高二2-3排列组合练习题及答案

合集下载

(完整版)高二数学选修2-3排列组合测试题.docx

(完整版)高二数学选修2-3排列组合测试题.docx

高二数学选修2-3 排列组合测试题姓名班别学号成绩一、选择题(本大题共10 个小题,每小题 5 分,共 50 分.)1、A n!(n3) ,则A是()3!A 、 C33B、C n n 3C、A n3D、 A n n 32、C33C43C53C153等于:()A 、C154B、 C164 C 、C173D、C1743、 a, b是异面直线; a 上有 6 个点, b 上有 7 个点,这 13 个点可确定平面的个数是:()A 、C61C71B、 C61C71C、 C63C73D、 C1334、将 5 个不同的小球放入二个不同的抽屉里,不同的放法种数()A 、A52B 、C52C、25D、525.假设 200 件产品中有 3 件次品,现在从中任取 5 件,其中至少有 2 件次品的抽法有()A.C32C1983种B.( C32C1973 C 33C1972)种C.(C5200- C1974)种D.(C2005C13C1974 ) 种6.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共()A.24 种 B. 18 种C. 12 种D. 6 种7、某食堂每天中午准备 4 种不同的荤菜, 7 种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭。

则每天不同午餐的搭配方法总数是()A.22B.56C.210D. 4208.下面是高考第一批录取的一份志愿表:志愿学校专业第一志愿1第 1 专业第 2 专业第二志愿2第 1 专业第 2 专业第三志愿3第 1 专业第 2 专业现有 4 所重点院校,每所院校有 3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是()A. 43 ( A32 ) 3B . 43 (C32 ) 3 C . A43 (C32 ) 3 D . A43 (A32 ) 39、体育彩票规定:从 01 至 36 共 36 个号中抽出 7 个号为一注,每注 2 元. 某人想从01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,从 21 至 30 中选1 个号,从 31 至 36 中选 1 个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360 元B. 6720 元C. 4320 元D. 8640 元10、设有编号为 1,2,3,4,5 的五个茶杯和编号为1,2, 3,4, 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( ) A.30 种B.31种C.32种D.36种二、填空题(本大题满分 20 分,每小题 5 分 . )11.由数字 1、 2、 3、 4、5 组成没有重复数字,且数字1 与 2 不相邻的五位数有_____ 个.12.一电路图如图所示,从 A 到 B共有条不同的线路可通电 .13、已知 C18k C182k 3,则k=。

高二数学选修2-3-排列组合综合试题

高二数学选修2-3-排列组合综合试题

排列、组合知 识 点 1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二 步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有 12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一. 定的顺序....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素 中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m nA n n n n m =---+L (,,m n N m n *∈≤) 6.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素 中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L )!(!!m n m n -=,,(n m N m n ≤∈*且11组合数的性质(1)m n n m n C C -=.(规定:10=n C ;)(2)m n C 1+=m n C +1-m n C练 习 题1若346n n A C =,则n 的值为( )A 6 B 7 C 8 D 91.将3个不同的小球放入4个盒子中,则不同放法种数有( )A.81B.64C.12D.143.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( ) A 33A B 334A C 523533A A A - D 2311323233A A A A A + 4.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( ) A 20 B 16 C 10 D 67用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x9.用0、1、2、3、4、5组成没有重复数字的四位数,其中能被6整除的有CA .72个B .60个C .52个D .48个5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( )A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人1.从7人中选派5人到10个不同的交通岗的5个中参加交通协管工作,则不同的选派方法有( )A .5557105C A A B .5557105A C A C .55107C C D .55710C A 2.某班元旦联欢会原定的5个学生节目已排成节目单,开演前又增加了两个教师节目教师节目插入原节目单中,那么不同插法的种数为A .42B .30C .20D .123.某班分成8个小组,每小组5人,现要从中选出4人进行4个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( )A .4484C AB .441845C A C C .444845C AD .44404C A 5 从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为( ) A 120 B 240 C 280 D 604.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是()A.64B.20C.18D.105.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有()A.90B.180C.270D.5406.有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有()A.70B.80C.82D.8410.设集合{123456}I=,,,,,,集合,A B I⊆,若A中含有3个元素,B中至少含有2个元素,且B中所有数均不小于A中最大的数,则满足条件的集合,A B有:BA.33组B.29组C.16组D.7组7.不共面的四个定点到平面α的距离都相等,这样的平面α共有()A3个B4个C6个D7个8.由0,1,2,3,...,9十个数码和一个虚数单位i可以组成虚数的个数为()A100B10C9D901.从甲、乙,……,等6人中选出4名代表,那么,甲、乙二人至少有一人当选,共有种选法2.4名男生,4名女生排成一排,女生不排两端,则有种不同排法7.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种11.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有种?AB3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数__个,其中以y 轴作为该函数的图像的对称轴的函数有____个8.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方 法?209.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以 当作9使用,问可以组成多少个三位数?6022.以1239L ,,,这几个数中任取4个数,使它们的和为奇数,则共有 种不同取法 10.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法11.正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个12.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?57613.在一次象棋比赛中,进行单循环比赛,其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?1514.在某次数学考试中,学号为(1,2,3,4)i i =的同学的考试成绩(){85,87,88,90,93}f i ∈,且满足 (1)(2)(3)(4)f f f f ≤<<,则这四位同学的考试成绩的所有可能情况有 种15.身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?840(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?24016.如图是由12个小正方形组成的43⨯矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有 条3537=. 15.如图,一个图形分为5个区域,现给图形着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种。

高中数学 专题强化训练1 排列、组合的综合应用(含解析)新人教A版高二选修2-3数学试题

高中数学 专题强化训练1 排列、组合的综合应用(含解析)新人教A版高二选修2-3数学试题

专题强化训练(一) 排列、组合的综合应用(建议用时:40分钟)一、选择题1.设4名学生报名参加同一时间安排的3项课外活动方案有a 种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( )A .(34,34)B .(43,34)C .(34,43)D .(A 34,A 34)C [由题意知本题是一个分步乘法问题,首先每名学生报名有3种选择,根据分步乘法计数原理知4名学生共有34种选择,每项冠军有4种可能结果,根据分步乘法计数原理知3项冠军共有43种可能结果.故选C.]2.若C 3n =C 4n ,则n !3!(n -3)!的值为( ) A .1B .20C .35D .7 C [若C 3n =C 4n ,则n (n -1)(n -2)3×2×1=n (n -1)(n -2)(n -3)4×3×2×1,可得n =7, 所以n !3!(n -3)!=7!3!4!=7×6×53×2×1=35.] 3.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )A .C 23C 397B .C 23C 397+C 33C 297 C .C 5100-C 13C 497D .C 5100-C 597 B [根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C 23C 397种,“有3件次品”的抽取方法有C 33C 297种,则共有C 23C 397+C 33C 297种不同的抽取方法,故选B.]4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种D [和为偶数共有3种情况:取4个数均为偶数有C 44=1种取法;取2奇数2偶数有C 24·C 25=60种取法;取4个数均为奇数有C 45=5种取法,故共有1+60+5=66种不同的取法.]5.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( )A .60B .120C .240D .480A [先将4个熟悉道路的人平均分成两组有C 24·C 22A 22种.再将余下的6人平均分成两组有C 36·C 33A 22种.然后这四个组自由搭配还有A 22种,故最终分配方法有12C 24·C 36=60(种).] 二、填空题6.有8名男生和3名女生,从中选出4人分别担任语文、数学、英语、物理学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种.(用数字作答)720 [由题意知,从剩余10人中选出3人担任3个学科课代表,有A 310=720种.]7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有________种.20 [分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C 23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C 24=12种情形.所有可能出现的情形共有2+6+12=20(种).]8.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种.(用数字作答)96 [甲传第一棒,乙传最后一棒,共有A 44种方法.乙传第一棒,甲传最后一棒,共有A 44种方法.丙传第一棒,共有C 12·A 44种方法.由分类计数原理得,共有A 44+A 44+C 12·A 44=96(种)方法.]三、解答题9.现有5名教师要带3个不同的兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,求不同的带队方案有多少种?[解] 第一类,把甲、乙看做一个复合元素,和另外的3人分配到3个小组中,有C 23A 33=18(种),第二类,先把另外的3人分配到 3个小组,再把甲、乙分配到其中2个小组,有A 33A 23=36(种),根据分类加法计数原理可得,共有18+36=54(种).10.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?[解](1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.1.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216 C.180D.162C[分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23·C22·A44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12·C23·(A44-A33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个),故选C.]2.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同发言顺序的排法种数为() A.360 B.520C.600 D.720C[根据题意,可分两种情况讨论:①甲、乙两人中只有一人参加,有C12·C35·A44=480(种)情况;②甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙两人的发言相邻的情况有C22·C25·A33·A22=120(种).故不同发言顺序的排法种数为480+240-120=600.] 3.将10个运动员名额分给7个班,每班至少1个,则不同的分配方案的种数为________.84[因为10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙.在9个空隙中选6个位置插隔板,可把名额分成7份,对应地分给7个班.每一种插板方法对应一种分配方案,则共有C69=C39=9×8×73×2×1=84种分配方案.] 4.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.2[设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,即6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4,即女生有2人.]5.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?[解](1)44=256(种).(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种方法;第二类,2个盒子中各放2个小球有C24C24种放法,故恰有2个盒子不放球的方法共有C34A24+C24C24=84种放法.。

