCD的“伴随三角形”.(1)如图1,若△CEF是正方形ABCD的“伴随三角形”:①连接AC,则∠ACF=;②若CE=2BC,连接AE交CF于H,求证:H是CF的中点;(2)如图2,若△CEF是菱形ABCD的“伴随三角形”,∠B=60°,M是线段AE的中点,连接DM、FM,猜想并证明D M与FM的位置与数量关系.陕西省宝鸡市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:答案:解析:答案:解析:。
陕西省聚焦中考数学--压轴题
(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax2+bx+
c,∴
a-b+c=2, 16a+4b+c=2, c=0,
解得
a=12, b=-32, c=0,
∴所求抛物线的表达式为y=
1 2
x2-32x
(3)由题意,知AB∥x轴,设抛物线上符合条件的点P到AB的距
离为d,则S△ABP=
5,∵m>0,∴m=1+2
5,∴F(3+2
5,1+2
5),∵点E,F关于
直线x=1对称,∴E的坐标为(1-2
5,1+2
5 )
【点评】本题是二次函数的综合题,题中涉及等腰直角三角形的 证明和性质等知识点,解题时要注意数形结合数学思想的运用, 是各地中考的热点和难点.
[对应训练] 1.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的 坐标是(-1,2). (1)求点B的坐标; (2)求过点A,O,B的抛物线的表达式; (3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.
=-45t+4,则G(t,-45t+4),此时:NG=-45t+4-(45t2-254t+4)=-45t2
+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=
1 2
OF×NG+
1 2
NG×
CF=
1 2
NG·OC=
1 2
×(-
4 5
t2+4t)×5=-2t2+10t=-2(t-
5 2
,∴P(3,
8 5
)
(3)在直线AC的下方的抛物线上存在点N,使
△NAC面积最大.设N点的横坐标为t,此时点N(t,45t2-254t+4)(0<t< 5),如图2,
西安市中考数学-整式乘法与因式分解易错压轴解答题精选全文完整版
可编辑修改精选全文完整版西安市中考数学整式乘法与因式分解易错压轴解答题一、整式乘法与因式分解易错压轴解答题1.某同学利用若干张正方形纸片进行以下操作:(1)从边长为a的正方形纸片中减去一个边长为b的小正方形,如图1,再沿线段AB把纸片剪开,最后把剪成的两张纸片拼成如图2的等腰梯形,这一过程所揭示的公式是________.(2)先剪出一个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出两张边长分别为a和b的长方形纸片,如图3,最后把剪成的四张纸片拼成如图4的正方形.这一过程你能发现什么代数公式?(3)先剪出两个边长为a的正方形纸片和一个边长为b的正方形纸片,再剪出三张边长分别为a和占的长方形纸片,如图5,你能否把图5中所有纸片拼成一个长方形?如果可以,请画出草图,并写出相应的等式.如果不能,请说明理由.2.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.3.[数学实验探索活动]实验材料现有若干块如图①所示的正方形和长方形硬纸片.实验目的:用若干块这样的正方形和长方形硬纸片拼成一个新的长方形,通过不同的方法计算面积,得到相应的等式,从而探求出多项式乘法或分解因式的新途径.例如,选取正方形、长方形硬纸片共6块,拼出一个如图②的长方形,计算它的面积,写出相应的等式有a2+3ab+2b2=(a+2b)(a+b)或(a+2b)(a+b)=a2+3ab+2b2.问题探索:(1)小明想用拼图的方法解释多项式乘法(2a+b)(a+b)=2a2+3ab+b2,那么需要两种正方形纸片________张,长方形纸片________张;(2)选取正方形、长方形硬纸片共8块,可以拼出一个如图③的长方形,计算图③的面积,并写出相应的等式;(3)试借助拼图的方法,把二次三项式2a2+5ab+2b2分解因式,并把所拼的图形画在虚线方框3内.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________6.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1、图2、图3分别能解释的乘法公式.(2)用4个全等的长和宽分别为a、b的长方形拼摆成一个如图4的正方形,请你写出这三个代数式(a+b)2、(a﹣b)2、ab之间的等量关系.(3)根据(2)中你探索发现的结论,完成下列问题:①当a+b=5,ab=﹣6时,则a﹣b的值为________.②设,B=x﹣2y﹣3,计算:(A+B)2﹣(A﹣B)2的结果________.7.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个)A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.a2+ab=a(a+b)(2)若x2-y2=16,x+y=8,求x-y的值;(3)计算:.8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?9.一天,小明和小红玩纸片拼图游戏.发现利用图①中的三种材料各若干可以拼出一些图形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)图③可以解释为等式:________.(2)图④中阴影部分的面积为________.观察图④请你写出(a+b)2、(a﹣b)2、ab 之间的等量关系是________.(3)如图⑤,小明利用7个长为b,宽为a的长方形拼成如图所示的大长方形;①若AB=4,若长方形AGMB的面积与长方形EDHN的面积的差为S,试计算S的值(用含a,b的代数式表示)②若AB为任意值,且①中的S的值为定值,求a与b的关系.10.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一大重要研究成果.如图所示的三角形数表,称“杨辉三角”.具体法则:两侧的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律:(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.11.现有若干张如图1所示的正方形纸片A,B和长方形纸片C.(1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:________;(2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是________,并请你在图3位置画出拼成的长方形________;(3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.12.乘法公式的探究及应用.(1)如图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式:________(用式子表达)(4)运用你所得到的公式,计算下列各题:① ,②【参考答案】***试卷处理标记,请不要删除一、整式乘法与因式分解易错压轴解答题1.