人教新课标版数学高二-2015人教数学(B版)选修2-3练习 排列

人教新课标版数学高二-2015人教数学(B版)选修2-3练习  排列

第一章 1.2 第1课时一、选择题1.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有()A.A88B.A48C.A44A44D.2A44[答案] C[解析]安排4名司机有A44种方案,安排4名售票员有A44种方案.司机与售票员都安排好,这件事情才算完成,由分步计数原理知共有A44A44种方案.故选C.2.(2014·四川理,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种[答案] B[解析]分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有A14A44=96种不同的排法,由加法原理可得满足条件的排法共有120+96=216种.3.若A n10-A n9=n!·126(n∈N+),则n等于()A.4 B.5C.6 D.5或6[答案] D[解析]本题不易直接求解,可考虑用代入验证法.故选D.4.6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有()种()A.720 B.360C.240 D.120[答案] C[解析]因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人全排列共有A55种排法,但甲、乙两人有A22种排法,由分步计数原理可知:共有A55·A22=240种不同的排法.故选C.5.3名男生和3名女生排成一排,男生不相邻的排法有多少种()A.144 B.90C.260 D.120[答案] A[解析]3名女生先排好,有A33种排法,让3个男生去插空,有A34种方法,故共有A33·A34=144种.故选A.6.六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法数为()A.A44B.A36C.A46D.A33[答案] A[解析]把3个空位看作一个元素与3辆汽车共4个元素全排列.故选A.7.6个人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684[答案] C[解析]“不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.故选C.二、填空题8.四名志愿者和他们帮助的两位老人排成一排照相,要求两位老人必须站在一起,则不同的排列法有____________种。

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2

高二数学选修2-3排列组合测试题2一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18 B.24 C.30 D.362.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A.24种B.60种C.90种D.120种3.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人4.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100 B.90 C.81 D.725.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有() A.30种B.35种C.42种D.48种6.(2010·全国Ⅱ理,6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种B.18种C.36种D.54种7.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选的不同选法有16种,则小组中的女生数为() A.2 B.3 C.4 D.58.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为() A.300 B.216 C.180 D.1629.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有() A.252种B.112种C.20种D.56种10.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的的子集共有() A.10个B.16个C.20个D.32个11.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( ) A.30种B.35种C.42种D.48种12.已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有交点,且交点的横、纵坐标均为整数,那么这样的直线有()二、填空题13.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为____8____.14.设椭圆x2m+y2n=1的焦点在y轴上,m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆个数为________20________.15.已知m∈{3,4,5},n∈{0,2,7,8},r∈{1,8,9},则方程(x-m)2+(y-n)2=r2可以表示不同圆____36____个.16.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有____11____种.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17、六个人按照下列要求站成一排:(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙相邻,且丙、丁不相邻(5)甲、乙站两端;(6)甲、乙、丙按从左到右,从高到矮的顺序.(7)甲、乙之间恰好间隔两人;(8)甲不站左端、乙不站右端;18、有9本不同的书,按下列方式分配,有多少种不同的分配方式?(1)一人得4本,一人得3本,一人得2本;(2)甲得4本,乙得3本,丙得2本;(3)平均分成三份,每份3本;(4)甲、乙、丙分别得3本;19、用0,1,2,3,4,5这六个数字:(1)可以组成多少个数字不重复的三位数;(2)可以组成多少个数字不重复的四位偶数;(3)可以组成多少个数字不重复的五位奇数;(4)可以组成多少个数字不重复的能被5整除的数;(4)可以组成多少个数字不重复的小于1000的自然数;20、口袋中有10个编号不同的球,其中6个白球,4个红球,规定取到一个白球得1分,取到一个红球得2分,现从袋中任取4个球,欲使总分不少于5分,这样的取法有多少种?21、从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)甲、乙两人必须当选;(2)甲、乙两人必不当选;(3)甲、乙两人不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体委等5种不同的工作,但体委必须由男生担任,班长必须由女生担任。

数学选修2-3排列与组合练习题含答案

数学选修2-3排列与组合练习题含答案
A. B. C. D.
3. ( )
A. B. C. D.
4. 件产品中,有 件一等品, 件二等品, 件三等品,现在要从中抽出 件产品来检查,至少有两件一等品的抽取方法是()
A. • B.
C. D. • • •
5.设 为正偶数, ,则 的值为()
A. B. C. D.
6.已知 , , ,下面哪一个等式是恒成立的( )
【考点】
排列、组合及简单计数问题
【解析】
此题暂无解析
【解答】
若取出的数字中含 ,则可以组成 个没有重复数字的四位数;若取出的数字中不含 ,则可以组成 个没有重复数字的四位数.综上所述,一共可以组成 个没有重复数字的四位数.
针对特殊元素合理分类是解题的关键.
本题考查排列组合.
20.
【答案】
【考点】
组合及组合数公式
求这 名学生选修课所有选法的总数;
求恰有 门选修课没有被这 名学生选择的概率;
求 选修课被这 名学生选择的人数 的分布列及数学期望.
28. 年 月以来,湖北省武汉市部分医院陆续发现了多例有华南海鲜市场暴露史的不明原因肺炎病例,现已证实为 新型冠状病毒感染引起的急性呼吸道传染病. 年 月 日,某研究机构首次分析了女性在新型冠状病毒传播中可能存在的特殊性.现将密切接触者 名男士和 名女士进行筛查,得到的无症状者与轻症者情况如下表:
故答案为: .
14.
【答案】
【考点】
组合及组合数公式
【解析】
利用组合数的计算公式可得 , , ,利用 ,化简整理即可得出.
【解答】
解:∵ , , ,
又 ,
∴ ,
化为 ,
解得 , .
∴ .
故答案为: .

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)

高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。

从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。

全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。

因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。

2. 有6本不同的数学书和4本不同的物理书。

现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。

两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。

因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。

3. 某公司有8名员工,其中有3名男员工和5名女员工。

请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。

全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。

因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。

4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。

现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。

3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。

因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。

5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。

高二2-3排列组合练习题及答案

高二2-3排列组合练习题及答案

排列组合练习题1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A ,70 种B ,80种C ,100 种D ,140 种2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A, 48 种 B ,12种 C ,18种 D36种3,从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 A,48 B, 12 C ,180 D ,1624,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A ,150种B ,180种C ,300种D ,345种5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有A ,6B ,12C 30 D366,用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A .324B ,328C ,360D ,6487,从10名大学毕业生中选3人担任村长助理,则甲、乙 至少有1人入选,而丙 没有入选的不同选法的总数为 ( )A ,85B ,56C ,49D ,288,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为 ( )A ,18B ,24C ,30D ,309.将3个不同的小球放入4个盒子中,则不同放法种数有( )A .81B .64C .12D .1410.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( )A.20 B .16 C .10 D .611.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .12694C C B. 12699C C C. 3310094C C - D. 3310094A A -12.停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( )种.A .812A 种B .44882A A 种 C.888A 种 D.889A 种 13.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( )A.42B.36C.30D.1214.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A.8种B.10种C.12种D.32种15.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于 A .5569n n A -- B .1569n A - C .1555n A - D .1469n A -16.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6017.从4名男生,3名女生中选出三名代表.(1)不同的选法共有多少种?(2)至少有一名女生的不同的选法共有多少种?(3)代表中男、女生都要有的不同的选法共有多少种?18.用0,1,2,3,4,5这六个数字:(1)可组成多少个无重复数字的自然数?(2)可组成多少个无重复数字的四位偶数?(3)组成无重复数字的四位数中比4023大的数有多少?19. 有5个人站成一排:(l )共有多少种不同的排法?(2)其中甲必须站在中间有多少种不同排法?(3)其中甲、乙两人必须相邻有多少种不同的排法?(4)其中甲、乙两人不相邻有多少种不同的排法?(5)其中甲、乙两人不站排头和排尾有多少种不同的排法?(6)其中甲不站排头,乙不站排尾有多少种不同的排法?练习题1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是( ) A .6A 33 B .3A 33 C .2A 33 D .A 22A 41A 442.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有 ( )A .15种 B.90种 C .135种 D .150种3.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有( ) A .168 B .45C .60D .1114.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( )A .24个B .12个C .6个D .4个5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有A .319823C C 种B .(219733319723C C C C +)种 C .)C -(C 41975200种D .)C C C (4197135200-种 6.()n x y -的二项展开式中,第r 项的二项式系数是( )A.r n CB. 1r n C +C. 1r n C -D. 11(1)r r n C ---7.在 的展开式中 的系数是( ) A. –14 B. 14 C. –28 D. 288.设k=1,2,3,4,5,则 的展开式中 的系数不可能是( )A. 10B. 40C. 50D. 809.若n ∈N *,(2+1)n =2a n +b n (a n 、b n ∈Z),则b n 的值( )A.一定是奇数B.一定是偶数C.与b n 的奇偶性相反D.与a 有相同的奇偶性10.下面几种推理是类比推理的是 ( )A .两条直线平行,同旁内角互补,如果A ∠和B ∠是两条平行直线的同旁内角,则 180=∠+∠B AB .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员C .一切偶数都能被2整除,1002是偶数,所以1002能被2整除D .由平面向量的运算性质,推测空间向量的运算性质11.某乒乓球队有11名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的法选共有________.12.定义复数的一种运算z 1* z 2=|z 1|+| z 2 |2(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =6,则z *z 的最小值为13.现有5种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有 种。

数学模块2-3排列组合概率测试含答案

数学模块2-3排列组合概率测试含答案

.故选:D.
∴Eξ= (a+b+c);
设 t= (a+b+c),则 Dξ= [(a-t)2+(b-t)2+(c-t)2]
= [a2+b2+c2-2(a+b+c)t+3t2]= [a2+b2+c2-6t+3t2];
随机变量 η 取值为
的概率都是 ,
∴Eη= ( + + )= (a+b+c),
Dη= [
则 P(A)= = ,P(AB)=
=,
∴在第一次抽到次品的条件下,第二次抽到次品的概率 P(A|B)=
= = .故选 A.
11.【答案】D 解:∵E(X)= ,∴由随机变量 X 的分布列的性质得:
,解得 x= ,y= ,
∴D(X)=(1- )2×0.5+(2- )2× +(3- )2× = 12.【答案】B 解:随机变量 ξ 取值为 a,b,c 的概率都是 ,
=
第 4 页,共 9 页
故选 C. 9.【答案】C 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为 , , ,
∴此密码不能译出的概率(1- )(1- )(1- )= ,
故此密码能译出的概率 P=1- = , 故选:C 10.【答案】A 解:设第一次抽到次品为事件 A,第二次抽到次品为事件 B,

A. −4
B. −3
C. 2
D. 3
5. 设有编号为 1,2,3,4,5 的五个茶杯和编号为 1,2,3,4,5 的五个杯盖,将五个杯盖盖在五个茶杯
上,至少有两个杯盖和茶杯的编号相同的盖法有( )
A. 30 种

高中数学选修2-3《排列与组合》精选练习题(含答案)

高中数学选修2-3《排列与组合》精选练习题(含答案)

高中数学选修2-3《排列与组合》基础练习题排列1.90×9l ×92×……×100=( )A 、10100AB 、11100AC 、12100AD 、11101A2.下列各式中与排列数m n A 相等的是( )A 、!(1)!-+n n mB 、n(n -1)(n -2)……(n -m)C 、11m n nA n m --+ D 、111m n n A A -- 3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于( )A 、827n A -B 、2734n n A --C 、734n A -D 、834n A -4.若S=123100123100A A A A ++++L L ,则S 的个位数字是( )A 、0B 、3C 、5D 、85.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )A 、24个B 、30个C 、40个D 、60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有( )A 、20个B 、19个C 、25个D 、30个7.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )A 、12种B 、18种C 、24种D 、96种8.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )A 、6种B 、9种C 、18种D 、24种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )A 、88A 种B 、48A 种C 、44A ·44A 种D 、44A 种10.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( )A 、(4!)2种B 、4!·3!种C 、34A ·4!种D 、35A ·4!种11.把5件不同的商品在货架上排成一排,其中a,b两种必须排在一起,而c,d两种不能排在一起,则不同排法共有()A、12种B、20种C、24种D、48种二.填空题:12.6个人站一排,甲不在排头,共有种不同排法.13.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.14.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.15.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的口袋中,但红口袋不能装入红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有种不同的送法.三、解答题:17.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单(1)前4个节目中要有舞蹈,有多少种排法?(2) 3个舞蹈节目要排在一起,有多少种排法?(3) 3个舞蹈节目彼此要隔开,有多少种排法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?参考答案1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C 12.600 13.504 14.480 15.9616.(1) 60; (2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 720高中数学选修2-3《排列与组合》精选练习题组合一、选择题:1.下列等式不正确的是( )A 、!!()!m n n C m n m =-B 、11m m n n mC C n m++=- C 、1111m m n n m C C n +++=+ D 、11m m n n C C ++= 2.下列等式不正确的是( )A 、m n m n n C C -=B 、11m m m m m mC C C -++=C 、123455555552C C C C C ++++=D 、11111m m m m n n n n C C C C --+--=++3.方程2551616x x x C C --=的解共有( ) A 、1个 B 、2个 C 、3个 D 、4个4.若372345n n n C A ---=,则n 的值是( )A 、11B 、12C 、13D 、145.已知7781n n n C C C +-=,那么n 的值是()A 、12B 、13C 、14D 、156.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A 、3254C C 种B 、 3254C C 55A 种C 、 3254A A 种D 、 3254A A 55A 种7.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有( )A 、12种B 、34种C 、35种 (D )340种8.平面上有7个点,除某三点在一直线上外,再无其它三点共线,若过其中两点作一直线,则可作成不同的直线( )A 、18条B 、19条C 、20条D 、21条9.在9件产品中,有一级品4件,二级品3件,三级品2件,现抽取4个检查,至少有两件一级品的抽法共有( )A 、60种B 、81种C 、100种D 、126种10.某电子元件电路有一个由三节电阻串联组成的回路,共有6个焊点,若其中某一焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有( )A 、5种B 、6种C 、63种D 、64种二.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每人教两个班,分配方案共有 种。

2020年高中数学选修2-3《排列与组合》测试卷及答案解析

2020年高中数学选修2-3《排列与组合》测试卷及答案解析
解得x<8或x>13,
又因为2≤x≤9,且x∈N*,
∴原不等式的解集为{2,3,4,5,6,7}.
【点评】本题考查了排列数与组合数的定义与公式应用问题,是中档题.
2.解下列各式中的n值.
(1)90 = ;(2) • =42 .
【分析】(1)利用排列数公式得到90n(n﹣1)=n(n﹣1)(n﹣2)(n﹣3),由此能求出n.
解得n=7或n=﹣6(舍),
∴n=7.
【点评】本题考查方程的解法,考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
3.规定 =x(x﹣1)…(x﹣m+1),其中x∈R,m为正整数,且 =1,这是排列数 (n,m是正整数,且m≤n)的一种推广.
(2)利用排列数公式和组合数公式得到 ,从而n(n﹣1)=42,由此能求出n.
【解答】解:(1)∵90 = ,
∴90n(n﹣1)=n(n﹣1)(n﹣2)(n﹣3),
∴n2﹣5n﹣84=0,
∴(n﹣12)(n+7)=0,
解得n=12或n=﹣7(舍).
∴n=12.
(2)∵ • =42 ,
∴ ,
∴n(n﹣1)=42,∴n2﹣n﹣42=0,
11.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?
(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?
12.某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影.
(2)解不等式: .
【分析】(1)由组合数的定义和公式求出n的值,再计算 + 的值;

高中数学选修2-3测试题-排列与组合高中数学选修2-3测试题-排列与组合

高中数学选修2-3测试题-排列与组合高中数学选修2-3测试题-排列与组合

高中数学选修2-3测试题(2)-排列与组合班别:_________ 姓名:_________ 学号:_______ 评分:___________一.选择题:(每小题5分,共40分)1.从5个中国人、4个美国人、3个日本人中各选一人的选法有(A) 12种 (B) 24种 (C) 48种 (D)60种2.用1、2、3、4四个数字组成含有重复数字的四位数,其个数是(A) 265个 (B)232个 (C)128个 (D)24个3.4名学生报名参加语、数、英兴趣小组,每人选报1种,,则不同方法有(A) 43种 (B) 34种 (C)34A 种 (D)34C 种 4.从单词“ctbenjin ”中选取5个不同字母排成一排,含有“en ”(其中“en ”相连且顺序不变)的不同排列共有(A)120个 (B)480个 (C)720个 (D)840个5.6个人排成一排,其中甲、乙两人中间至少有一人的排法有(A)480种 (B)720种 (C)240种 (D)360种6.5个身高不等的学生站成一排合影,从中间到两边一个比一个矮的排法有(A)6种 (B)8种 (C)10种 (D)12种7.设0.9910的小数点后第1位数字为a ,第2位数字为b ,第3位数字为c ,则(A)a=9,b=4,c=0 (B)a=9,b=0,c=4 (C)a=9,b=2,c=0 (D)a=9,b=0,c=28.四面体的顶点和各棱中点共10个点, 在其中取4个不共面的点, 则不同的取法共有A . 150种B . 147种C . 144种D . 141种二.填空题:(每小题5分共20分)9.从20件产品(其中含2件次品)中任取5件,其中含有次品的抽法有 种.10.在1,2,3,…,30中取两个不同的数相加,使它们的和是3的倍数,这样的取法有 种.11.四个不同的球放入四个不同的盒子里,恰有一个空盒的放法有 种.12.由0,1,2,3,4,5六个数字可组成 个无重复数字且小于500000的六位数. 13.3男4女共7人排成一排照相,要求3个男子不相邻,则排法有 种.14.3名教师和6名学生被安排到3间教室,每间教室1名教师和2名学生,不同的安排方法共有种.三.解答题:(20+20=40分)15.从1到9的九个数字中取三个偶数四个奇数,试问:①能组成多少个没有重复数字的七位数?②上述七位数中三个偶数排在一起的有几个?③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?④在①中任意两偶然都不相邻的七位数有几个?16.从1到100的自然数中,每次取出不同的两个数,使它的和大于100,则不同的取法有多少种.高中数学选修2-3测试题(2)-排列与组合参考答案1.D2.B3.B4.B5.A6.A7.B8.D从10个点中任取4个点有410C 种取法,其中4点共面的 情况有三类。