(1)(2)a2+b2+2ab=(a+b)2(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: 2a2+3ab+b2=(a+b)(2a+b) .(等式左右两边交换不扣分)解析:(1)(2)(3)解:能拼成长方形.如图.(不止一种)画图正确得分.等式: .(等式左右两边交换不扣分)【解析】【分析】(1)图1阴影部分面积为S1=a2-b2,图1阴影部分面积为S2=,根据展开前后图形的面积相等得到S1=S2,所以;(2)图3四个图形面积和为S3=a2+b2+2ab,图4的面积S4=(a+b)2,因为图4为图3的四个图形拼成,所以S3=S4,即;(3)图5六个图形面积和为S5=2a2+b2+3ab,画出的长方形的面积S=(a+b)(2a+b),因为画出的长方形为图5的六个图形拼成,所以S5=S,即. 2.(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.解析:(1)-11(2)63.5(3)由题意可得(x2+x+1)(x2-3x+a)(2x-1)一次项系数是:1×a×(-1)+(-3)×1×(-1)+2×1×a = a+3=0∴a=-3.(4)2021.【解析】【解答】解:(1)由题意可得(x+2)(3x+1)(5x-3)一次项系数是:1×1×(-3)+3×2×(-3)+5×2×1=-11.(2)由题意可得( x+6)(2x+3)(5x-4) 二次项系数是:.(4)通过题干以及前三问可知:一次项系数是每个多项式的一次项分别乘以其他多项式常数项然后结果相加可得.所以(x+1)2021一次项系数是:a2020=2021×1=2021.【分析】(1)求一次项系数,用每个括号中一次项的系数分别与另外两个括号中的常数项相乘,最后积相加即可得出结论.(2)求二次项系数,还有未知数的项有x、2x、5x,选出其中两个与另一个括号内的常数项相乘,最后积相加即可得出结论.(3)先根据(1)(2)所求方法求出一次项系数,然后列出等式求出a的值.(4)根据前三问的规律即可计算出第四问的值.3.(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2解析:(1)3;3(2)解:∵大长方形长为a+3b,宽为a+b∴面积S=(a+3b)(a+b)又∵大长方形由三个大正方形,一个小正方形和四个小长方形组成∴面积S=a2+4ab+3b2∴a2+4ab+3b2=(a+3b)(a+b)(3)解:∵由2b2+5ab+2a2可知大长方形由两个小正方形和两个大正方形以及五个长方形组成,如图∴2b2+5ab+2a2=(2b+a)(b+2a).【解析】【解答】(1)∵(2a+b)(a+b)=2a2+3ab+b2;∴拼图需要两个小正方形,一个大正方形和三个小长方形∴需要3个正方形纸片,3个长方形纸片.【分析】(1)根据多项式(2a+b)(a+b)=2a2+3ab+b2可发现矩形有两个小正方形,一个大正方形和三个小长方形.(2)正方形、长方形硬纸片一共八块,面积等于长为a+3b,宽为a+b的矩形面积.所以a2+4ab+3b2=(a+3b)(a+b)(3)正方形、长方形硬纸片共9块,画出图形,面积等于长为a+2b,宽为2a+b的矩形面积,则2a2+5ab+2b2=(2a+b)(a+2b)4.(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是 4 的倍数.【解析】【分析】解析:(1)解:36是奇巧数,理由:;50不是奇巧数,理由:找不到连续的两个偶数平方差为50(2)解:设两个连续的偶数为n+2、n,则,奇巧数是的倍数.【解析】【分析】(1)根据定义是两个现需偶数的平方差判断即可.(2)将进行运算、化简,便可发现是4的倍数.5.(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-解析:(1)(x+3)(x-2)(2)(x-1)(2x+7);(2x-y)(3x-2y)(3)(x+2y-1)(3x-y+4);解:如图,∵关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(-2)=-18,(-8)×3=--24;而7=1×(-2)+1×9,-5=1×(-8)+1×3,∴m=9×3+(-2)×(-8)=43或m=9×(-8)+(-2)×3=-78.故m的值为43或者-78.;x=-1,y=0(答案不唯一)【解析】【解答】(1)将式子x 2 -x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=3×(-2);然后把1,1,3,-2按下图所示的摆放,按对角线交叉相乘再相加的方法,得到1×(+3)+1×(-2)=-1,恰好等于一次项的系数1,于是x 2+ x-6就可以分解为(x+3)(x-2).(2)根据基本原理,同样得出十字交叉图:Ⅰ. II.∴ 2x2+5x-7= (x-1)(2x+7), 6x2-7xy+2y2=(2x-y)(3x-2y);(3)Ⅰ. 根据 ax2+bxy+cy2+dx+ey+f 分解因式的基本原理得如图所示的双十字交叉图:所以 3x2+5xy-2y2+x+9y-4= (x+2y-1)(3x-y+4) ;Ⅱ如图:x2+7xy-18y2-5x+my-24可以分解成(x-2y+3)(x+9y-8),或分解成:(x-2y-8)(x+9y+3),所以m=43或-78.III.x2+3xy+2y2+2x+3y=-1, 得 x2+3xy+2y2+2x+3y+1=0,如图所示:得(x+2y+1)(x+y+1)=0,∴ x+2y+1=0,或x+y+1=0,或 x+2y+1=0且x+y+1=0∴如当x=-1时,y=0,或x=3,y=-4等均可使上式成立。
2023陕西数学中考压轴题考点
2023陕西数学中考压轴题考点陕西数学中考压轴题考点单项式与多项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。
当一个单项式的系数是1或-1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。
性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。
性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。
多项式的加、减法,乘法1、多项式的加、减法2、多项式的乘法单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
陕西中考数学十年压轴题汇总
25.(本题满分12分)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点。
(1)如图①,线段PM、QN夹在平行直线a 和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN。
请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等。
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。
把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。
请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等。
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ =m,下底MN=n,且m<n。