高中数学选修2-3 同步练习 1.2 排列与组合(解析版)

高中数学选修2-3 同步练习 1.2 排列与组合(解析版)

第一章 计数原理1.2 排列与组合一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.A .9B .12C .15D .3【答案】A 【解析】由题得.故答案为A .2.若,则的值为A .1B .7C .20D .35【答案】D 【解析】若,则有n =3+4=7,故()!7!3!3!3!4!n n =-=35,故选D .3.5个代表分4张同样的参观券,每人最多分一张,且全部分完,那么不同的分法一共有 A .A 45种 B .45种 C .54种 D .C 45种【答案】D【解析】由于4张同样的参观券分给5个代表,每人最多分一张,从5个代表中选4个即可满足,故有C 45种,故选D.【名师点睛】区分一个问题是排列问题还是组合问题,关键是看它有无“顺序”,有顺序就是排列问题,而无顺序就是组合问题.而要判断它是否有顺序的方法是:先将元素取出来,看交换元素的顺序对结果有无影响,有影响就是“有序”,也就是排列问题;没有影响就是“无序”,也就是组合问题.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆 A .220个B .210个C.200个D.1320个【答案】A【解析】由题意可得,过不在同一条直线上的三个点可以作一个圆,所以过这12个点中的每三个作圆,共可作圆C312=220个,故选A.【名师点睛】解决此题必须熟练掌握圆的相关知识,将其转化为排列、组合问题进行求解.5.某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同报名方法有A.12种B.24种C.36种D.72种【答案】CC=6(种),再把这个整体与其他2人进行全排【解析】由题意可知,从4人中任选2人作为一个整体,共有24A=6(种)情况,所以共有6×6=36(种)不同的报名方法.列,对应3个活动小组,有336.年平昌冬奥会期间,名运动员从左到右排成一排合影留念,最左端只能排甲或乙,最右端不能排甲,则不同的排法种数为A.B.C.D.【答案】C【名师点睛】在有限制条件的排列问题中,有时限定某元素必须排在某位置,某元素不能排在某位置;有时限定某位置只能排(或不能排)某元素.这种特殊元素(位置)解题时要优先考虑.①元素分析法——即以元素为主,优先考虑特殊元素,再考虑其他元素,先特殊后一般.②位置分析法——即以位置为主,优先考虑特殊位置,再考虑其他位置,先分类后分步.7.现有2个男生,3个女生和1个老师共6人站成一排照相,若两端站男生,3个女生中有且仅有2人相邻,则不同的站法种数是A .12B .24C .36D .48【答案】B【解析】第一步,2个男生站两端,有22A 种站法;第二步,3个女生站中间,有33A 种站法;第三步,老师站正中间女生的左边或右边,有12A 种站法.由分步乘法计数原理,得共有2323A A ⋅·12A =24(种)站法 8.《爸爸去哪儿》的热播引发了亲子节目的热潮,某节目制作组选取了6户家庭分配到4个村庄体验农村生活,要求将6户家庭分成4组,其中2组各有2户家庭,另外2组各有1户家庭,则不同的分配方案的种数是 A .216 B .420 C .720 D .1080【答案】D【解析】先分组,每组含有2户家庭的有2组,则有226422C C A 种不同的分组方法,剩下的2户家庭可以直接看成2组,然后将分成的4组进行全排列,故有22464422C C A 1080A ⨯=种不同的分配方案. 9.用数字0,1,2,3,4组成无重复数字的四位数,则比2340小的四位数共有 A .20个 B .32个 C .36个D .40个【答案】D【规律总结】数字排列问题的解题原则、常用方法及注意事项:(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.(2)常用方法:直接法、间接法.(3)注意事项:解决数字问题时,应注意题干中的限制条件,恰当地进行分类和分步,尤其注意特殊元素“0”的处理.10.在某地的奥运火炬传递活动中,有编号为1、2、3、…、18的18名火炬手,若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为A.151B.168C.1306D.1408【答案】B【解析】从18人中任选3人,有C318种选法,选出的3人编号能构成公差为3的等差数列有12种情形,∴所求概率P=12C318=1 68.二、填空题:请将答案填在题中横线上.11.若(为正整数且),则__________.【答案】6【解析】,,化简得,.故答案为.12.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答).【答案】120【解析】先从除甲、乙外的6人中选一人,安排在甲、乙中间,有种,最后再选出一人和刚才的三人排列,则不同的发言顺序共有种.13.从A,B,C,D,E五名歌手中任选三人出席某义演活动,当三名歌手中有A和B时,A需排在B的前面出场(不一定相邻),则不同的出场方法有种.【答案】51【解析】应分没有A和B、只有A或B中的一个、A和B均有这三种情况进行讨论.第一类,这三名歌手中没有A和B,由其他歌手出席该义演活动,共有33A种情况;第二类,只有A或B中的一个出席该义演活动,需从C,D,E中选两人,共有123233C C A种情况;第三类, A ,B 均出席该义演活动,需再从C ,D ,E 中选一人,因为A 在B 前,共有133322C A A 种情况. 由分类加法计数原理得不同的出场方法有33A+123233C C A +133322C A A =51种.【技巧点拨】先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成.第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数. 三、解答题:解答应写出文字说明、证明过程或演算步骤.14.(1)计算98199100200C C +;(2)求()51253320C 44C 15A n n n n n -+++=++中n 的值.【解析】(1(2)原式可化为()()()()()()5!3!204415325!!1!4!n n n n n n n ++⨯=+⨯+++-,即()()()()()()()()()()54321432115366n n n n n n n n n n n +++++++++=++⋅()2n +,所以(n +5)(n +4)(n +1)-(n +4)(n +1)n =90,即5(n +4)(n +1)=90, 所以n 2+5n -14=0,解得n =2或n =-7.又n ≥1且n ∈Z ,所以n =2.【名师点睛】A C A m m nnm m=这个公式体现了排列数公式和组合数公式的联系,也可以用这个关系去加强对公式的记忆.每个公式都有相应的连乘形式和阶乘形式,连乘形式多用于数字计算,阶乘形式多用于对含有字母的排列数或者组合数进行变形或证明. 15.现有5名男生和2名女生站成一排照相.(用数字作答)(1)两女生相邻,有多少种不同的站法? (2)两名女生不相邻,有多少种不同的站法?(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法? (4)女生甲要在女生乙的右方(可以不相邻)有多少种不同的站法?(4)女生甲要么在乙的左端,要么在乙的右端,因此只要用全排列除以2即可,即771A 25202. 【名师点睛】解决排列问题的主要方法有:(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列. (5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.16.用0、1、2、3、4、5这六个数字组成无重复数字的整数,求满足下列条件的数各有多少个. (1)六位奇数;(2)能被5整除的四位数; (3)比210435大的六位数.【解析】(1)先排个位,个位数字只能从1,3,5中选有3种方法; 再排首位,首位不能为0,故还有4个数字可选,有4种方法; 最后排中间四位,没有其他附加条件,排法数为4!,由分步乘法计数原理知,共有不同排法种数为3×4×4!=288个.(2)能被5整除,个位只能是0或5,个位是0时,没有其他附加条件,其他三个数位排法有A 35种; 个位是5时,首位排法有4种,再排十位与百位,有A 24种,∴个位是5的有4A 24种, 由分类加法计数原理知共有A 35+4A 24=108个.(3)①首位是4、3、5时满足要求,有3×A55个;②首位是2时,当万位是4、3、5时满足要求,有3×A44个;当万位是1时,千位是4、3、5时满足要求,有3×A33个;当首位为2,万位是1,千位是0时,若百位是5,有A22个,若百位是4,则十位为5,只有1个.由分类加法计数原理知,共有比210435大的六位数3A55+3A44+3A33+A22+1=453个.17.已知甲、乙、丙、丁四个不同的小球,将其全部放入编号为1,2,3,4的四个盒子中.(1)随便放(可以有空盒,但球必须都放入盒中)有多少种放法?(2)四个盒都不空的放法有多少种?(3)恰有一个空盒的放法有多少种?(4)恰有两个空盒的放法有多少种?(5)甲球所放盒的编号总小于乙球所放盒的编号的放法有多少种?【解析】(1)由于可以随便放,故每个小球都有4种放法,所以放法总数是:4×4×4×4=44=256种.(2)将四个小球全排列后放入四个盒子即可,所以放法总数是:A44=24种.(3)由题意知,必然是四个小球放入三个盒子中.分三步完成:第一步,选出三个盒子;第二步,将四个小球分成三堆;第三步,将三堆小球全排列后放入三个盒子.所以放法总数是:C34·C24·A33=144种.(4)由题意,必然是四个小球放入2个盒子中.分三步完成:第一步,选出两个盒子;第二步,将四个小球分成两堆;第三步,将两堆小球全排列放入两个盒子.所以放法总数是:C24·(C24·C22A22+C14·C33)·A22=84种.(5)分三类放法.第一类:甲球放入1号盒子,即,则乙球有3种放法(可放入2,3,4号盒子),其余两球可随便放入四个盒子,有42种放法.故此类放法的种数是3×42;【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.。

2020-2021学年高二数学选修2-3《排列与组合》测试试卷解析版

2020-2021学年高二数学选修2-3《排列与组合》测试试卷解析版

2020-2021学年高二数学选修2-3《排列与组合》测试试卷解析版
一.选择题(共30小题)
1.﹣等于()
A.0B.﹣10C.10D.﹣40
【分析】利用排列组合数的计算公式即可得出.
【解答】解:原式=﹣
==10.
故选:C.
【点评】本题考查了排列组合数的计算公式,考查了推理能力与计算能力,属于基础题.2.=7×8×n,则n=()
A.7B.8C.9D.10
【分析】利用排列数公式求解.
【解答】解:∵=7×8×n,
∴由排列数公式得n=9.
故选:C.
【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.
3.已知A n2=132,则n=()
A.11B.12C.13D.14
【分析】根据排列数的公式,列出方程,求出n的值即可.
【解答】解:∵=132,
∴n(n﹣1)=132,
整理,得,
n2﹣n﹣132=0;
解得n=12,或n=﹣11(不合题意,舍去);
∴n的值为12.
故选:B.
【点评】本题考查了排列数公式的应用问题,也考查了解一元二次方程的应用问题,是
第1 页共20 页。

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

高中数学选修2-3排列题目精选(附答案)

高中数学选修2-3排列题目精选(附答案)