现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻。
为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草请说明理由。
25.(本题满分12分)王师傅有两块板材边角料,其中一块是边长为60cm的正方形板子;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。
他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B为一个顶点。
(1)求FC的长;(2)利用图②求出矩形顶点B所.对的..距离顶点..到BC边的时,)(cmx为多少矩形的面积最大最大面积时多少(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。
P QM Nab第25题图ab 第25题图ab第25题图P QM Nab第25题图S1S2S3 S4nm25.(本题满分12分) 如图,O e 的半径均为R .(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形;(2)如图③,在O e 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示);(3)若线段AB CD ,是O e的两条弦,且AB CD ==,你认为在以点A B C D,,,为顶点的四边形中,是否存在面积最大的四边形请利用图④说明理由.12解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西中考数学历年压轴题
1、(15)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,
∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的
最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值
最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。
2、(14)问题探究
(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;
(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。
求此时BQ 的长; 问题解决
(3)有一山庄,它的平面为③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳。
已知∠A=∠E=∠D=90°。
AB=270m 。
AE=400m ,ED=285m,CD=340m,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长;若不存在,请说明理由。
┓
② ③
C A A B C F E
D C
A
A B E D A
3、(13)问题探究
(1) 请在图①中作出两条直线,使它们将圆面四等分;
(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线
必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.
M
D B P D
B A
(第25题图) ① ② ③
4、(12)如图,正三角形ABC 的边长为3+3.
(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形
''''EFPN 的面积最大(不要求写作法)
; (2)求(1)中作出的正方形''''EFPN 的边长;
(3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.
5、(2011)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个等腰三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
6、(2010)问题探究
(1)请你在图①中做一条
..直线,使它将矩形ABCD分成面积相等的两部分;
(2)如图②点M是矩形ABCD内一点,请你在图②中过点M作一条直线,使它将矩形ABCD分成面积相等的两部分。
问题解决
(3)如图③,在平面直角坐标系中,直角梯形OBCD是某市将要筹建的高新技术开发区用地示意图,其中DC∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P(4,2)处。
为了方便驻区单位准备过点P修一条笔直的道路(路宽不计),并且是这条路所在的直线l将直角梯形OBCD分成面积相等的了部分,你认为直线l是否存在?若存在求出直线l的表达式;若不存在,请说明理由
7、(2009)问题探究
(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由. 问题解决
(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).
D C B A ① D C B
A ③ D C
B A ② (第25题图)
8、(2008)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。
如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学。
点B在点M的北偏西30°的3km处,点
A在点M的正西方向,点D在点M的南偏西60
°的处。
为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值。
综上,你认为把供水站建在何处,所需铺设的管道最短?
图①
9、(2007)如图,
O 的半径均为R .
(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..
中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形; (2)如图③,在
O 中,(02)AB CD m m R ==<<,且AB 与CD 交于点E ,夹角为锐
角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是
O 的两条弦,
且AB CD ==,你认为在以点A B C D
,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
10、(2006)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm 下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。
他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。
(1
)求FC 的长;
(2)利用图②求出矩形顶点B 所对的顶点.....到BC 边的距离)(cm x 为多少时,矩形的面积最大?最大面积时多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。
图② (第25题图①) (第25题图②) (第25题图③) (第25题图④)
如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。