排列的应用习题一、数字排列问题1.用0,1,2,3,4,5这六个数字可以组成多少个符合下列条件的无重复数字的数?(1)六位数且是奇数;(2)个位上的数字不是5的六位数;(3)不大于4 310的四位数且是偶数.解析:(1)法一:从特殊位置入手(直接法):第一步,排个位,从1,3,5三个数字中选1个,有A13种排法;第二步,排十万位,有A14种排法;第三步,排其他位,有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A13A14A44=288个数.法二:从特殊元素入手(直接法):0不在两端有A14种排法;从1,3,5中任选一个排在个位上,有A13种排法;其他数字全排列有A44种排法.故可以组成无重复数字的六位数且是奇数的共有A14A13A44=288个数.法三:①从整体上排除:6个数字的全排列数为A66,0,2,4在个位上的排列数为3A55,而1,3,5在个位上,0在十万位上的排列数为3A44,故符合题意的六位奇数共有A66-3A55-3A44=288个数.②从局部上排除:1在个位上的排列有A55个,其中0在十万位上的排列有A44个,故1在个位上的六位奇数有(A55-A44)个,同理,3,5在个位上的六位奇数也各有(A55-A44)个,因此符合题意的六位奇数共有3(A55-A44)=288个数.(2)法一:(排除法)6个数字的全排列有A66个,0在十万位上的排列有A55个,5在个位上的排列有A55个,0在十万位上且5在个位上的排列有A44个,故符合题意的六位数共有A66-2A55+A44=504个数.法二:(直接法)个位上不排5,有A15种排法.但十万位上数字的排法因个位上排0与不排0而有所不同,因此,需分两类:第一类,当个位上排0时,有A55种排法;第二类,当个位上不排0时,有A14·A14·A44种排法.故符合题意的六位数共有A55+A14·A14·A44=504个.(3)法一:(直接法)①当千位上排1,3时,有A12·A13·A24种排法.②当千位上排2时,有A12·A24种排法.③当千位上排4时,形如40□□,42□□的各有A13种排法,形如41□□的有A13·A12种排法,形如43□□的只有4 310和4 302这2个数.故共有A12·A13·A24+A12·A24+2A13+A12·A13+2=110个符合条件的四位偶数.法二:(排除法)四位偶数中:①0在个位的有A35个.②0在十位和百位的有A12·A12·A24个.③不含0的有A12·A34个.故四位偶数有A35+A12·A12·A24+A12·A34=156个.其中形如5□□□的有A13·A24个,形如45□□的有A12·A13个,形如435□的有A12个,形如432□的有1个,形如431□而大于4310的只有4312这1个数,故大于4 310的四位偶数共有A13·A24+A12·A13+A12+1+1=46个数,因此符合题意的四位偶数共有156-46=110个数.注:(1)数字的排列是一类典型的排列问题,往往涉及排列特殊数,如奇数,被5整除的数等.需要注意以下几个问题:①首位数字不为0;②若所选数字中含有0,则可先排0,即“元素分析法”;③若排列的是特殊数字,如偶数,则先排个位数字,即“位置分析法”;④此类问题往往需要分类,可依据特殊元素,特殊位置分类.(2)对于有限制条件的排列问题,先考虑安排特殊元素(或位置),再安排一般的元素(或位置),即先特殊后一般,此方法为直接分步法;也可以按特殊元素当选情况(或特殊位置元素的情况)分类,再安排一般的元素(或位置),即先分类后分步,此方法为直接分类法;还可以先不考虑特殊元素(或位置),而求出所有元素的全排列数,再从中减去不满足特殊元素(或位置)要求的排列数.即先全体后排除,此方法为间接法(排除法).2.用0,1,2,…,9十个数字可组成多少个满足以下条件的且没有重复数字的数:(1)五位奇数;(2)大于30 000的五位偶数.解:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法,取定末位数字后,首位就有除这个数字和0之外的8种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理得共有5×8×A38=13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30 000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3,4,5,6,7,8,9中任一个,共7种选取方法,其余三个数位就有除首尾两个数位上的数字之外的八个数字可以选取,共A38种取法.所以共有2×7×A38种不同情况.②末位数字从4,6,8中选取,则首位应从3,4,5,6,7,8,9中除去末位数字的六个数字中选取,其余三个数位仍有A38种取法,所以共有3×6×A38种不同的情况.由分类加法计数原理,比30 000大的无重复数字的五位偶数共有2×7×A38+3×6×A38=10 752(个).二、排队问题1.3名男生,4名女生,按照不同的要求排队拍照,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,其中甲、乙必须在两端;(3)全体站成一排,其中甲不在最左端,乙不在最右端;(4)全体站成一排,男、女生各站在一起;(5)全体站成一排,男生必须站在一起;(6)全体站成一排,男生不能站在一起;(7)全体站成一排,男、女生各不相邻;(8)全体站成一排,甲、乙中间必须有2人;(9)排成前后两排,前排3人,后排4人.解析:(1)(特殊元素优先法)先考虑甲的位置,有A13种方法,再考虑其余6人的位置,有A66种方法.故有A13·A66=2 160种方法.(2)(特殊元素优先法)先安排甲、乙的位置,有A22种方法,再安排其余5人的位置,有A55种方法.故有A22·A55=240种方法.(3)法一:(特殊元素优先法)按甲是否在最右端分两类:第一类,甲在最右端,有A66种方法;第二类,甲不在最右端,甲有A15个位置可选,乙也有A15个位置可选,其余5人有A55种排法,即A15·A15·A55种方法.故有A66+A15·A15·A55=3 720种方法.法二:(间接法)无限制条件的排列方法共有A77种,而甲在最左端,乙在最右端的排法分别有A66种,甲在最左端且乙在最右端的排法有A55种.故有A77-2A66+A55=3 720种方法.法三:(特殊元素优先法)按最左端先安排分步.对于最左端、除甲外有A16种排法,余下六个位置全排列有A66种排法,其中甲不在最左端,乙在最右端的排法有A15·A55种.故有A16·A66-A15·A55=3 720种方法.(4)(相邻问题捆绑法)男生必须站在一起,即把3名男生进行全排列,有A33种排法,女生必须站在一起,即把4名女生进行全排列,有A44种排法,全体男生、女生各看成一个元素全排列有A22种排法,由分步乘法计数原理知共有A33·A44·A22=288种排法.(5)(捆绑法)把所有男生看成一个元素,与4名女生组成5个元素全排列,故有A33·A55=720种不同的排法.(6)(不相邻问题插空法)先排女生有A44种排法,把3名男生安排在4名女生隔成的五个空中,有A35种排法,故有A44·A35=1 440种不同的排法.(7)对比(6),让女生插空,有A33·A44=144种不同的排法.(8)(捆绑法)除甲、乙外,从其余的5人中任取2人,并站在甲、乙之间,与甲、乙组成一个整体,再与余下的3个人进行全排列,故有A25·A22·A44=960种不同的排法.(9)直接分步完成,共有A37·A44=5 040种不同的排法.注:(1)“排队”问题与“排数”问题有些类似,主要是从特殊位置或特殊元素两个方面考虑,当正面考虑情况复杂时,可考虑用间接法;(2)直接法解题一般采用元素分析法和位置分析法,要注意分类时不重不漏,分步要连续、独立;间接法要注意不符合条件的情形,做到不重不漏;(3)某些元素要求必须相邻时,可以先将这些元素看成一个整体,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”,即“相邻元素捆绑法”;(4)某些元素要求不相邻时,可以先安排其他元素,再将这些不相邻元素插入空档,这种方法称为“插空法”,即“不相邻元素插空法”.2.(1)7名同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(2)7名同学站成一排,甲、乙只能站在两端的排法共有多少种?(3)7名同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解:(1)第一步,安排除了甲之外没有特殊要求的6名同学,其为全排列,其排法数为A66=720;第二步,安排甲,甲只能在已经排好的6名同学的正中间,其排法只有1种.根据分步乘法计数原理知,共有720×1=720种不同的排法.(2)第一步,先排甲、乙,这2名同学只能排在两端,其排法有A22种;第二步,将余下的5名同学进行全排列,有A55种排法.根据分步乘法计数原理知,共有A22·A55=240种排法.(3)法一(直接法):第一步,从除去甲、乙外的其余5名同学中选2名同学站在排头和排尾,有A25种排法;第二步,余下的5名同学进行全排列,有A 55种排法.所以一共有A 25·A 55=2 400种排法.法二(间接法):若甲站在排头或排尾,有2A 66种方法,若乙站在排头或排尾,有2A 66种排法,若甲站在排头且乙站在排尾,有A 55种排法,若甲站在排尾且乙站在排头,有A 55种排法,所以甲、乙不能站在排头和排尾的排法共有A 77-2A 66-2A 66+A 55+A 55=2 400(种).法三(直接法):第一步,对除去甲、乙以外的5名同学进行全排列,有A 55种排法;第二步,把甲安排到已排好的5人队伍中,但不能安排到排头和排尾,有A 14种排法;第三步,把乙安排到已排好的6人队伍中,但不能安排到排头和排尾,有A 15种排法.根据分步乘法计数原理,总的排法有A 55·A 14·A 15=2 400(种).三、排列中的定序问题1.五个人排成一排,求满足下列条件的不同排列各有多少种.(1)A ,B ,C 三人左中右顺序不变(不一定相邻);(2)A 在B 的左边且C 在D 的右边(可以不相邻).解析: (1)首先五个人站成一排,共有A 55种排法,其中A ,B ,C 三人的全排列有A 33种排法,而A ,B ,C 从左到右的顺序只是其中一种,所以满足条件的排法共A 55A 33=20(种). (2)同(1),不过此题中A 和B ,C 和D 被指定了顺序,则满足条件的排法共A 55A 22·A 22=30(种).注:在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻).解决这类问题的基本方法有两个:(1)整体法,即若有m +n 个元素排成一列,其中m 个元素之间的先后顺序确定不变,将这m +n 个元素排成一列,有A m +n m +n 种不同的排法;然后任取一个排列,固定其他n个元素的位置不动,把这m个元素交换顺序,有A m m种排法,其中只有一个排列是我们需要的,因此共有A m+nm+nA m m种满足条件的不同排法;(2)插空法,即m个元素之间的先后顺序确定不变,因此先排这m个元素,只有一种排法,然后把剩下的n个元素分类或分步插入由以上m个元素形成的空中.2.7人排成一列,甲必须在乙的后面(可以不相邻),有________种不同的排法.解析:7人排队,2人顺序固定,∴共有A77A22=5 0402=2 520种不同的排法.答案:2 5203.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.解析:若1,3,5,7的顺序不定,有A44=24种排法,故1,3,5,7的顺序一定的排法数只占总排法数的1 24,故有124A77=210个七位数符合条件.答案:210巩固练习:(基础题)题组1数字排列问题1.用数字1,2,3,4,6可以组成无重复数字的五位偶数有()A.48个B.64个C.72个D.90个解析:选C有A13A44=72个无重复数字的五位偶数.2.用0,1,2,3组成的能被5整除且没有重复数字的四位数的个数为________.解析:因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其个数为A33=6.答案:63.用数字0,1,2,3,4,5组成没有重复数字的四位数.(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?(3)在所有的四位数中按从小到大的顺序排成一个数列,则第85个数为多少?解:(1)法一(直接法):A15·A35=300(个).法二(间接法):A46-A35=300(个).(2)法一(直接法):因为0为特殊元素,故先考虑0.若0在个位有A35个;0不在个位时,从2,4中选一个放在个位,再从余下的四个数中选一个放在首位,有A12·A14·A24,故有A35+A12·A14·A24=156个不同的四位偶数.法二:(间接法):从这六个数字中任取四个数字组成最后一位是偶数的排法,有A13·A35个,其中第一位是0的有A12·A24个.故适合题意的有A13·A35-A12A24=156个不同的四位偶数.(3)1在首位的数的个数为A35=60.2在首位且0在第二位的数的个数为A24=12.2在首位且1在第二位的数的个数为A24=12.以上四位数共有84个,故第85个数是2 301.题组2排队问题4.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!解析:选C利用“捆绑法”求解.满足题意的坐法种数为A33(A33)3=(3!)4.5.4名男生和4名女生并坐一排照相,女生要排在一起,不同排法的种数为()A.A88B.A55A44C.A44A44D.A58解析:选B因为4名女生要排在一起,所以先将4名女生捆绑与其他4名男生一起排列,然后再将4名女生排列,共有A55A44种排法.6.6个人排成一行,其中甲、乙两人不相邻的不同排法共有()A.120种B.240种C.360种D.480种解析:选D由于甲、乙两人不相邻,故应先将剩余4人全排列,然后将甲、乙分别插入4人排列后的5个空中,故共有A44A25=4×3×2×1×5×4=480种排法.7.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有________种.解析:先将5名志愿者排好,有A55种排法,再将2位老人“捆绑”起来插入中间的间隔,有A14·A22种排法,由分步乘法计数原理知,共有A55×A14A22=960种排法.答案:9608.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起留照合影(排成一排).(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?(2)要求灰太狼、红太狼不相邻,有多少种排法?解:(1)把喜羊羊家族的四位成员看成一个元素,排法种数为A33.又因为四位成员交换顺序产生不同排列,所以共有A33·A44=144种排法.(2)分两步:第1步,将喜羊羊家族的四位成员排好,有A44种排法;第2步,让灰太狼、红太狼插四位成员形成的空(包括两端),有A25种排法,共有A44·A25=480种排法.题组3排列中的定序问题9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种B.30种C.40种D.60种解析:选A分类完成,甲排周一,乙、丙只能从周二至周五这4天中选2天排,有A24种安排方法;甲排周二,乙、丙有A23种安排方法;甲排周三,乙、丙只能排周四和周五,有A22种安排方法.由分类加法计数原理可知,共有A24+A23+A22=20种不同的安排方法.10.A,B,C,D,E五人并排站成一排,若B必须站在A的右边(A,B可以不相邻),则不同的排法共有________种.解析:由于B 在A 的左边与B 在A 的右边的机会均等,故B 站在A 的右边的排法有12×A 55=12×5×4×3×2×1=60(种).答案:60巩固练习:(提升题)1.一个长椅上共有10个座位,现有4人去坐,其中恰有5个连续空位的坐法共有( )A .240种B .600种C .408种D .480种解析:选D 将四个排成一排共有A 44种排法,产生5个空位,将五个空位和一个空位构成的两个元素插入共A 25种方法.由分步乘法计数原理满足条件的共A 44·A 25=480种坐法.2.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x 2a 2+y 2b 2=1中的a 和b ,则能组成落在矩形区域B ={(x ,y )||x |<11,且|y |<9}内的椭圆个数为( )A .43B .72C .863D .90解析:选B 在1,2,3,…,8中任取两个作为a 和b ,共有A 28=56个椭圆;在9,10中取一个作为a ,在1,2,3,…,8中取一个作为b ,共有A 12A 18=16个椭圆,由分类加法计数原理,知满足条件的椭圆的个数为56+16=72.3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B ,C 实施时必须相邻,则实验顺序的编排方法共有( )A .24种B .96种C .120种D .144种解析:选B 先安排程序A ,从第一步或最后一步选一个,有A 12种,再把B ,C 看成一个整体和其余三个程序编排,有A 44种,最后B ,C 排序,有A 22种,故共有A 12A 44A 22=96种.4.甲、乙、丙、丁和戊5名同学进行数学应用知识比赛,决出第一名至第五名(没有并列名次).已知甲、乙均未得第一名,且乙不是最后一名,则5人的名次排列情况有()A.27种B.48种C.54种D.72种解析:选C由题意,知乙的限制最多,故先排乙,有3种排法;再排甲,也有3种排法;余下3人有A33种排法.故共有3×3×A33=54种不同的排法,故选C.5.5位同学排队演出,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在第一位,则排法种数为________.解析:若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,有2×3×A33=36种排法;若第一个出场的是女生(不是女生甲),则将剩余的2位女生排列好,2位男生插空,有2×A22×A23=24种排法.故所有的排法种数为36+24=60.答案:606.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是________.解析:将3,4两个数全排列,有A22种排法,当1,2不相邻且不与5相邻时有A33种方法,当1,2相邻且不与5相邻时有A22·A23种方法,故满足题意的数的个数为A22(A33+A22·A23)=36.答案:367.七名班委中有A,B,C三人,有七种不同的职务,现对七名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方案,再安排其余职务有A55种方案,依分步乘法计数原理知,共有A23A55=720种分工方案.(2)七人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55种,因此A,B,C三人中至少有一人任正、副班长的分工方案有A77-A24A55=3 600(种).8.5男5女共10名同学排成一行.(1)女生都排在一起,有几种排法?(2)女生与男生相间,有几种排法?(3)任何两个男生都不相邻,有几种排法?(4)5名男生不排在一起,有几种排法?(5)男生甲与男生乙中间必须排而且只能排2名女生,女生又不能排在队伍的两端,有几种排法?解:(1)将5名女生看作一人,就是6个元素的全排列,有A66种排法.又5名女生内部有A55种排法.所以共有A66·A55=86 400种排法.(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A55·A55=28 800种排法.(3)女生先排,女生之间及首尾共有6个空.任取其中5个安插男生即可,因而任何男生都不相邻共有A55·A56=86 400种排法.(4)直接分类较复杂,可用间接法.即从10个人的排列总数中,减去5名男生排在一起的排法数,得5名男生不排在一起的排法数为A1010-A55A66=3 542 400.(5)先安排2个女生排在男生甲、乙之间,有A25种方法;又甲、乙之间还有A22种排法. 这样就有A25·A22种排法.然后把他们4人看成一个元素(相当于一个男生),再从这一元素及另3名男生中,任选2人排在首尾,有A24种排法.最后再将余下的2名“男生”、3名女生排在中间,有A55种排法.故总排法数为A25A22A24 A55=57 600.。

数学选修2-3(排列组合二项式定理)练习题

数学选修2-3(排列组合二项式定理)练习题

数学选修2-3(排列组合二项式定理)练习题篇一:第十三章排列组合及二项式定理习题及答案第十三章排列组合二项式定理复习题及答案一、概念:分类加法计数原理分步乘法计数原理排列组合排列数公式Anmnn1n2nm1mn!nm!组合数公式CmnAnAmmn!m!nm!排列数性质:①Annn!②0!1组合数性质:①Cn01②CnmCnnm③CnmCnm1Cnm1二、应用:1.把3本书放到4个抽屉中,不同的放法有▁▁▁种.答案:43=64.2.中国、美国、古巴、日本举行四国女排邀请赛,每个国家都有得冠亚军的可能,但冠军均不能并列,则得冠亚军的所有不同情况共有▁▁种.答案:А24=12.3.某班有3名学生准备参加校运动会的百米、二百米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生参赛的不同方法有▁▁▁种.答案:А34=244.从1、3、5、10、20这五个数中任选两个相加,则可得不同的和数▁▁▁个.能得到不同的和▁▁个.答案:С25=10С5+С545+С5+С325+С5=315.有6个排球队,举行单循环比赛.则比赛的场数有▁▁.答案:С26=156.有10个人两两碰杯,共碰杯▁▁▁次.答案:С210=45.7.用1元、2元、5元、10元人民币各一张,能组成不同的币值▁▁▁种.答案:С14+С24+С34+С44=158.正十二边形共有▁▁▁条对角线.答案:С-12=54减去12个顺次相连不成对角线.9.用1、2、3、4、5五个数可以组成不充许数字重复的自然数▁▁个.答案:А15+А25+А3+А545+А5=325510.用1、2、3、4、5五个不同的数组成不许重复的三位数为▁▁.充许重复的三位数为▁答案:А3=6053=125511.在三位正整数中0的个数共▁▁▁个.答案:分为三类:一类含两个零有100、200、···900共18个二类十位为0而个位不为0有9某9=81.如101、102、···109、201、202、···909三类十位不为0而个位为0的有9某9=81合计有18+81+81=18012.数72有多少个正约数.其中正偶数有多少个答案:72=23某32约数2r某3某其中2的指数有0、1、2、3四种取法,3的指数有0、1、2三种取法共有4某3=12种.偶约数2的指数有1、2、3三种取法共有3某3=9种13.现有男学生8名,女学生2名,要从中选4人组成一个学习小组,必须有女学生参加的选法种数是▁▁▁.答案:С12·С8+С22·С28=112+28=14014.要从8名男医生和7名女医生中选5人组成一个医疗小组,如果医疗小组中男.女医生均不少于2人,则不同的选法种数是▁▁.答案:С28·С37+С8·С327=215615.直线a∥b,a上有5个点,b上有4个点.以这9个点为顶点,可组成不同三角形个数▁▁▁个.答案:С25·С5+С5·С1124=70.16.除点O外,在∠AOB的边OA上另有5点,边OB上另有4点,以含点O 在内的10个点为顶点,可以组成多少不同的三角形.答案:①С2310-С6-С5=90.OA中6取3.OB中5取3在一条直线上1433②С5·С+С5·С24+С5·С14=90OA、OB有一个和两个点及O17.在10名学生中有6名男学生,4名女学生,要从中选5名参加义务劳动,女学生至多有2名的选法有▁▁▁种.答案:С4·С6+С514·С46+С24·С6=186318.某校从8名教师中选派4名教师同时去4个边远地区支教每地1人,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有▁▁▁种.答案:甲去则乙不去丙去有С25·А44甲不去则丙不去有С46·А44共有240+360=60019.安排7位工作人员在5月1日至5月7日值班,其中甲乙二人都不安排在5月1日和2日,不同的安排方法共有▁▁▁▁种.答案:甲乙两人不在1日和2日有А有А2525种方法,其余5人在剩下的5天中安排一天有А5共5·А5=240520.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中确定一名幸运伙伴,有____种不同的结果.答案:28800分两类:①幸运之星在甲信箱中抽,先定幸运之星,再在两信箱中各定幸运伙伴有30292017400种结果②幸运之星在乙信箱中抽,同理有20193011400种结果.因此,共有不同结果174001140028800种21.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()А.35B.70С.210D.105答案:B.从7人中选出3人有C7335种情况,再对选出的3人调整座位有2种情况3有2C77022.要从10名男生和5名女生中选出6人组成啦啦队,若男生选取同的选法种数▁▁▁种.答案:男10名女5名С41023,剩余选女生,则不·С25=210023.将5名实习生教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有()А.30种B.90种С.180种D.270种答案:分下列4步:①三个班中桃一个班得一名教师有С3种②5个教师中选一人进这个班有С5种③从剩下的4名教师中再选2人进第二个班有С4种④最后剩下的2名教师进第三个班有С2种由分步计数原理共有С3·С5·С112224·С22=90种24.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()А.16种в.36种С.42种D.60种答案:分两类①三个项目分别在三个城市内有А②三个项目分别在两个城市内有С2334种24·А共有24+36=60种25.正六边形ABCDEF中,АС∥у轴,从六个顶点中任取三点,使这三点能确定一条形如ya某b某ca0的抛物线的概率是▁▁▁.2答案:由二次函数性质知三点可确定一条抛物线但两点连线不能与纵轴平行,故概率为C624C36335对AC有上下左右4种抛物线不满足题意26.从1、2、3┅100中,任选两个不同的数相乘,乘积(如两数相等仍按两个积计算)能被3整除的取法有▁▁▁种.答案:能被3整除的数33个,不能被3整除的数67个.则С133·С167+С233=2739不能被3整除的数С2100-2739=27.一个袋子装有红球与白球各5个,要从中取4个,取出的红球多于白球的取法有▁▁种.答案:С3·С15+С545·С5=55个答案:2开头106个3开头106个6开头106个共3某1062229.己知,a{1,2,3},b{3,4},r{1,2,3,4},那么方程某aybr2共可表示▁▁▁个不同的圆.答案:3某2某4=2430.十字路口来往的车辆共有▁▁种不同的行车路线.答案:A4212每个路口有两种方法.31.若m∈{2,1,0,1,2,3},n∈{3,2,1,0,1,2},方程示中心在原点的双曲线,则最多可表示▁▁条不同的双曲线.答案:13.m2n=1、2两条m1n=1.2两条m1n=3,2,1.三条m2时n三条m3时n三条共13条32.有一元币3张,5元币一张,10元币2张.,可以组成多少种不同的币值.答案:有一种币值时3+1+2=6种两种币值时1元、5元有1某3=3种1元、10元有3某2=6种5元、10元有2某1=2种三种币值时3某2某1=6种共6+3+6+2+6=23种.33.直线A某By0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为Α、B的值,则表示不同直线的条数为()Α.2条B.12条C.22条D.25条答案:C取出的两个数中含有0时有两条直线.取出的两个数中不含0时有Α共Α2525某2m+y2n=1表+2=22条.34.设集合M={K|K3,KZ}.Ρ(某,y)是坐标平面上的点,且某,yM则Ρ表示平面上▁▁个点.答案:25.M={2,1,0,1,2}横纵坐标均5种共5某5=25个35.有386、486、586型电脑各一台,甲、乙、丙、丁四名操作人员的技术等次不同,甲、乙会操作三种型号的电脑,丙不能操作586,而丁只会操作386,今从这四名操作人员中选3人分别去操作以上电脑,则不同的选派方法有()Α.4种B.6种C.8种D.12种答案:C有丁时586486386无丁时586486386甲丙丁甲乙丙乙丙丁甲丙乙乙甲丁乙丙甲甲乙丁乙甲丙共4+4=8种36.从一个3某4方格中的一个顶点Α到对角顶点B的最短路线有几条.答案:从Α到B的最短路线均需7步,包括横4纵3,则从7步中取4步或3步的组合.42则从Α到B的最短路线共有C7=C3=35条.若2某5方格为C7=C57737.5人排成一排,甲不站在正中间的排法种数为()Α.24B.48C.96D.119答案:C甲不在正中有Α4.其余4人任选Α44则Α14Α44=96也可Α5-Α544=9638.7人站成一排,如果甲、乙两人必须不相邻,则不同的排法种数()Α.1440B.3600C.4320D.4800答案:Α77-2Α6=3600639.一名老师和4名获奖同学排一排照相留念,若老师不排在两端,则不同的排法共▁▁种.答案:72老师A3学生Α4414A3A47240.5人排一排,如果Α必须站在B的左边(Α、B可以不相邻),则不同的排法有▁▁▁种.答案:Α44+Α3Α3+Α1312Α3+Α3=6033某某某某某ΑBBBBΑBBBΑBBΑB41.5人排成一排,甲不站在左端,乙不站在右端,共有多少种不同的排法.答案:Α5-甲在左或乙在右2A4+多减的一个Α3=7842.有Α、B、C、D、E五人并排站在一排,如果Α、B必须相邻且B 在Α的右边.不同的排法▁▁种答案:4Α3=24某某某某某3543ΑBΑB1、在(某1)4的展开式中,某的系数为.(用数字作答).122、在某的展开式中,的系数为.(用数字作答).某4某3、(某3)7的展开式中某5的系数是.(用数字作答).4、在(2某1)的展开式中,含某2的项的系数是(用数字作答).561某385、某的展开式中的系数是________(用数字作答).某6、已知(1某)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()5A.212B.211C.210D.297、某2的展开式中,某2的系数等于.(用数字作答).8、在2某的展开式中,某3的系数为55.(用数字作答).9、二项式(某1)n(nN)的展开式中某2的系数为15,则n()A.4B.5C.6D.73210、已知的展开式中含某的项的系数为30,则a()5A.B.C.6D-625B.11、(某某y)的展开式中,某y的系数为()52(A)10(B)20(C)30(D)60篇三:选修2-3_排列、组合与二项式定理测试题选修2-3排列、组合与二项式定理一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q到集合P可作的不同的映射共有()A.32个B.27个C.81个D.64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插入方法总数为()A.42B.36C.30D.123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则有()A.P>QB.P=QC.P<QD.不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有()种A.8B.12C.16D.205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.CCC4124844B.3CCC4124844C.CCCA412484433D.C12C8C4A33444B.300C.65D.507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A.1680B.256C.360D.2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A.7200B.3600C.2400D.12009.在(1某1某3)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A.462B.330C.682D.79210.在(1+a某)的展开式中,某项的系数是某项系数与某项系数的等比中项,则a的值为()A.73255B.53C.259D.253二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C 船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有_____________种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二2-3排列组合练习题及答案
排列组合练习题
1,从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()
A,70 种 B,80种 C,100 种 D,140 种
2,2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()
A, 48 种 B,12种 C,18种 D36种
3,从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为
A,48 B, 12 C,180 D,162
4,甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()
A,150种 B,180种 C,300种 D,345种
5,甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有
A,6 B,12 C 30 D36
6,用0 到9 这10 个数字,可以组成没有重复数字的三位偶数的个数为()
A.324 B,328 C,360 D,648
7,从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为()
A,85 B,56 C,49 D,28
8,将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为()
A,18 B,24 C,30 D,30
9.将3个不同的小球放入4个盒子中,则不同放法种数有()
A.81 B.64 C.12 D.14
10.,,,,
a b c d e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()
A.20 B.16 C.10 D.6
11.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是()
A.
12
694
C C B. 12
699
C C C. 33
10094
C C
- D. 33
10094
A A
-
12.停车站划出一排12个停车位置,今有8辆不同型号的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()种.
A .8
12A 种 B .44882A A 种 C.888A 种 D.8
89A 种
13.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( ) A.42 B.36 C.30
D.12
14.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( ) A.8种
B.10种
C.12种
D.32种
15.n N ∈且55n <,则乘积(55)(56)
(69)n n n ---等于
A .5569n
n A -- B .1569n A - C .1555n A - D .1469n A -
16.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为
A .120
B .240
C .280
D .60
17.从4名男生,3名女生中选出三名代表. (1)不同的选法共有多少种
(2)至少有一名女生的不同的选法共有多少种
(3)代表中男、女生都要有的不同的选法共有多少种
18.用0,1,2,3,4,5这六个数字: (1)可组成多少个无重复数字的自然数? (2)可组成多少个无重复数字的四位偶数?
(3)组成无重复数字的四位数中比4023大的数有多少
19. 有5个人站成一排: (l )共有多少种不同的排法?
(2)其中甲必须站在中间有多少种不同排法?
(3)其中甲、乙两人必须相邻有多少种不同的排法?
(4)其中甲、乙两人不相邻有多少种不同的排法?
(5)其中甲、乙两人不站排头和排尾有多少种不同的排法?
(6)其中甲不站排头,乙不站排尾有多少种不同的排法?
练习题
1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方
案的种数是 ( ) A .6A 33
B .3A 33
C .2A 33
D .A 22A 41A 44
2.编号为1,2,3,4,5,6的六个人分别去坐编号为1,2,3,4,5,6的六个座位,其中有且只有两个人的编号与座位编号一致的坐法有 ( )
A .15种 B.90种 C .135种 D .150种
3.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有( ) A .168
B .45
C .60
D .111
4.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( ) A .24个 B .12个 C .6个 D .4个
5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法有
A .3
19823
C C 种 B .(2
19733319723C C C C +)种
C .)C -(C 4
1975200种
D .)C C C (4
197135200-种
6.()n x y -的二项展开式中,第r 项的二项式系数是( )
A.r n C
B. 1r n C +
C. 1r n C -
D. 11(1)r r n C ---
7.在
的展开式中
的系数是( )
A. –14
B. 14
C. –28
D. 28 8.设k=1,2,3,4,5,则
的展开式中
的系数不可能是( )
A. 10
B. 40
C. 50
D. 80 9.若n ∈N *
,(2+1)n
=2a n +b n (a n 、b n ∈Z),则b n 的值( )
A.一定是奇数
B.一定是偶数
C.与b n 的奇偶性相反
D.与a 有相同的奇偶性
10.下面几种推理是类比推理的是 ( )
A .两条直线平行,同旁内角互补,如果A ∠和
B ∠是两条平行直线的同旁内角,则 180=∠+∠B A
B .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都
超过50位团员
C .一切偶数都能被2整除,1002是偶数,所以1002能被2整除
D .由平面向量的运算性质,推测空间向量的运算性质
11.某乒乓球队有11名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的法选共有________.
12.定义复数的一种运算z 1* z 2=
|z 1|+| z 2 |
2
(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =6,则z *z 的最小值为
13.现有5种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的
着色方法共有 种。

14. 展开式中的常数项是 (用数字作答)
15. (2x+x )4的展开式中x 3的系数是
16.在(x -3)10
的展开式中,x 6
的系数是 .
17.求由抛物线y =x 2
-4与直线y =-x +2所围成图形的面积是 .
18.求二项式(x 2
+x
21)10的展开式中的常数项 .
高手提高题10分。

19.已知二项式(3x -x
32)10
, (1)求其展开式第四项的二项式系数; (2)求其展开式第四项的系数; (3)求其第四项.。

相关文档
最新文档